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Estimating the state of a hybrid system means accounting for the mode of operation or failure and the current state of
the continuously valued entities concurrently. Existing hybrid estimation schemes try to overcome the problem of an
exponentially growing number of possible mode-sequence/continuous-state combinations by merging hypotheses and/or
deducing likelihood measures to identify tractable sets of the most likely hypotheses. However, they still suffer from
unnecessarily high computational costs as the number of possible modes increases. Hybrid diagnosis schemes, on the other
hand, estimate the current mode of operation/failure only, thus leaving the continuous evolution of the system implicit.
This paper proposes a novel scheme that uses a combination of both the approaches in order to define posterior transition
probabilities between the specified modes of the hybrid system, hence focusing better on relevant hypotheses. In order to
demonstrate the effectiveness of the proposed method, the algorithm is applied to a satellite attitude control system and
compared with existing hybrid estimation/diagnosis schemes, such as the Interacting Multiple Model (IMM) algorithm, a
purely parity based method (HyDiag), and an existing hybrid Mode Estimation (hME) algorithm.
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1. Introduction

Many modern systems, such as immobile and mobile
robots, space probes, etc. show complex behaviour
with several modes of operation or failure, each of them
associated with different continuous dynamics. Accurate
knowledge of the current mode and the current state of the
physical entities is important for autonomous operation
in order to react appropriately whenever faults occur.
However, the current mode and the continuous-valued
states of a system are usually not directly observable
and have to be estimated using the known actuation,
available measurements and a model of the system.
Hybrid systems theory provides a good way to model such

systems by defining discrete modes of operation/failure
and transition relations between them as well as a
mode-dependent mathematical model. Nevertheless,
estimating the state of such systems means facing
an exponentially growing number of mode-sequences
with their corresponding continuous evolution, which is
computationally infeasible.

There exist several strategies to overcome this
problem. Multiple model filtering approaches (Ackerson
and Fu, 1970; Blom and Bar-Shalom, 1988; Li and
Bar-Shalom, 1996; Semerdjiev and Mihaylova, 1998;
Georges et al., 2011), for example, reduce the number of
filtering operations by mixing the estimation results for
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all modes at every time-step. Particle filtering methods
(de Freitas, 2002; Verma et al., 2004) estimate the
probability distribution of the different mode/continuous
state combinations. In the work of Narasimhan et al.
(2004), a particle filtering approach is combined with a
fault detection method to reduce the number of modes that
need to be tracked by the particle filter. Hybrid estimation
methods (Benazera et al., 2002; Hofbaur and Williams,
2002; Narasimhan and Biswas, 2002) derive likelihood
measures to identify small sets of the most likely
hypotheses and thus can deal with systems with a large
number of modes. Benazera and Travé-Massuyès (2009)
propose a set-membership hybrid estimation scheme
which naturally merges hypotheses with identical mode
estimates by calculating the convex hull of continuous
estimates.

When used for diagnosis, all estimation approaches
must find a way to deal with low probability-modes.
Focusing on the most probable hypotheses is indeed
conflicting with the fault modes being an order of
magnitude less probable than normal modes. Koutsoukos
et al. (2002) overcome this problem by using more
particles, although this increases the computational cost.
In the work of Dearden and Clancy (2002), the particle
filter is based on importance sampling to ensure that fault
modes obtain enough particles. On the other hand, hybrid
diagnosis approaches (Bayoudh et al., 2008; Daigle et al.,
2010) focus on the discrete part of the hybrid model
and, using parity-space ideas (Gertler, 1991; Staroswiecki
and Comet-Varga, 2001), limit the number of possible
hypotheses to the number of modes in the system at each
time step. However, additional state filtering operations
need to be performed in order to obtain the continuous
state estimate.

Most of the work cited above incorporate a priori
defined mode transitions probabilities. However, defining
probabilities a priori is a tedious and demanding task.
Transitions to error modes can be determined based on
failure probability analysis from operation feedback logs
or by incorporating risk estimation. What is important
to notice is that the result of this process considerably
influences the behavior of the estimation algorithm. Thus,
in this work we propose to define posterior transition
probabilities by combining a hybrid estimation and a
diagnosis approach. The benefit is two-fold; first, the
chance of low probability modes to be considered is
increased, when necessary, and second, we achieve a
better focus on more relevant mode hypotheses, thus
making the system less computationally intensive.

The paper is organized as follows. Section 2 formally
introduces the hybrid model that we use. Section 3
reviews hybrid estimation in general. Section 4 describes
the hybrid estimation approach and the parity-space
method our algorithm relies on and introduces the
combined algorithm. Section 5 describes a case study of a
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Fig. 1. Example of a discrete event system: automaton with four
different states qi and six possible mode transitions (ob-
servable events oi and unobservable events uoi).

simulated satellite attitude control system while Section 6
shows the experimental results of the algorithm compared
to existing hybrid estimation approaches.

2. Hybrid model

We use a hybrid model that is related to so-called
linear-switched hybrid systems (Kamau and Lunze, 2003;
Vidal et al., 2003) and combine a discrete event system
with continuous dynamics in the sense of Henzinger
(1996), as well as Hofbaur and Williams (2004).

Discrete event system. The discrete event system (see
Fig. 1) is defined as an automaton with different states
(modes of operation/failure) and transitions (discrete
events) between them through the quadruple

M := (Q, Σ, T, Q0), (1)

where

• Q = q1, . . . , ql is the set of discrete states with |Q| =
l. Each state qi ∈ Q represents a mode of operation
or failure of the system.

