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LOGICAL VALUATION OF CONNECTIVES FOR FUZZY
CONTROL BY PARTIAL DIFFERENTIAL EQUATIONS

MicsaEL BERGER*, HELmuTr SCHWARZ*

There exist numerous criteria (axiomatic, progmatic and empirical) to choose
from the fuzzy connectives and apply them to an intersection (conjunction) and
union (disjunction). So far these valuations have had no direct connection be-
tween the fuzzy logic and the control for technical processes. In this paper, a
new valuation (logical valuation) of fuzzy connectives is proposed. The depen-
dence of the correcting variable described by the linguistic rules is compared with
the dependence of the correcting variable calculated by means of an analytical
" description of the fuzzy controller.

1. Introduction

By the knowledge-based analysis of fuzzy systems for controlling technical processes
an expert specifies his knowledge in the form of linguistic rules. Linguistically gene-
rated rules consist mainly of premises and conclusions. Beside the partition of the
reference fuzzy sets (Zadeh, 1965) and the method of defuzzification, suitable fuzzy
connectives for intersection (conjunction) and union (disjunction) have to be chosen.
The essential fuzzy connectives in fuzzy sets theory are triangular norms T (¢-norms
for brevity) and triangular conorms L (Z-conorms (s-norms) for brevity) (Alsina
et al.,, 1983; Gottwald, 1993; Kruse et al., 1994; Weber, 1983). Table 1 shows some
t-conorms.

Tab. 1. Some t-conorms.

maximum operator | Lmaz (uxi, ILYJ-) = max (NX,'“qu)

algebraic sum Las (,ux,-, qu) = pX; F Y, — BX; by

drastic sum Las (llx;, lw,-)

max (px;,py;) ¥V min (Bxi ny;) =0
1 otherwise

Triangular norms (and their dual conorms) are algebraic operations on ]Dj(, =
[0, 1] which were suggested by Menger (1942) and proved to be useful in the theory
of probabilistic metric spaces (Schweizer and Sklar, 1983). Triangular norms are
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|~— t-norm T —e— averaging operator D —«— {-conorm L -"I

po Tmin ' -J—ma:c J—ds

Fig. 1. Relationship between t-norms T, t-conorms ., and the averaging operator D.

e(kT)

kT

Fuzzy u(kT)
Ae(kT) || Controller

Fig. 2. Block diagram of the fuzzy controller.

generally accepted today (Schweizer and Sklar, 1961) and play a fundamental role in
probabilistic metric spaces, probabilistic norms and scalar products, multiple-valued
logic, and fuzzy sets theory. Another class of fuzzy connectives are the averaging
operators D. The values of the averaging operator D are located between the T ip
(t- norm) and L4z (t-conorm) (see Fig. 1).

In this paper, fuzzy connectives are investigated with respect to the dependence
of the correcting variable w(kT") (crisp output). The starting point for our research
is a standard fuzzy controller with two inputs, error e(kT) = w(kT) —y(kT) (w(kT)
denotes the command variable; y(kT") stands for the control variable), the rate of error
Ae(kT) = e(kT) — e((k — 1)T), and the output w(kT) (Fig. 2). For defuzzification
we use the height defuzzification (Driankov et al., 1993) which comprises the operator
activation, aggregation and defuzzification. The height defuzzification is both very
simple and very quick. The reference fuzzy sets of the output variable of the fuzzy
controller are singletons. They are discribed through the modal value m. The fuzzy
connective for the union is through the use of the height defuzzification of the sum
operator ¢ (ux,,py;) = px, + Hy;.

Thus we investigate only the fuzzy connectives for intersection that are t-norms
T and the averaging operators D (Mizumoto, 1989) (Table 2 and 3). Here t-norms
T and averaging operators D are suitable functions T : ID}t,x]D?(, — ]D}t, and
D : DD}, x D}, — D}, whose restrictions to ID§ x ID}; coincide with conjunction,
respectively, and which satisfy such general properties as associativity, commutativity
and monotonicity. The degrees of fulfilment

a, (e, Ae) =T, (;UX; (e), pyj(Ae)) : (1)

resp.

o (¢, 8¢) = D, (ux, (e), pv,(Ae)) )
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where X; (with the degree of possibility px;(e)) and Y; (with the degree of possi-
bility py;(Ae)), are the reference fuzzy sets

%n?n._x..ls,: Vi

%n?_s ~[0,1 Vj

r:.,:i 3)

H_‘..,SDEW AAV

respectively, over any space IDy = [~1,1] for the premise, for each control rule R,,

z=1,...,mgmaEg.

