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APPLICATION OF THE DRAZIN INVERSE TO THE ANALYSIS OF POINTWISE
COMPLETENESS AND POINTWISE DEGENERACY

OF DESCRIPTOR FRACTIONAL LINEAR
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The Drazin inverse of matrices is applied to the analysis of pointwise completeness and pointwise degeneracy of fractional
descriptor linear continuous-time systems. It is shown that (i) descriptor linear continuous-time systems are pointwise com-
plete if and only if the initial and final states belong to the same subspace, and (ii) fractional descriptor linear continuous-
time systems are not pointwise degenerated in any nonzero direction for all nonzero initial conditions. The discussion is
illustrated with examples of descriptor linear electrical circuits.
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1. Introduction

A dynamical system described by a homogenous equation
is called pointwise complete if every final state of the
system can be reached by a suitable choice of its initial
state. A system which is not pointwise complete is
called pointwise degenerated. Pointwise completeness
and pointwise degeneracy of linear continuous-time
systems with delays were investigated by Choundhury
(1972), Olbrot (1972), Popov (1972) and Trzasko et al.
(2007), while pointwise completeness of fractional linear
discrete-time systems was discussed by Busłowicz (2008),
Kaczorek (2011), Kaczorek and Busłowicz (2009) or
Kaczorek and Rogowski (2015). Pointwise completeness
and pointwise degeneracy of standard and positive hybrid
systems described by the general model were analyzed by
Kaczorek (2010a), who also discussed the case of positive
linear systems with state-feedbacks (Kaczorek, 2010b).
The Drazin inverse of matrices was applied to analyze
pointwise completeness and pointwise degeneracy of
descriptor fractional linear systems in another work of
Kaczorek (2019).

In this paper the Drazin inverse will be applied to
the analysis of pointwise completeness and pointwise
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degeneracy of fractional descriptor linear continuous-time
systems.

The paper is organized as follows. In Section 2
the basic definitions and theorems concerning fractional
descriptor linear continuous-time systems and the Drazin
inverse of matrices are recalled. Pointwise completeness
of fractional descriptor linear continuous-time systems is
investigated in Section 3 and pointwise degeneracy in
Section 4. Concluding remarks are given in Section 5. The
discussion is illustrated with two examples of a fractional
linear electrical circuit.

The following notation will be used: R, the set of real
numbers; Rn×m, the set of n × m real matrices; Rn×m

+ ,
the set of n×m real matrices with nonnegative entries and
R

n
+ = R

n×1
+ ; In, the n × n identity matrix. Im P is the

image of the operator (matrix) P .

2. Autonomous fractional descriptor linear
systems

Consider the autonomous fractional descriptor
continuous-time linear system

E
dαx

dtα
= Ax, 0 < α < 1, (1)
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where x = x(t) ∈ R
n is the state vector, E, A ∈ R

n×n

and

dαx(t)

dtα
=

1

Γ(1− α)

t∫

0

ḟ(τ)

(t− τ)α
dτ ,

ḟ(τ) =
df(τ)

dτ

(2)

is the Caputo fractional derivative while

Γ(x) =

∞∫

0

tx−1e−t dt, Re(x) > 0, (3)

is the Gamma function.
It is assumed that detE = 0, but the pencil (E, A)

is regular, i.e.,

det[Esα −A] �= 0 for some s ∈ C, (4)

where C is the field of complex numbers.
Assuming that det[Ec − A] �= 0 for c ∈ R and

premultiplying (1) by [Ec−A]−1, we obtain

Ē
dαx

dtα
= Āx, (5)

where

Ē = [Ec−A]−1E, Ā = [Ec−A]−1A. (6)

Equations (1) and (5) have the same solution x.

Definition 1. A matrix ED ∈ R
q×n is called the Drazin

inverse of E if it satisfies the conditions

ĒĒD = ĒDĒ, (7)

ĒDĒĒD = ĒD, (8)

ĒDĒq+1 = Ēq, (9)

where q is the index of E defined as the smallest
nonnegative integer satisfying the condition

rankEq = rankEq+1. (10)

Theorem 1. Let
P = ĒĒD, (11)

Q = ĀĒD. (12)

Then
P k = P for k = 2, 3, . . . , (13)

PQ = QP = Q, (14)

PĒD = ĒD, (15)

Px = x. (16)

A proof is given by Kaczorek and Rogowski (2015).

Theorem 2. The solution of Eqn. (5) has the form

x(t) = ϕ0(t)Pw, (17)

where

ϕ0(t) =

∞∑
k=0

Qktkα

Γ(kα+ 1)
(18)

and w ∈ R
n is an arbitrary vector, x(0) = Pw = Im P.

The matrix ϕ0(t) defined by (18) is nonsingular for
any A ∈ R

n×n and t ≥ 0 (Kaczorek and Rogowski,
2015).