• Σ is the set of events. Events correspond to steerable
mode transitions, spontaneous mode changes and
fault events. The subset Σo ⊆ Σ denotes the set
of observable events. Without loss of generality, we
assume that fault events are unobservable.

• T is the (mode) transition function T : Q × Σ → Q
that captures the discrete evolution of the system.

• Q0 ∈ Q specifies the set of initial discrete states
(modes).

Continuous-valued model. The underlying continuous-
valued part of the model is defined through the
(multi-mode) system

Ξ := (ζ, Q, C, ζ0), (2)

where
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• ζ represents the set of continuous-valued variables
that comprises nu (exogenous) input variables

[uc,1, . . . , uc,nu ]T =: uc,

nx state variables

[xc,1, . . . , xc,nx ]T =: xc,

and ny output variables

[y1, . . . , yny ]T =: yc

that represent the continuous-valued measurements.

• ζ0 specifies the initial state of the continuous-valued
state variables.

• C defines the set of system constraints that link
the continuous variables and thus captures the
continuous evolution of the automaton.

Within the scope of this paper, the system constraints
C define a discrete-time linear model with sampling
period Ts that associates each mode qi ∈ Q with a
difference equation

xc,k+1 = Aixc,k + Biuc,k + Nivc,k (3)

and an algebraic equation that defines the measurements
through

yc,k = Cixc,k + Diuc,k + Mivc,k, (4)

where xc,k, uc,k and yc,k denote the valuation of the
continuous state, input and output variables at time t =
kTs. The variable vc := [vc,1, . . . , vc,nx+ny ]T defines
state noise (vc,1, . . . , vc,nx) and measurement noise
(vc,nx+1, . . . , vc,nx+ny ). The possibly mode-dependent
magnitude of the disturbances is specified through the
scaling vectors ni and mi that define the noise matrices
Ni = [diag(ni),0], Mi = [0, diag(mi)] which select
and scale the appropriate fraction of vc. In this paper, we
assume that the system’s dynamics within each mode are
fully observable.

Hybrid model. The hybrid model is comprised of a
discrete event system M accompanied by the multi-mode
system Ξ:

S := (ζ, Q, Σ, T, C, (Q0, ζ0)). (5)

Hybrid state. The hybrid state xh of the system at time
step k consists of the discrete state or mode xd,k and the
associated continuous state xc,k:

xh,k = 〈xd,k,xc,k〉 . (6)

3. Hybrid estimation

The task of hybrid estimation is to reconstruct both
the mode of operation or failure of the system and
the continuous-valued state variables at each time step.
Indeed, the full continuous state and the current mode
are usually not directly observable or measurable and the
missing information has to be deduced from available
measurements, known actuations and a model of the
physical system. The main difficulty of this task is
the close interaction of the discrete and the continuous
behavior of the hybrid system. In theory, all possible
mode transitions and the resulting mode sequences that
can occur during the dynamic evolution of the system
need to be taken into account. This results in an
exponential growth in the number of mode sequence
hypotheses.

Figure 2 shows the full hypotheses tree for three time
steps for the system whose underlying DES is given in
Fig. 1. The system starts from the (known) initial state q3,
i.e., at time step k = 0 we have a set H0 = {H(1)

0 } of
λ0 = 1 hypothesis1:

H
(1)
0 = 〈 x̂(1)

d,0 〉 = 〈q3〉 .

In the next time step, we derive all possible mode
transitions from the discrete automaton M (see Eqn. (1))
and extend the existing hypothesis with the new mode
estimates. In our specific case, we have to consider
three possible (unobservable) mode transitions2: the
self-transition q3 → q3 and two unobservable transitions
to modes q2 and q4, respectively. We repeat this process
recursively as time elapses. The result encodes an
exponentially growing hypotheses tree (see Fig. 2 for the
tree at k = 2 with λ2 = 6 hypotheses). Each path in the
tree represents a mode-sequence hypothesis that defines
a distinct time-varying continuous model for the system’s
evolution.

It is easy to see that even with a moderate number
of possible modes this task becomes computationally
infeasible after a few time steps. To overcome this
problem, suboptimal methods were developed that merge
or prune mode sequence hypotheses and/or deduce
appropriate likelihood measures to focus on a possibly
small set of most likely hypotheses. On the other hand,
hybrid diagnosis schemes were proposed that focus on the
mode estimate only. Thus, hybrid diagnosis neglects the
value of the continuous state variables. Hybrid diagnosis
employs, for example, mode consistency tests that
validate mode hypotheses against input/output relations
(for sequences of continuous inputs uc,k and continuous
outputs yc,k). As a consequence, at most l mode

1The superscript (i) of the individual H
(i)
j is used to enumerate

mode sequence hypotheses, whereas the subscript j indicates the associ-
ated time step.

2We process the non-transition qj → qj as an additional transition.
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Fig. 2. Hypotheses tree. Every node represents a mode hypoth-
esis. A path from the root node to the leaves defines a
mode sequence hypothesis. The last hypothesis, H

(7)
2 ,

is greyed out, since the mode transition from q4 to q3

is observable and could not be observed in this specific
case.

hypotheses need to be checked per time step, where
l denotes the number of modes in the system and
thus avoids the exponential explosion that comes with
mode-sequence hypotheses.

4. Synergetic hybrid estimation

We propose to build upon both schemes, hybrid estimation
and hybrid diagnosis, to obtain a synergetic scheme for
hybrid estimation that utilizes the advantages of both the
approaches. The hybrid state estimation algorithm that
we use, hME (Hofbaur and Williams, 2004; Hofbaur,
2005), labels every mode sequence hypothesis under
consideration with a probability-like belief. This approach
enables the algorithm to focus on the set of the most likely
hypotheses.