Tab. 2. Investigated t-norms.

algebraic product

Tap (Bx:, 1y;) = px; py;

minimum operator

Tomin (#x;, #y;) = min (px;, py;)

Lukasiewicz’s operator

.._..m:tn Atx..;:\u.v = max AO. bux; + py; — Hv

Hamacher’s product

EX; BY;
BXi +BY; — BX; BY;

1_..&3 At*:tu\mv =

Einstein’s product

BX; 1Y
2= (ux; + my; — nx; py;)

.._..mﬁ Atx..:gw\mv =

drastic product

min CCDLS\L Y max(px;, E\L =1

Tap (px;,0y;) =
uAt H uv 0 otherwise

Tab. 3. Investigated averaging operators D.

harmonic mean | Dam Atx:tﬁv =

2 px; py;
Bx; + by;

geometric mean Dgm Atkrt&v = /Bx; By;

arithmetic mean | Dam Atx: t&.v =

bx; + py;
2

The degree of fulfilment is computed according to the t-norms T and the avera-
ging operators D. The results of the logical valuation are independent of the mem-
bership functions p if the reference fuzzy sets are convex, orthogonal and normal.
The dependence of the correcting variable u(kT') described by the linguistic rules,

e.g.

u(kT) = R(e(kT), Ae(kT))

(5)
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is compared with the dependence of the correcting variable u(kT) calculated by
means of the analytical description of the fuzzy controller

u(kT)! = f(e(kT), Ae(kT)) (6)

The dependence of the correcting variable u(k7T) on the error e(kT) and/or the
rate of the error Ae(kT) are investigated in connection with the linguistic rules.
For this purpose, the fuzzy controller is split into partial fuzzy cells F (A), F (B),
F(C), and F (D) (Berger, 1995). The fuzzy cell F and the partial fuzzy cells result
from the partition of the reference fuzzy sets X; and Y; with ¢ = 1,...,mg and
j=1,...,mag over the space ID?.

2. Analytical Expression

The fuzzy controller can be described by one analytical function for a fuzzy cell F.
The fuzzy cell F results from the partition of the reference fuzzy sets X; and Y;
(Fig. 3). A maximum of four relation rules (linguistic rules) describes the fuzzy con-
troller in the fuzzy cell F. The partial fuzzy cells F (A), F (B), F(C), and F (D)
consist of one relation rule (Fig. 4) (e.g. the marked square in Fig. 3). For presenta-
tion of the fuzzy cell F, the fulfilment o, (e(kT), Ae(kT)) for z =1,...,mgmag
together with the membership functions ux;(e(kT)) and py,;(Ae(kT)) are split into
affR ofiL oLR and ofl with a=2,b=%+1,c=z+mag and d=Z+magp+1,
where z € {1,...,2— mag — 1}, e.8. '

ofR =T, (ug, ), o =Ty (B ub,.)

afR = Tc (“i’i-}-l’p]}%’) ) aé’L = Td (l‘l%i-}-l ) ﬂ%j.‘_l)
resp.

af? = Dq (u?},-,u{f,-) : ot = Dy (#5’},-, #)I?H,)

al =D, (ﬂ%,-ﬂ,uﬁ-) ,  agl =Dy (ﬂ%m , ML/,-+1)

with the index z = magi — mag + j. The superscripts L and R indicate the left
and right side of the reference fuzzy sets X; and Yj, respectively (Fig. 5).
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F(A) — = 2
aRR | oRL | oRR | oRL

X

>

X3

Fig. 3. Fuzzy cells F with reference fuzzy sets Y;(j = 1,...,mar) and
Xi(i=1,...,mg) for mag =3 and mg =3.