3. Pointwise completeness of fractional
descriptor linear systems

In this section conditions for pointwise completeness of
fractional descriptor continuous-time linear systems will
be established.

Definition 2. The fractional descriptor continuous-time
linear system (1) is called pointwise complete for t = tf
if for every final state xf = x(tf ) ∈ R

n there exists an
initial condition x(0) ∈ Im P such that

xf = x(tf ) ∈ Im P, (19)

where P is defined by (11).

Theorem 3. The fractional descriptor system (1) is point-
wise complete for any t = tf and every xf ∈ R

n if and
only if the condition (19) is satisfied.

Proof. Taking into account that detϕ0(t) �= 0 and the
inverse matrixϕ−1

0 (t) exists for any t, from (17) for t = tf
we have

x(0) = ϕ−1
0 (tf )xf . (20)

Therefore, for every xf there exists x(0) ∈ ImP such that
x(tf ) = xf . �

Example 1. Consider the fractional descriptor linear
electrical circuit shown in Fig. 1 with given resistance R,
capacitances C1, C2 and source voltage e.

Using Kirchhoff’s laws we may write the equations

e = RC1
dαu1

dtα
+ u1, e = u2, (21)

Fig. 1. Fractional electrical circuit of Example 1.
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Fig. 2. Fractional electrical circuit of Example 2.

which can be presented in the form

E
dα

dtα

[
u1

u2

]
= A

[
u1

u2

]
+Be, (22)

where

E =

[
RC1 0
0 0

]
,

A =

[−1 0
0 −1

]
,

B =

[
1
1

]
.

(23)

The pencil (E,A) of the electrical circuit is regular,
since

det[Esα −A] =

∣∣∣∣ RC1s
α + 1 0

0 1

∣∣∣∣
= RC1s

α + 1 �= 0.

(24)

Choosing c = 0 since detA = 1 and using (23), we obtain

Ē = −A−1E = E =

[
RC1 0
0 0

]
,

Ā = −A−1A = −
[

1 0
0 1

]
.

(25)

In this case we have

ĒD =

[
1

RC1
0

0 0

]
(26)

and

P = ĒĒD =

[
1 0
0 0

]
, (27)

Q = ĀĒD =

[ − 1
RC1

0

0 0

]
. (28)

The solution of Eqn. (22) for B = 0 satisfies the
condition[

u1(tf )
u2(tf )

]
= ϕ0(tf )

[
u1(0)
u2(0)

]
∈ Im

[
1 0
0 0

]
.

(29)
Therefore, the fractional descriptor electrical circuit is
pointwise complete. �
Example 2. Consider the fractional descriptor linear
electrical circuit shown in Fig. 2 with given resistances
R1, R2, R3, inductances L1, L2, L3, capacitance C and
source voltages e1, e2.

Using Kirchhoff’s laws we may write the equations

e1 = L1
dαi1
dtα

+R1i1 + L3
dαi3
dtα

+R3i3, (30)

e2 = L2
dαi2
dtα

+R2i2 − L3
dαi3
dtα

−R3i3, (31)

i3 = i1 − i2, (32)

u = e1 + e2. (33)

The above equations can be written in the form

E
dα

dtα

⎡
⎢⎢⎣

i1
i2
i3
u

⎤
⎥⎥⎦ = A

⎡
⎢⎢⎣

i1
i2
i3
u

⎤
⎥⎥⎦+B

[
e1
e2

]
, (34)

where

E =

⎡
⎢⎢⎣

L1 0 L3 0
0 L2 −L3 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

A =

⎡
⎢⎢⎣

−R1 0 −R3 0
0 −R2 R3 0
1 −1 −1 0
0 0 0 −1

⎤
⎥⎥⎦ ,

B =

⎡
⎢⎢⎣

1 0
0 1
0 0
1 1

⎤
⎥⎥⎦ .

(35)

The matrix E is singular and the pencil (E,A) is regular,
since

det[Esα −A]

=

∣∣∣∣∣∣∣∣

sαL1 +R1 0 sαL3 +R3 0
0 sαL2 +R2 −sαL3s−R3 0
−1 1 1 0
0 0 0 1

∣∣∣∣∣∣∣∣
= s2α[L1(L2 + L3) + L2L3]

+ sα[L1(R2 +R3) + L3(R1 +R2) + L2(R1 +R2)]

+R1(R2 +R3) +R2R3 �= 0.

(36)
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We choose c = 0 since detA �= 0, and using (35),
we obtain

Ē = −A−1E

=
1

R1(R2 +R3) +R2R3

×

⎡
⎢⎢⎣

L1(R2 +R3) L2R3

L1R3 L2(R1 +R3)
L1R2 −L2R1

0 0

L3R2 0
−L3R1 0

L3(R1 +R2) 0
0 0

⎤
⎥⎥⎦

(37)

and

Ā = −A−1A = −I4.