The second component is a hybrid diagnosis scheme
that employs a parity-space consistency check (Gertler,
1991). This algorithm is used to achieve a better focus
(of hME) on hypotheses consistent with that test and
thus helps to avoid unnecessary filtering operations. Both
algorithms and their interaction will be described in the
following sections.

4.1. Hybrid mode estimation algorithm. The
hybrid Mode Estimation (hME) algorithm was originally
developed for probabilistic hybrid automata and their
concurrent composition. These probabilistic models
utilize Hidden Markov Models (HMMs) as the automaton
model. This original framework provides prior transition
probabilities that help hME to focus on likely estimation
hypotheses. Specifying proper values for the prior
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Fig. 3. Mode transition probability specification for mode q3

with n = 2 unobservable transitions.

probabilities of the mode transitions in hybrid models
is a challenge. The DES automaton model (Eqn. (1))
utilizes a simpler transition definition without explicit
prior probability specification for mode transitions.
Nevertheless, we want to utilize the modelling assumption
that mode transitions occur infrequently, thus a priori it is
more likely that the mode remains unchanged.

This assumption is reasonable, since the occurrence
of a fault usually has a low probability. Furthermore,
transitions between nominal operating modes occur
infrequently in relation to the sampling time. We express
this fact through an automated specification for transition
likelihood as follows: The estimator assumes that it is
α times (α > 1) more likely that the mode of operation
remains unchanged. As a consequence, we specify the a
priori transition probabilities

P (tij) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ptii =
α

(α + n)
for the non-transition
qi → qi

Ptij =
1

(α + n)
for outgoing transitions
qi → qj , i �= j

(7)
where n denotes the number of outgoing transitions from
a specific mode that cannot be observed directly and α
defines the probability ratio that a user of hME can select.

Figure 3 depicts an example for mode q3 with n = 2
outgoing transitions. The choice of α can, for example, be
based on known error rates of the involved components. In
case the system contains observable transitions (events),
we define conditional probabilities for any observable
mode transition tij :

P (tij |oij) = 1,

P (tij |oij) = 0 .
(8)

The remaining transitions are labeled with the above
specified prior probabilities (Eqn. (7)) in case the event
could not be observed. However, if the event can be
observed, the other transitions from that mode obtain the
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conditional probability

P (tik|oij) = 0, k �= j . (9)

With this mode transition classification we can
specify the hME estimation procedure as a two-step
search procedure that is guided by a belief update process
as follows: At the beginning, every initial state hypothesis
is assigned a belief b0. The first step (transition expansion)
calculates the possible immediate (mode) successors and
the prior probability distribution b̄k|k−1 based on the
above specified transition probabilities. The second
step (continuous estimation) deduces the corresponding
continuous state estimates as well as the final belief bk

of the hypotheses. To illustrate this update procedure,
we reconsider the hybrid model from Fig. 1. Again, we
assume a known initial state of the system and start with
the singleton H0 = {H(1)

0 }:

H
(1)
0 = 〈 x̂(1)

d,0 〉 = 〈q3〉 ,

b(H(1)
0 ) = 1.

Expanding the hypotheses tree with all three mode
transition possibilities leads to the new set H1 with λ1 =
3 mode sequence hypotheses. The prior belief b̄k|k−1of
these new hypotheses is obtained by multiplying the belief
of the parent node (in our case this is the root node with
b
(1)
0 = 1) with the appropriate transition probabilities

specified according to Eqn. (7). In the second step we
compute the value of the appropriate continuous state
estimates x̂(i)

c,1 , i = 1, 2, 3, for the new mode sequence
hypotheses. This requires individual Kalman filters as
each hypothesis specifies a unique combination of the
mode x̂d,k and the continuous estimate x̂c,k . The belief
values of the hypotheses are updated using the observation
function P

(i)
O = p(yc,k|x̂(i)

c,k|k−1 ,uc,k) obtained in
the second step of the Kalman filtering process; more
precisely, we omit the normalization term and utilize a

modified observation function P
(i)

O that is defined by the
multi-variate Gaussian distribution

P
(i)

O = exp(−0.5rT
i,kS

−1
i,kri,k),

where ri,k along with the corresponding covariance
matrix Si,k define the innovation of the i-th hypothesis:

ri,k = yc,k − Cix̂
(i)
c,k|k−1 − Diuc ,,k i = 1, 2, 3.

The final belief of the three hypotheses in H1

can now be computed by multiplying the prior belief
b̄k|k−1(H

(i)
1 ), i = 1, 2, 3, from the previous step with the

value of the appropriate observation function P
(i)

O . This
results in the new set H1 that contains the three possible
mode sequences along with their updated probabilities.

Figure 4 visualizes the two-step hybrid estimation process
for this example.

transition expansion continuous state estimation
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Fig. 4. Example of the two-step update procedure for the prob-
ability distribution of the hypotheses.

In order to efficiently compute the set of the most
likely hypotheses only, we frame the hypothesis tree
expansion procedure as a search procedure with path costs
based on the logarithm of the belief values defined above.
This path cost is used to guide a best-first search procedure
that determines the most likely hypotheses in descending
order. We use A*search, a variant of best-first search that
employs the evaluation function

f(ni) = g(ni) + h(ni) (10)

which is comprised of the cost so far g(ni) = − log(bk−1)
and an estimated cost to go h(ni) for a node ni in the
hypotheses tree. A* needs an admissible heuristic in
order to provide the optimal result, i.e., the cost to go
must not be overestimated. The search algorithm of hME
uses the transition probabilities as defined in (7)–(9) to
estimate the cost to go. This ensures that the cost is
never overestimated as the observation probability always
satisfies

P
(i)
O ≤ 1

and thus

h(ni) = − log(PT ) ≤ − log(PT ) − log(PO).