Fig. 4. Fuzzy cell F with partial fuzzy cells F(A), F(B), F(C), and F(D).

py;(Ae)

Ae

Fig. 5. Separation of the membership function py;(Ae).
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The correcting variable is computed by means of the height defuzzification

mu mu MmEmAE
Z/ ﬁﬁ’k(u)ﬁdu Z/ I‘(j,k(u) Z ag ,tidu
k=17/1D _k=17D z=1

MEMAR

mu - my
S [t Y [ agu) 3 wnedu
k=1"D k=170 z=1

u(kT) =

7
my [memap my [MmEmaEg ) ( )
> ( > a’k,z) Agmy Y ( > Tk’z(llx,w)) Agmy

_ k=1 z=1 _ k=1 z2=1

— muy [memagr — my [mEmaE
z( > ) A z( > wa,w)) A
k=1 z2=1 k=1 z=1

resp.

mu MEMAE
( > Dk’z(#x,w)) Apmg

(kD) = A (8)
( > Dk’z(ux,w)) Ay
k=1 z=1

where ﬂ(j,k is the k-th membership function of the reference fuzzy set Ui of the
output u, k=1,...,my, B x denotes the k-th membership function of the reference
fuzzy set Uy, the result of all rules z for the reference fuzzy set Uy, Aj stands for
the k-th surface under the reference fuzzy set U (for singletons Ax =1 Vk), my is
the k-th modal value of the reference fuzzy set Uy, T%+¢ is the k-th #-norm of the
z-th rule, z =1,...,mgmag, DF* denotes the k-th averaging operator D of the
z-th rule, a¥:* is the k-th degree of fulfilment of the z-th rule.

Equation (7), resp. (8), can be rewritten as
u(kT) = fbf*mu + fbfme + fof°me + fbfdmp 9)

where fbf® is the fuzzy basis function (Wang, 1994) in the partial fuzzy cell F (A)
for the control rules R,. The quantities fbf?, fbf¢, and fbf? are the other fuzzy
basis functions for the partial fuzzy cells F (B), F (C), and F (D) as well as m is
the modal value (Pedrycz, 1993) of the reference fuzzy sets Uy, Up,Uc,Up € U, with

U= {0 | Ui = [0,1] Vk:l,...,mU} (10)

With the use of eqn. (9) we computed an analytical description u(kT)! for the logical
valuation.
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3. Logical Valuation

Definition 1. A function T : D} xIDf; — ID}; is called the ¢-norm if for any
BX,, By, B2, € uum_,.\ the following conditions are safisfied:

M T(ex:, 1) = px; (the existence of the unit element)
()  px; <py; = T(ux,, pz,) < Tey;, pz.) (the monotonic property)
(II)  T(px,, py;) = T(uy;, 1x,) (the commutative property)

(IV) T(px;, T(uy;, pz.)) = T(T(ux,, py;), #z,) (the associative property)

Definition 2. The averaging operator (or a mean) is a function D : ID}; x D}, —
ID}; which satisfies the conditions:

(I)  min (px,, py;) < D (px;, py;) < max (px,,py;) and D ¢ {min, max}
(I) D (px,, .Eo.v = D (py;, px;) (commutativity)

(IIT) D is increasing and continuous

(IV) D(0,0)=0, D(1,1)=1

(V) D(px;, px.) = px; (idempotency)

The logical valuation checks the applicability of t-norms T (Definition 1) and
averaging operators D (Definition 2) to the control of technical processes. The active
rules in the fuzzy cell F are investigated for different arrangements for the conclu-
sion, with reference fuzzy sets Uy and Up for the correcting variable u(kT). An
arrangement for the conclusion (shown in Fig. 6, the 1st situation) can be described
by the following four relation rules (cf. Fig. 3):

Ir (EIs X3) AND (AEIsYy) THEN (U Is Uy) (11)
IF (EIs X2) AND (AE IsY3) THEN (U Is Uj,) (12)
Ir (EIs X3) AND (AEIsY;) THEN (U Is Up) (13)
Ir (E'Is X3) AND (AE IsYs) THEN (U Is Ug) (14)
Usa | Ua
U | Us

Fig. 6. Fuzzy cell F with reference fuzzy set Us in the partial fuzzy cells
F(A), .ﬁvmv and reference fuzzy set Up in the partial fuzzy cells
F(C), F (D) (the 1st situation).