The Drazin inverse matrix of (37) has the form

ĒD =
1

Δ2
L

⎡
⎢⎢⎣

ed,11 ed,12 ed,13 0
ed,21 ed,22 ed,23 0
ed,31 ed,32 ed,33 0
0 0 0 0

⎤
⎥⎥⎦ , (38)

where

ed,11 = L1(L
2
2R1 + L2

3R1 + L2
2R3

+ L2
3R2 + 2L2L3R1),

ed,12 = L2(L
2
3R1 + L2

3R2 − L1L2R3 + L1L3R2

+ L2L3R1),

ed,13 = L3(L
2
2R1 + L2

2R3 + L1L2R3 − L1L3R2

+ L2L3R1),

ed,21 = L1(L
2
3R1 + L2

3R2 − L1L2R3 + L1L3R2

+ L2L3R1),

ed,22 = L2(L
2
1R2 + L2

1R3 + L2
3R1 + L2

3R2

+ 2L1L3R2),

ed,23 = −L3(L
2
1R2 + L2

1R3 + L1L2R3

+ L1L3R2 − L2L3R1),

ed,31 = L1(L
2
2R1 + L2

2R3 + L1L2R3

− L1L3R2 + L2L3R1),

ed,32 = −L2(L
2
1R2 + L2

1R3 + L1L2R3

+ L1L3R2 − L2L3R1),

ed,33 = L3(L
2
1R2 + L2

2R1 + L2
1R3L

2
2R3

+ 2L1L2R3),

ΔL = L1(L2 + L3) + L2L3

and

P = ĒĒD

=
1

ΔL

⎡
⎢⎢⎣

L1(L2 + L3) L2L3

L1L3 L2(L1 + L3)
L1L2 −L1L2

0 0

L2L3 0
−L1L3 0

L3(L1 + L2) 0
0 0

⎤
⎥⎥⎦

(39)

Q = ĀĒD = −ĒD. (40)

The solution of Eqn. (34) for B = 0 satisfies the
condition⎡

⎢⎢⎣
i1(tf )
i2(tf )
i3(tf )
u(tf)

⎤
⎥⎥⎦ = ϕ0(tf )

⎡
⎢⎢⎣

i1(0)
i2(0)
i3(0)
u(0)

⎤
⎥⎥⎦ ∈ Im P. (41)

Therefore, the fractional descriptor electrical circuit is
pointwise complete. �
Conclusion 1. In a fractional descriptor linear electrical
circuit, by a suitable choice of the initial conditions
(currents in the coils and voltages on the capacitors)
belonging to Im P , it is always possible to obtain in a
given time tf the desired values of currents in the coils
and voltages on the capacitors belonging also to Im P.

4. Pointwise degeneracy of fractional
descriptor linear systems

In this section conditions for pointwise degeneracy of
fractional descriptor continuous-time linear systems will
be established.

Definition 3. The fractional descriptor continuous-time
linear system (1) is called pointwise degenerated in the
direction v ∈ R

n for t = tf if there exists a nonzero
vector v such that, for all initial conditions x(0) ∈ Im Q,
the solution of (1) satisfies the condition

vTxf = 0, (42)

where xf = x(tf ).

Theorem 4. The fractional descriptor continuous-time
linear system (1) is not pointwise degenerated in any
nonzero direction v ∈ R

n and for all nonzero initial con-
ditions x(0) ∈ ImQ.

Proof. Note that detϕ0(t) �= 0 for any matrix Q = ĀĒD

and all tf . Substitution of xf = ϕ0(tf )x(0) into vTxf

yields
vTxf = vTϕ0(tf )x(0) �= 0 (43)

for all nonzero initial conditions x(0) ∈ ImQ. �
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Therefore, by Theorem 4 the fractional descriptor
electrical circuit shown in Fig. 1 is not pointwise
degenerated in any nonzero direction v ∈ R

3 for all
nonzero initial conditions.

Similar results are obtained for the fractional
descriptor electrical circuit shown in Fig. 2.

5. Concluding remarks

The Drazin inverse of matrices has been applied to
the analysis of pointwise completeness and pointwise
degeneracy of fractional descriptor linear continuous-time
systems. It has been shown that

(i) the fractional descriptor linear continuous-time
system is pointwise complete if and only if the
initial and final states belong to the same subspace
(Theorem 3);

(ii) the fractional descriptor linear continuous-time
system is not degenerated in any nonzero direction
for all nonzero initial conditions (Theorem 4).

The discussion has been illustrated with two examples of
a fractional descriptor linear electrical circuit.

The provided analysis can be easily extended to the
fractional linear discrete-time systems.
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