However, in the case of a mode transition, this
procedure might highly underestimate the actual cost
which downgrades the performance of the algorithm and,
in some cases, mode-change detection is delayed for
several time steps until the influence of the filtering
operation is high enough.

This is where the above mentioned hybrid diagnosis
approach (Bayoudh et al., 2008) comes into play. It
defines input/output relations for the different modes of
operation. The evaluation of these relations allows for the
definition of posterior transition probabilities.
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4.2. Hybrid diagnosis through parity-space methods.
Following the ideas of Bayoudh et al. (2008), we derive
for the modes qi ∈ Q of the hybrid system S (Eqn. (5))
a set of Analytical Redundancy Relations (ARRs) that
relate the continuous inputs to the observable continuous
outputs over a time-window of length p + 1. Selecting p
appropriately (typically, p ≤ nx) allows us to eliminate
any dependencies on the system’s continuous state xc.
This standard procedure from FDI (Gertler, 1991) can be
summarized for a particular mode qi of our hybrid system
as follows: We stack the input, output and noise of the last
p + 1 time steps according to

Uk :=[uT
c,k−p, . . . ,u

T
c,k]T ,

Yk :=[yT
c,k−p, . . . ,y

T
c,k]T ,

Vk :=[vT
c,k−p, . . . ,v

T
c,k]T (11)

and obtain for the continuous evolution equations (3) and
(4) in mode qi

Yk = Oixc,k−p + Li(Ai,Bi,Ci,Di)Uk

+ Li(Ai,Ni,Ci,Mi)Vk,
(12)

with the matrices

Oi :=

⎡

⎢
⎢
⎢
⎣

Ci

CiAi

...
CiA

p
i

⎤

⎥
⎥
⎥
⎦

(13)

and

Li(Ai,Bi,Ci,Di)

:=

⎡

⎢
⎢
⎢
⎢
⎣

Di 0 · · · 0

CiBi Di
. . .

...
...

. . .
. . . 0

CiA
p−1
i Bi · · · CiBi Di

⎤

⎥
⎥
⎥
⎥
⎦

. (14)

In order to obtain a parity relation, we need to
eliminate the continuous state xc,k−p from Eqn. (12).
Increasing the length of the time-window adds additional
rows to the matrix Oi whereas the number of columns
remains at nx (the number of continuous states of the
model). Thus, for a sufficiently large p, we can always
find a matrix Ωi that fulfills ΩiOi = 03. Hence, we can
define the residual vector

ri,k := ΩiYk − ΩiLi(Ai,Bi,Ci,Di)Uk

− ΩiLi(Ai,Ni,Ci,Mi)Vk .
(15)

For the sake of simplicity, we will explain the
algorithm for the noise-free case where we can omit

3For further conditions on the existence of such a matrix Ωi refer to
the work of Chow and Willsky (1984).

48 49 50 51 52 53 54 55 56
-3
-2
-1
0
1
2
3

time-step k

re
si

d
u
al

s

 

 
r1
r2

mode q1 ...mode q2

adaption of residuals

Fig. 5. Residuals of mode q1 and q2.

the term ΩiL(Ai,Ni,Ci,Mi)Vk and have to check the
ARR consistency simply through

ri,k = [ri1,k, . . . , rimi,k]T = 0. (16)

The influence of noise on the algorithm is explained in
greater detail in Section 4.4.

Settling time of the residuals. The residual equations
for hybrid systems are derived assuming a constant mode
over the length of the observation window p + 1, i.e.,
the equations are only valid if the system operates at
a constant mode. A mode change results in an abrupt
change of the residuals’ values. After the transition, the
residuals of the new mode need at least p time steps to
settle and provide a mode information again.4 During this
transition phase, a purely residual based mode estimator
is not able to provide a mode information. This behavior
is illustrated in Fig. 5 with a mode change from mode q1

to q2 at time step k = 51 and an observation window of
length p + 1 = 4. The residual r1 of mode q1 changes its
value immediately after the transition. The residual r2 of
mode q2 needs p = 3 additional time steps to settle.

Non-discernible modes and delayed mode change de-
tection. In some cases the evaluation of the residual
equations does not result in a uniquely identifiable
mode but provides several hypotheses that are consistent
with the ARRs. A mode transition between two
such modes, however, can usually still be observed.
Furthermore, all other modes can be excluded and the
set of hypotheses limited. Two modes that show identical
input/output behaviour and thus provide the same residual
information are called non-discernible modes in the
literature (Cocquempot et al., 2004; Bayoudh et al.,
2008). This property can be determined by the following
test: Two modes are called non-discernible if for an
observation window with p = nx

rank(Oi) = rank(Oj) = rank([Oi,Oj,Δij ]) (17)

with Δij = Li − Lj (L is defined in Eqn. (14)).

4In the presence of noise, mode estimation requires additional time
(τfilter), since we need to filter the residuals in order to avoid wrong
mode predictions.
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Furthermore, the detection of a mode change (i.e.,
the change of the residuals’ values) of two discriminable
modes can be delayed for one or several time steps.