The relation rules show that the conclusion (U Is Ua) (resp. (U Is Ug)) is
independent of which value of membership functions py, (Ae(kT)) and py, (Ae(kT))
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is projected on the rate of error Ae(kT) on the reference fuzzy sets Yz and Yz. This
does not depend on the fuzzy rate of error AF, but depends on the fuzzy error E.
The relation rules describe the correcting variable u(kT") independently of the rate
of error Ae(kT). The other arrangement for the conclusion (shown in Fig. 7, the 2nd
situation) can be described as the following four relation rules (Fig. 3):

Ir (EIs X2) AND (AEIsY,;) THEN (U Is Uja) (15)
Ir (EIs X2) AnD (AE IsYs) THEN (U Is Ug) (16)
Ir (EIs X3) AND (AE IsY;) THEN (U Is Uy) (17)
Ir (FIs X3) AND (AE IsYs) THEN (U Is Ug) (18)
Us | Us
Us | Us

Fig. 7. Fuzzy cell F with reference fuzzy set Uas in the partial fuzzy cells
F(A), F(C) and reference fuzzy set Up in the partial fuzzy cells
F (B), F (D) (the 2nd situation).

The relation rules show that the conclusion (U Is Ua) (resp. (U Is Ug)) is
independent of which value of membership functions px, (e(¥T)) and px, (e(kT))
is projected on the rate of error e(kT) on the reference fuzzy sets X, and Xs.
This does not depend on the fuzzy error E, but depends on the fuzzy rate of error
AE. The relation rules describe the correcting variable u(kT") independently of the
error e(kT'). The fuzzy connectives are investigated for two different arrangements of
the conclusion (situations) in the fuzzy cell . The two situations and the form of
the correcting variable uf are given in Table 4. The two situations of the different
arrangements of the conclusion in the fuzzy cell F remain true in the whole input
space ID2.

Tab. 4. Dependence forms of the correcting variable u® in connection with the
arrangement of the reference fuzzy sets Us and Up in the fuzzy cell F.

Arrangement of the fuzzy sets Dependence form of the correcting variable u? |
Usa | Ua .
dependence on the error e (1st situation)
Ug | Up
Us | Up

dependence on the rate of error Ae (2nd situation)

Ua Us
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The dependence form of the correcting variable is compared with the dependence
form of the linguistic rules u®(kT) = R(e(kT), Ae(kT)) (Table 3) and the depen-
dence form of the analytical expression uf(kT) = f (e(kT), Ae(kT)) from the fuzzy
controller. If :

uft = uf (19)

then the fuzzy controller (according to the fuzzy connectives for the intersection)
approximates the linguistic rules. Equation (19) is the valuation for the ¢-norms T
and averaging operators D for fuzzy control.

4. Algebraic Product T,,

Q.ﬂnv

Fig. 8. Binary relation of the algebraic product Tap, R = {((e, Ae), a(e, Ae)) |
e € X, Ae € Y}, with triangular membership functions px; and By;.

The algebraic product T,, is interactive, sensitive, and strict (Fig. 8). A smoother
defuzzified output is obtained, and it is an Archimedean t-norm with the additive
generator f(z) = —logz (Mizumoto, 1989). From the mathematical point of view
(algebraic properties), the algebraic product T,, has e.g. commutative and associa-
tive properties (Gupta and Qi, 1991), and belongs to the axiomatic class (Kacprzyk,
1983). The degree of fulfilment is

@ (x.(€), v, (Ae)) = px,(€) py; (Ae) (20)

The computation of the fulfilment for the partial fuzzy cells F (A), F (B), F(C), and

F (D) can be carried out e.g. according to the formula oftF =y :.WN.. By means of

convex (Definition 3), normalized (max;emp p(z) = 1), and orthogonal reference fuzzy