In summary, mode estimation through parity space
methods provides good mode estimates. For larger
numbers of modes, however, many parity relations need
to be evaluated. In order to obtain the continuous
state estimate, one has to perform additional state
filtering operations. In the vicinity of mode transitions,
the mode estimate from the parity space estimator
cannot be used directly for the choice of the adequate
continuous-valued model due to the above-mentioned
settling time (Rienmüller et al., 2009). In addition,
the diagnoser-based mode estimator would fail to track
several mode changes within the observation window.
For non-discernible modes, additional information is
necessary in order to determine the correct mode and thus
perform the continuous filtering operations. Furthermore,
in the presence of noise, decoupling procedures that are
not in the scope of this paper are required.

The hybrid mode estimation algorithm, on the other
hand, provides an estimate for both the continuous
and the discrete state of the system. The adaption
phase of the continuous state estimate after a mode
transition can be reduced significantly, since the algorithm
is able to track several possible state hypotheses
concurrently. However, a better focus on highly probable
hypotheses would reduce the computational cost of the
algorithm. Furthermore, the definition of mode transition
probabilities is not obvious. hME and other probability
based methods face the problem that mode transitions to
failure modes with a priori probabilities, e.g., defined
based on error rates of the system and the components
used, and thus classified unlikely, are hardly considered
by the algorithms. This has the effect that the algorithms
have to define “artificial” probability distributions that are
often hard to legitimate. Combining the hybrid mode
estimation algorithm with the residual based diagnosis
approach allows us to cope with this problem.

4.3. Synergetic hybrid mode estimation. The
original search procedure of hME deduces the most
promising hypotheses based on the cost so far and a pri-
ori defined transition probabilities only (see Eqn. (7)). The
new synergetic hybrid estimation scheme proposed in this
section allows for the definition of posterior transition
probabilities between the modes of the hybrid automaton.
Evaluating the analytic redundancy relations, we obtain
additional information about the likelihood of hypotheses
assuming a constant mode over the last p+1 time steps. If
the evaluation of the residual vector ri (Eqn. (16)) of mode
qi results in a contradiction, new transition probabilities
are defined for the specific modes

P (tii|ri �= 0) = 0 for qi → qi,

P (tij |ri �= 0) = Ptij ·
1
c

for qi → qj , i �= j, (18)

with
c =

∑

j,j �=i

Ptij .

In our specific setting for Ptij (Eqn. (7)) we simply
obtain

P (tij |ri �= 0) =
1
n

for qi → qj , i �= j.

These refined transition probabilities allow us to eliminate
inappropriate mode sequence hypotheses prior to the
computationally intensive continuous filtering step of the
hME algorithm.

In case the residuals evaluate to zero, we leave the
transition probabilities unchanged, since the detection
of a mode change by means of mode specific
analytical redundancy relations has some limitations (cf.
Section 4.2): the change of the residuals’ value can
indeed be delayed for one or several time steps or several
different modes can be non-discernible and thus cannot
provide a unique result. Additionally, in the presence of
noise and/or parameter uncertainties, the residuals are not
zero exactly (cf. Section 4.4). Applying a conservative
threshold reduces the number of false alarms. However,
this could lead to residuals wrongly lying in between the
specified bounds.

To make the process of posterior probability
specification clear, we reconsider the example from
Section 2 (Fig. 1). During hybrid mode estimation, a
hypothesis {H(j)

k } is generated that assumes a constant
mode q3 over the last p time steps, i.e., xd,k−p = · · · =
xd,k−1 = q3. Now we can evaluate the transition q3 → q3

by computing the residuals for mode q3 at time step k.
Recall that the parity-equations are defined for a system
with a constant mode over p + 1 time steps. Thus, we can
evaluate the mode-sequence xd,k−p = · · · = xd,k−1 =
xd,k = q3 by means of Eqn. (15). Specifically, there are
two possible results: first, the assumption of mode q3 does
not contradict the result of the residuals, i.e., r3,k = 0,
second, the evaluation of the residuals implies that the
assumption that the system still remains in mode q3 is not
correct. In this latter case, we can update the transition
probabilities from mode q3 (see Eqn. (7), with α = 3) as
follows5:

P (q3 → q3|r3,k �= 0) = 0,

P (q3 → q2|r3,k �= 0) = 0.2 · 1
c

= 0.5,

P (q3 → q4|r3,k �= 0) = 0.2 · 1
c

= 0.5 .

5If mode q3 was not approved by the residuals at time step k− 1, the
probability update can only be made for hypotheses assuming a constant
mode q3 up to time step k − 1 and not for the transition q3 → q3 in
general.
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Hence, the formerly unlikely transitions to modes q2 and
q4 are now classified more likely and hME will tend to
select them. However, if all residual equations of mode
q3 evaluate to zero, we leave the transition probabilities
unchanged (the self-transition is already assigned a higher
probability),

P (q3 → q3|r3,k = 0) = Ptii = 0.6.

The combination of hME with the ARR based
diagnosis method results in an improved search procedure.
The benefit is twofold: first, we can eliminate all
hypotheses that are not consistent with the ARRs before
the costly filtering operation and thus save computing time
second, the altered transition probabilities increase the
chance of a mode transition, formerly classified unlikely,
to be considered by the algorithm.

Consequences of non-discernible modes. In Section
4.2 the particularity of non-discernible modes was
introduced. As a result of this property, the residuals
show the same behaviour for several non-discernible
modes. Evaluating the residuals for these modes does
not provide enough evidence to diagnose the specific
mode. However, when a mode and its successor are
non-discernible, the mode transition can still be observed
(in almost all cases) through a change in the residual. The
evaluation to non-zero is due to the mode transition within
the observation window used to evaluate the residuals, i.e.,
to discontinuities, possibly of high order, in the signals
involved in the computational form of the residuals at
transition time (Hofbaur et al., 2010).

4.4. Noise impact on the synergetic hybrid mode esti-
mation algorithm. In order to account for noise in the
residual vector, we define a noise matrix (cf. Eqn. (15))

Wi := abs(Ωi)L(Ai,Ni,Ci,Mi)

for every mode qi that captures the influence of the
disturbances within the observation window of length
p + 1. If we model the disturbances through random
variables v with |v| ≤ 1, we can compute bounds εij for
the j-th residual rij,k for mode i at time step k by taking
the sum over the j-th line of Wi, i.e.,

εij :=
p(nx+ny)∑

k=1

wjk , j = 1, . . . , m . (19)

With this information, we can rewrite the consistency
check

r̃ij,k :=

{
0 if |rij,k| ≤ εij ,

1 otherwise
(20)
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Fig. 6. Residuals for mode qi (solid lines) with appropriate
bounds (dashed lines) to account for process and mea-
surement noise. At time k = 106 a mode transition
takes place. As a result, the residual values surpass the
specified bounds.

j = 1, . . . , mi, and obtain a Boolean residual vector for
mode qi at time step k as

r̃i,k := [r̃i1,k, . . . , r̃imi,k]T . (21)

Figure 6 depicts a sample run of residuals before and
after a mode transition (at time step k = 106). The
dashed lines mark the individual bounds εij . Before the
mode transition, the residuals remain within the bounds.
Afterwards, the residual values surpass the bounds.

5. Case study: The attitude control system

Satellites are typical examples for autonomously
operating robotic systems. The Attitude Control System
(ACS) for the three-axes stabilization of a satellite is
critical for its autonomous operation (Olive, 2012).
We therefore use a (simplified) model of an ACS that
includes several nominal modes and faults to test the
health monitoring and diagnosis capabilities of our hybrid
estimation scheme.

5.1. System’s modes of operation or failure. The
system is assumed to have two nominal modes, q1 and q2.
A switch from one nominal mode to the other can only
be achieved by a command. In mode q2 the instantaneous
rotation vector of the target attitude frame C relative to
the inertial frame R expressed in the target attitude frame

C becomes Ω[C]
C/R =

[
0 ω0 0

]T
. All other modes are

fault modes that model the behaviour of the system in the
case of one or several wheels going into saturation.

State space equations. A detailed description of the
modeling process can be found in Appendix. We suppose
that we command the wheel acceleration and we do not
consider the saturation problem, hence the input vector is
defined as

uc =

⎡

⎣
u1

u2

u3

⎤

⎦ =

⎡

⎣
θ̈X

θ̈Y

θ̈Z

⎤

⎦ .
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The output vector is defined by the sensor output

yc =

⎡

⎣
p
q
r

⎤

⎦ .

The vector of the continuously valued state variables
consists of the Cardan angles (see Fig. A2) and their first
derivative with respect to time:

X =
[
θR θT θL θ̇R θ̇T θ̇L

]T
.

Using these definitions, we obtain the state space
representation of the satellite attitude control system

ẋc = Aixc + Biuc,

yc = Cixc + Wi,
(22)

i = 1, . . . , l, with

A1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0

(
IY −IX

IZ
− 1

)
ω0

0 0
1 0
0 1
0

(
IZ−IY

IX
+ 1

)
ω0

0 0
0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

B1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
0 0 0
0 0 0

− IW

IX
0 0

0 − IW

IY
0

0 0 − IW

IZ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

C1 =

⎡

⎣
0 0 −ω0 1 0 0
0 0 0 0 1 0
ω0 0 0 0 0 1

⎤

⎦ ,

W1 =

⎡

⎣
0

−ω0

0

⎤

⎦

for the nominal mode q1. The fault modes represent the
case that one or several wheels go into saturation. As an
example, mode q4 with wheel 2 in saturation is shown:

A4 = A1, B4 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
0 0 0
0 0 0

− IW

IX
0 0

0 0 0
0 0 − IW

IZ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

C4 = C1, W4 = W1.

Approximation values used for the simulation are

IX = 600 kg m2,

IY = 700 kg m2,

IZ = 600 kg m2,

IW = 0.1322 kg m2,

ω0 = 2.10−2 rad/s.

6. Experimental results

In our experiments we compared the mode and continuous
state estimation abilities of our synergetic hybrid mode
estimation algorithm with existing hybrid estimation and
diagnosis schemes, such as the Interacting Multiple Model
(IMM) algorithm (see, e.g., Blom and Bar-Shalom, 1988),
the hME algorithm (Hofbaur and Williams, 2002) and
a parity space Hybrid Diagnosis (HyDiag) approach
(Bayoudh et al., 2008).

6.1. Experimental setup. The experiments are based
on the model for the satellite attitude control system
(see Section 5). A detailed derivation of the different
nominal and fault modes can be found in Appendix.
Figure 7 depicts part of the discrete automaton of the
hybrid model. For the sake of simplicity, we omit
mode q2 and the corresponding fault modes qi, i ∈
{6, 7, 8, 13, 14, 15, 16}. Modes q3, q4 and q5 represent
fault modes with reaction wheel 1, 2 or 3 going into
saturation, respectively. Modes q9,10,11 represent double
faults with two wheels in saturation and mode q12 the
case in which all wheels are in a fault mode. For the
experimental setup, we define the appropriate set Q̃ =
{q1, q3, q4, q5, q9, q10, q11, q12}.