.
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sitts 'Xz- and Y;j (see Definition 4) (here 1= pf + NI)'(,.+1 and 1= p{% + u{’,ﬂ_l) we
obtain

MEMAE

Z a, =1 (21)

Definition 3. (Lowen, 1980) A fuzzy subset p:ID — le\', is a convex fuzzy set if
forall z,y€ID and a E]D};

u(afﬂ +(1-a) y) > min (u(w),#(y))

Definition 4. (Berger, 1994) A family A = {Ag:)}izh‘_,x of fuzzy sets Ag:) =

{(m("),ur()n)(:c("))) | (®) € Dy} is called orthogonal about IDy if

K
ZHE:&) d™)y=1 vz ey
i=1 "

where z(™) is the n-th input variable of the fuzzy controller.

The fuzzy basis function fbf is computed in the partial fuzzy cell, e.g. F (A)
as fbf® = aff® The crisp output can be then computed as the following analytical
expression:

u(kT) = (1= oy, = i + 1k #y) mat (b, — ik, ih,) ms

[\ J

F(A) F(B) (22)
+ (/&,.+1 - uly’(m#?jﬂ) me +#1L/j+1 ufr.-“ mp
-’ _v_/
F(C) F(D)

Situation 1. From eqn. (22), after the arrangement of the conclusions in the partial
fuzzy cells (partial fuzzy cells F (A),F (B) with my = my = mp, and F (C),F (D)
with mp = m¢ = mp), we get the crisp output as

u(kT) = (1 - pﬁm) m +u§(‘.+lm3
N et S’

F(A),F(B) F(€),F(D) (23)
w! (kT) = f(e(kT))

Situation 2. From eqn. (22), after the arrangement of the conclusions in the partial
fuzzy cells (partial fuzzy cells F (A),F (C) with my = my = m¢, and F (B),F (D)
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with mp = mp = mp), we get the crisp output as

:Qnm,_v = AH - t%@tv ma + t%\i.ﬁ:m
N ) S

F(A),F(C) F(B),F(D) (24)

uf (kT) = AEQEV

The two situations show that the t-norm T,, approximates the linguistic va-
riable. In the first situation, where the linguistic rules need the generation of the
correcting variable u(kT") according to the rate of error Ae(kT) (by means of the
arrangement of the conclusion in the partial fuzzy cells F (A), F(B), F(C) and
F (D)), this can be documented by the analytical expression of the fuzzy controller
uf(kT) = f(Ae(kT)). In the second situation, where the linguistic rules need the
generation of the correcting variable u(kT") according to the error e(kT'), this can be
documented by the analytical expression of the fuzzy controller u/(kT") = f (e(kT)).
The results can also be documented by the plots of the fuzzy basis functions fbf.
Figures 9 and 10 show the fuzzy basis functions fbf% and fbf® of the partial fuzzy
cells F(A) and F (B), respectively. Figure 11 shows the addition of the fuzzy basis
functions fbf® and fbf®. It can be seen that the result is independent of the rate
of error Ae.

. Ae

Fig. 9. Fuzzy basis function fbf® = ofF for the partial fuzzy cell F(A)
(partial contour plot of Fig. 8).



608 M. Berger and H. Schwarz

01 02 03 04 05
' Ae

Fig. 10. Fuzzy basis function fbf® = of’ for the partial fuzzy cell F(B)
(partial contour plot of Fig. 8).

0.5 .
0.4" :
0.3t
(4
0.9}
0.1f
01 02 03 04 05

Ae

Fig. 11. Sum of the fuzzy basis function fbf* and fbf® (contour plot).
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5. Valuation with Partial Differential Equations