For the experiments presented in this paper, we
assume bounded noise with vc i,x ≤ 5 · 10−6 and vy i,x ≤

q
1

q
4

q
11

q
9

q
3

q
12

q
10

q
5

Fig. 7. Discrete event system of the hybrid model.
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6 · 10−6 for all modes qi of the system. The tests were
performed with randomized continuous input sequences
leading to different sequences of failure modes.

The obtained mode sequences of the test runs are
estimated using several hybrid estimation methods. First,
we use an optimal algorithm that is aware of the actual
mode sequence. This gives us an optimal bound on
the relative error for the continuous estimation. Then,
we compare the estimation results of our new synergetic
Hybrid Mode Estimation (synHME) scheme to the results
of an interacting multiple model estimator, a parity
space hybrid diagnoser and the hybrid mode estimation
algorithm. Figure 8 depicts the mode sequence of a
sample test run with mode transitions specified through
α = 3 (see Eqn. (7)), with one wheel going into saturation
at time step k = 192.

For the sake of clarity, Fig. 8 depicts wrong mode
classifications only for the IMM as well as the HyDiag
method and hME. For all other time steps, the mode was
correctly identified. The hybrid mode estimator (dashed
line) fails to track the transition from the nominal mode q1

to the failure mode q3. Since the input/output dynamics of
both modes are similar to each other, the prior transition
probabilities distort the estimation result. Due to the
higher a priori self transition probability, mode q1 is still
considered the most probable. With synHME, the mode
transition from the nominal mode q1 to failure mode q3

can be recognized (solid line) and the algorithm is able to
follow the system’s mode exactly. The IMM estimator
(diamonds) identifies the switch between the nominal
and the failure mode. However, especially when the
system is in the nominal mode, several mode estimation
errors occur. The HyDiag method recognizes the mode
transition at k = 192, but the identification of the new
mode takes additional time steps due to the required
settling time of the residuals. Table 1 depicts the average
estimation results of 15 test runs with 130 time steps each
for all algorithms.

The results are compared regarding continuous and
discrete state estimation quality and the number of
filtering operations. The IMM uses |Q̃| = l = 8 filters
per time step. hME and synHME compute the leading
set of λ hypotheses. In our case we use a fringe size of
λ = 3 for hME and λ = 2 for synHME. However, the
algorithms require in general f ≥ λ filter operations per
time step in order to derive this leading set. In average,
however, we observed that f is only slightly larger than
λ. The IMM and the new synHME show similar abilities
concerning the hybrid estimation quality. However, the
number of filtering operations can be reduced. hME
has a worse performance regarding the mode estimation
capabilities. This is due to the fact that the continuous
dynamics are quite similar and thus the influence of
the prior mode transition probabilities is considerable.
synHME, however, overcomes this problem and identifies

the correct mode at a rate of 97.95%.

Table 1. Comparison of the hybrid estimation results obtained
by an IMM estimator, the purely hybrid diagnosis
based estimator (HyDiag), hME and the new synergetic
hME.

algorithm rel. error xc correct mode filter calls
e [%] (average)

optimal 0.086 100 1
synhME 0.086 97.95 4.2
hME 0.0864 87.9 5.05
IMM 0.062 96.6 8
HyDiag 0.0865 91.5 1

7. Conclusion

This paper presents a novel hybrid estimation/diagnosis
scheme to overcome conceptual difficulties with
traditional hybrid estimation and improve the run-time
behavior of this demanding task. It builds upon a hybrid
estimation algorithm and a diagnosis scheme for hybrid
systems to combine their complementary advantages.
The hybrid mode estimation algorithm can deal well with
a large number of modes, since it focuses on a small set of
the most likely mode hypotheses. Focusing builds upon
prior information for the mode transitions, i.e., the prior
mode transition probabilities, and information drawn
from a consecutive continuous filtering step.

Defining the prior transition probabilities for the
system’s model is, however, a tedious process and
has strong impact on estimation quality and the
runtime performance of the algorithm. Our approach
was to simplify the prior-probability specification and
to supplement the estimation process with additional
posterior transition probability information. This
information is drawn from the hybrid diagnosis scheme
HyDiag that applies a parity space approach for transition
detection and mode estimation.

This synergetic combination of two
estimation/diagnosis schemes implies redundant
operations. However, the complementary strengths
of both schemes, continuous filtering and mode
identification of hME and mode transition detection
of HyDiag’s parity space approach, respectively,
significantly improve the focusing capabilities of
the combined algorithm. This improved focus
on the most likely hypotheses compensates the
redundant/complementary filtering operations and
thus improves the quality of the hybrid estimation result
whilst keeping the computationally efficiency of hME.
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Appendix

Reference frames

First, let S = (x, y, z) denote the satellite fixed frame,
R the inertial (Galilean) frame and C = (X, Y, Z) the
target attitude frame (Fig. A1) that depends on the satellite
mission.

We take the telecommunication convention. Hence
the instantaneous rotation vector of the target attitude
frame C relative to the inertial frame R expressed in
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the target attitude frame is given by Ω[C]
C/R = −ω0Y ,

where ω0 is the rotational velocity of the satellite about
the Y -axis.

Fig. A1. Target attitude frame C = (X, Y, Z) for a satellite.

The attitude control system aims to instantaneously
place the satellite fixed frame S in the target frame C, i.e.,
to maintain the difference between these two frames, the
smallest possible. Figure A2 depicts the Cardan angles
(θL, θT , θR) that express the rotation between the two
frames.