The logical valuation can also be described as the partial derivative of the fuzzy
connectives. The partial derivative of the output of the fuzzy controller (with height
defuzzification) is computed as:

muy MEMAE k z my [Mmgepmag
OT™*(px, py) k2
5 MU MlU B Fa— Army MU M|U T5?(ux, py) | Ak
ou _ k=1 z=1 k=1 z=1
oz my [mpmagp 2
YU D THummy) ) A
k=1 z=1
my [mgmag my [memag k2
oT*®
MU MU T**(ux, py) | Aemi MU M lll%mw,tmv Ak
_ k=1 z=1 k=1 z=1 Awmv
my [mpmag 2
Yol DS T (ux,pv) | A
k=1 z=1

where x = [e(kT'), Ae(kT)]T. The right-hand side of eqn. (25) can be split (for the
fuzzy cell F, with partial fuzzy cells F (A), F (B), F (C), and F (D)) into four terms,
as follows:

du _ 3fbf*my + dfbfimg N dfbfeme N 8fbfimp
0x Oz Oz oz Oz
A fuzzy connective approximates the linguistic rules (according to the arrange-

ment of the conclusion in the partial fuzzy cells F(A), F(B), F(C), and F(D))
if

(26)

ou
9he 0 (27
Ou

On this assumption about the partial fuzzy cells, using eqns. (27) and (28), we obtain
for Situation 1

O (fbf + Fbf?) 0 (fbfe + fof?)
0= ——%a¢ At T A ms (29)
~ =0 S ~ ”}Mv 7
F(A)F(B) F(€),F(D)
and for Situation 2
d(fbfe c 8 (fbf® + fFofe
o= OUbf o5y WSS H 08 (30)
N Oe B o Oe .
=0 =0

~ ~ o~

F(A)F(C) F(B),F(D)
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Now, we can describe the logical valuation by means of the valuation equation
(i-e. a partial differential equation) in Tables 5 and 6.

Tab. 5. Valuation with valuation equation Situation 1.

l Valuation equation | Statement about the fuzzy connectives
B(QfR-f-abRL) a(afﬂ+oz§’L)
= 9A¢ linguistic rules are a imated
= pproximate
aaRR_l_abRL a£R+ac1{L g
a (ozﬁm + ozﬁu‘) a (afR + a{il‘)
—R'I@A'eTL— # ﬁ—RaA-Q—L—L— linguistic rules are not approximated
g + ayp Qc + ag

Tab. 6. Valuation with valuation equation Situation 2.

| Valuation equation : ‘ Results of the fuzzy connectives
2 (a2 4 al") 3 (ot +odh)
oFR (i_e ol = s ‘?: s linguistic rules are approximated
9 (o™ + ac™) 0 (™ +ai”)
oFF _: o2 # s ‘?: s linguistic rules are not approximated

The following equations show the results of the logical valuation (Situation 1) for
any t-norms T and averaging operators D:

Algebraic product Tgp:

L L L
(9 (QZBR + a?_{_ll) — _quj+1 (1 _ L ) d#Yj.}.l _ dHYj-}-l ”L — 0
dAe dAe Xits dAe dAe FXin

0 (agfm + azé-lfl-lm +1) d'u{J’ v, L Hy; L
Lore T dAjz PXip + ‘aﬁ”xiﬂ =0
31
0 (R 4 oBh) 8 (okfin, +obhmysr) @1
RR RL  — TR aAeLL
oy "+ azi Aitmap T ¥ ¥magp+1
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Einstein’s product T,:

QEM\N+_
8 (oaF"+alf) _ § Ent dAc -
0Ae 2 — tyn.,+u - tv\u.+~ |T\‘Cm...+i:v\u.+H

&:\
+1 L
tvn.+~\\:\u+_ &Dua A.Evﬁ+~ - HV

2
L L
AM - tuﬁ+~ - tmﬁ+~ + tun_,+—tm®.+_.v

dut dut

L Yiy L L Yit L

X "GAe Qe e (L= i) P (- 1)
2- .:N.t - .:M\ut +.:N~+_t%\u.+—

2
AH + t%\u{—-w + twm._-_. t%\u.f—v

LR L &:\
4 AQm+3Dn + Qu+39m+ﬂv — + tk.t dAe I
Ghe 2= 1 — .:St + tx..t FY;4
duy. duk
L L Yiq1 (L L Yit
Mt R (i - 1) KEin R,

2 L L
Am — BXip — By, t thxlyt%o.tv Xit1 f+_ x_t Y1

L 1 L &twﬁ@.+~ L 1
X \t T HYin “dAe HXipr —
- 2
(1+ 4k, + o)

0 AQWNN + QW.WHV 4 AQ%.WSDM + QW.WSD@+HV
— mkvn + dAe

LR LL
" +afh Ximar T Xfmap+1

(32)

Harmonic mean Dj,,:

L L
RR RL EC L v C _ ., L VG _ L v&:\}:
0 (™ +ait1) _ dAe FXia X i Y T1A,

- 2

= -2
J0Ae

2—pk o~ pk
HXis =™ W Am - twml_ - .:%o.iv

duf, dug
+1 L Yin L
o | Taae AT M) g e (- #)

L 2
1= HXi + HY;41 AH - tv?t + t%&.fv
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“YJ+1

dlly
p ( [ly]+1) d

L
9 (O‘ffmaa + O‘z+mAE+1) —_9 dAe ”X-+1 [
¢ B — 1= 1% E
T It 'uXi+1 -1- 'u'YJ‘+1

L d‘u)L’Hl dll{7j+1 L L
po | X TiAe _ TdAe MYmtXin (33)

T I 2

Fi T M ('UI)J(;'-H + :ufl" )
a (Q?R + a?.}l.;l) a ( ZLf?TLAE + azgl—fmAE+1)

RR '—Ié LR 6A6LL
+afth Aymap T Xdmap+l

=

Geometric mean Dgn,:

L L
(ot rat) ) [V i, 1, i,
— oAe - L ¢ L ‘
\/'MYHI \/1 T Hn
1 1- :U‘X;+1 d.uY G+1 V 'uXt+1 d“{/’jﬂ
6( RR | a 5 Ae dAe
2 A +Juk 1—puf
6Ae M £

R
+ CYZ+1 \/; - pXi“ +1 +\/1 — /‘th 1-—-

LR L L L L
a( ¥ imap T al+mAE+l> _ 1 HXi d'u'YJ'+1 HXia Cl}I'YJ'+1

0Ae ) L dAe L dAe
™ V 1=y
L L
ik odib, ik aid,

1
LL —
0 (agfmafa + a5+mAE+l> 2 L dAe 1 — ud dAe
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Table 7 shows the results of the new valuation for fuzzy connectives.

Tab. 7. Results of the new valuation.

fuzzy connectives : fitted _ not fitted
algebraic product Tap X
minimum operator T min X
Lukasiewicz’s operator T gy b
Hamacher’s product Tpp X
Einstein’s product Tep X
drastic product Tgp X
harmonic mean Dy, X
arithmetic mean Dam X
geometric mean Dy, X

6. Conclusion

In this paper, a new valuation of fuzzy connectives for fuzzy control was proposed.
The dependence of the correcting variable described by the linguistic rules u® was
compared with the dependence of the correcting variable calculated by means of an
analytical description u/ of the fuzzy controller.

The fuzzy controller can be described by one analytical function for a fuzzy cell
F. The fuzzy cell F results from the partition of the reference fuzzy sets X; and
Y;. The reference fuzzy sets Uy and Up in the partial fuzzy cells 7 (A), F(B),
F(C), and F (D) are split into two situations. In the first situation, the correcting
variable depends on the rate of error, whereas in the other the correcting variable
depends on the error. A fuzzy connective for the intersection (in this paper we have
investigated the {-norms and the averaging operator) approximates the linguistic rules
if the dependence of the linguistic rules uf is equivalent to the dependence of the
analytical expression of the fuzzy controller /.

The research showed that only the algebraic product and the geometric mean
approximate the linguistic rules regarding the logical valuation. We have investigated
the algebraic product, minimum operator, Lukasiewicz’s operator, Hamacher’s pro-
duct, Einstein’s product, drastic product, harmonic mean, geometric mean and the
arithmetic mean (Berger, 1995).

The logical valuation is an additional valuation of fuzzy connectives e.g. in the
control of technical processes. Beside the usual valuation (axiomatic, pragmatic), an
expert has an additional valuation with a direct connection between the m:NNu\ logic
and the fuzzy control.
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