The rotation vector of the satellite fixed frame S
relative to the target attitude frame C, expressed in S, is
given by (xyz-convention)

Ω[S]
S/C =

⎡

⎣
θ̇R − θ̇L sin θT

θ̇T cos θR + θ̇L cos θT sin θR

θ̇L cos θT cos θR − θ̇T sin θR

⎤

⎦ . (A1)

Since the difference between the satellite fixed frame S
and the target frame C is very small, we can take the
approximation of small angles and obtain the rotation
vector of the satellite fixed frame S relative to the target
attitude frame C, expressed in the satellite fixed frame

Ω[S]
S/C ≈

⎡

⎣
θ̇R

θ̇T

θ̇L

⎤

⎦ ,

and the rotation matrix of the frame S relative to the frame
C

MS→C ≈
⎡

⎣
1 θL −θT

−θL 1 θR

θT −θR 1

⎤

⎦ .

The rotation vector of the target attitude frame C
relative to the inertial frame R, expressed in the satellite
fixed frame S, is given by

Ω[S]
C/R = MS→C .Ω[C]

C/R

=

⎡

⎣
1 θL −θT

−θL 1 θR

θT −θR 1

⎤

⎦ .

⎡

⎣
0

−ω0

0

⎤

⎦

=

⎡

⎣
−ω0θL

−ω0

ω0θR

⎤

⎦ .

Fig. A2. Frame change using the Cardan angles (θL, θT , θR).

Finally, the rotation vector of the satellite fixed frame
S relative to the inertial frame R, expressed in the satellite
fixed frame S, is obtained by

Ω[S]
S/R = Ω[S]

S/C + Ω[S]
C/R =

⎡

⎣
θ̇R − ω0θL

θ̇T − ω0

θ̇L + ω0θR

⎤

⎦ .

Satellite dynamics. Let G denote the satellite’s center
of mass. We obtain for the time derivative of the satellite’s
angular momentum (H[S]

G ) with respect to the inertial
frame

d
dt /R

[H[S]
G ] =

d
dt/S

[H[S]
G ] + Ω[S]

S/R × H[S]
G = M[S]

Fext
,

(A2)
where H[S]

G = IGΩ[S]
S/R and

M[S]
Fext

=

⎡

⎣
CX

CY

CZ

⎤

⎦

denotes the momentum of external forces exerted on the
satellite (torque). With the satellite inertia

IG =

⎡

⎣
IX 0 0
0 IY 0
0 0 IZ

⎤

⎦ ,

Eqn. (A2) becomes (A3).
Applying the first order approximation, we finally

obtain for the satellite dynamics

⎡

⎣
IX(θ̈R − ω0θ̇L)

IY θ̈T

IZ(θ̈L + ω0θ̇R)

⎤

⎦ +

⎡

⎣
(IY − IZ)ω0θ̇L

0
(IX − IY )ω0θ̇R

⎤

⎦ =

⎡

⎣
CX

CY

CZ

⎤

⎦ .

(A4)

Actuators. In this case study, we assume that the
attitude control is achieved by three reaction wheels
placed in the satellite axes: X , Y and Z .

The torque provided by a wheel is given by

Cwheel = −Ω[S]
S/R × H[S]

wheel −
d
dt/S

[H[S]
wheel], (A5)

where H[S]
wheel denotes the angular momentum of the

wheel.
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⎡

⎣
CX

CY

CZ

⎤

⎦ =

⎡

⎣
IX(θ̈R − ω0θ̇L)

IY θ̈T

IZ(θ̈L + ω0θ̇R)

⎤

⎦ +

⎡

⎣
(θ̇T − ω0)IZ(θ̇L + ω0θR) − (θ̇L + ω0θR)IY (θ̇T − ω0)

−(θ̇R − ω0θL)IZ(θ̇L + ω0θR) + (θ̇L + ω0θR)IX(θ̇R − ω0θL)
(θ̇R − ω0θL)IY (θ̇T − ω0) − (θ̇T − ω0)IX(θ̇R − ω0θL)

⎤

⎦ (A3)

The first term is negligible in the case of a reaction
wheel, since the wheel velocity is small and the torque is
provided by a variation in the wheel velocity.

The angular momentum of all three reaction wheels
becomes

H[S]
wheels = IW

⎡

⎣
θ̇X

θ̇Y

θ̇Z

⎤

⎦ , (A6)

where θ̇X , θ̇Y and θ̇Z are the rotation velocity of the
reaction wheels placed in X , Y and Z axes, respectively,
and IW is the wheel inertia.

The torque exerted on the satellite is given by

C ≈ − d
dt/S

[H[S]
wheel] =

⎡

⎣
−IW θ̈X

−IW θ̈Y

−IW θ̈Z .

⎤

⎦ . (A7)

Each wheel is composed of a flywheel and a rotating
motor that provides torque by accelerating the wheel
rotation. When the wheel velocity reaches the maximum
velocity, other kinds of actuators (e.g., thrusters) are used
to de-saturate the wheel6.

Sensors. We use gyro-meters that measure the rotation
vector of the satellite fixed frame S relative to the inertial
frame R:

Ω[S]
S/R =

⎡

⎣
p
q
r

⎤

⎦ =

⎡

⎣
θ̇R − ω0θL

θ̇T − ω0

θ̇L + ω0θR

⎤

⎦ .

Received: 14 November 2011
Revised: 10 May 2012

6The de-saturation is achieved by thrusters exerting torque that de-
creases the rotation velocity of the wheel.
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