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Dimension reduction and feature selection are fundamental tools for machine learning and data mining. Most existing
methods, however, assume that objects are represented by a single vectorial descriptor. In reality, some description methods
assign unordered sets or graphs of vectors to a single object, where each vector is assumed to have the same number of
dimensions, but is drawn from a different probability distribution. Moreover, some applications (such as pose estimation)
may require the recognition of individual vectors (nodes) of an object. In such cases it is essential that the nodes within a
single object remain distinguishable after dimension reduction. In this paper we propose new discriminant analysis methods
that are able to satisfy two criteria at the same time: separating between classes and between the nodes of an object instance.
We analyze and evaluate our methods on several different synthetic and real-world datasets.

Keywords: dimension reduction, discriminant analysis, object recognition, registration.

1. Introduction

Dimension reduction procedures are found in numerous
applications in the areas of object classification (Yasuoka
et al., 2004; Surendiran and Vadivel, 2011; Liu et al.,
2008), clustering (Boutsidis et al., 2011), data exploration
(Kulczycki and Łukasik, 2014), feature selection (Song
et al., 2010) or feature extraction (Lin, 1992). The
classical methods such as principal component analysis
(PCA) (Jolliffe, 2002), independent component analysis
(ICA) (Hyvärinen et al., 2001) and linear discriminant
analysis (LDA) (McLachlan, 2004) are most commonly
employed. Unsupervised methods such as fuzzy k-means
(FKM) have also shown great results in the context of text
retrieval (Kumar, 2009).

In certain applications (Szemenyei and Vajda, 2015),
however, it is more appropriate to describe instances of
objects as unordered sets or graphs of feature vectors. We
will refer to these classes as structured composite classes
(SCCs). The individual feature vectors of an instance will
be referred to as nodes of the object or class. While it is
possible to apply typical dimension reduction methods to
this problem, these algorithms will not produce optimal
results when applied to SCCs.

SSCs appear in a wide range of computer vision
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applications. It is common to describe the visual
appearance of an object by using local image features,
such as SIFT (Lowe, 2004). Some models, such as
the bag of visual words (Fei-Fei and Perona, 2005),
describe objects as sets of visual features, while others,
such as part-based or constellation models (Felzenszwalb
et al., 2010) treat them as graphs. The local features
approach also appears in 3D shape recognition (Bronstein
et al., 2010). Another occurrence of SSCs is in the works
of Schnabel et al. (2008) or Szemenyei and Vajda (2015),
who describe 3D shapes as graphs of primitive shapes.
It is worth noting that graphs of vectors can be reduced
to sets of vectors by embedding graph nodes in a vector
space, as is done by Demirci et al. (2011).

Some applications (Schnabel et al., 2008; Szemenyei
and Vajda, 2015; Demirci et al., 2011) involve spotting or
localizing subgraphs or subsets corresponding to a certain
object class (segmentation by recognition). In these cases
it is a straightforward strategy to recognize individual
nodes and use node labels to infer the presence of an
object from a given class. These methods do not only
require discrimination between classes in general but also
between the individual nodes of the objects. Being able to
tell different nodes apart also provides the opportunity to
weigh them using their relative importance.

This extra criterion is extremely useful in cases
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where object registration or pose estimation is also
needed. If it is easy to discriminate between nodes,
then it is possible to learn a class model consisting of
multiple nodes (including the relative position of the
individual nodes). Using node-by-node matching pose
estimation can be performed. However, if the nodes
are too similar after dimension reduction, the matching
will be ambiguous. It is worth noting that in most of
these applications only class labels are available, that is,
individual nodes are not labeled based on their similarity.

In this paper we present dimension reduction
methods for structured composite classes by extending
existing discriminant analysis algorithms. Our methods
introduce the within-instance scatter matrix to ensure the
separation between nodes of a given class. We also
examine the relevant properties of the within-instance
scatter matrix. Furthermore, we provide a method to use
the labeling information of SCCs to avoid the clustering
step that is required by some methods.

In the next section we give a brief overview
of dimension reduction methods, especially linear
discriminant analysis, and present some of the more recent
results which are applicable to SCCs. In Sections 3 and
4 we present our methods for performing discriminant
analysis on those that satisfy both of the aforementioned
criteria. Lastly, in Section 5 we demonstrate the efficiency
of our method by evaluating it on synthetic and real-world
datasets and comparing its performance against typical
algorithms.

2. Dimension reduction

In this section we give a brief overview of dimension
reduction methods with the emphasis on linear
discriminant analysis and its variants. The second
part of the section is devoted to mixture and subclass
extensions of LDA.

One of the most well-known dimension reduction
methods is PCA (Jolliffe, 2002), which finds the linear
combinations of the original dimensions that maximize
the variance of the dataset. Thus, it computes the
optimal compression of the dataset. Since PCA does
not require class labels, it is widely used in unsupervised
cases. However, for classification problems PCA might
not select the dimensions that are most useful for telling
different classes (Yang and Yuan, 2009).

Discriminant analysis (DA) techniques, on the other
hand, are supervised procedures which use class labels to
find the directions in the parameter space that are most
suited to separate the different classes. The simplest of
such methods employs Wilks’ lambda (Surendiran and
Vadivel, 2011) statistic, which is computed as follows:

λW =
Swc

Stotal
, (1)

where Swc is the sample variance within class and Stotal is
the total sample variance along a given dimension. The
statistic is computed for each dimension independently
and the dimensions where it is close to zero are kept. An
obvious disadvantage of this method is that it evaluates
all dimensions independently, therefore it will fail if the
data are separable along the linear combinations of the
dimensions. In this case it is beneficial to use PCA
transformation (without throwing away any dimensions)
on the data before computing λW .

2.1. Linear discriminant analysis. In turn, linear
discriminant analysis (McLachlan, 2004) is one of the
most widely used dimension reduction methods. Its basic
assumption is that the classes are normally distributed
with different means but the same covariance matrix.
Similarly to PCA, LDA computes optimal orthogonal
linear combinations of the original dimensions. However,
these new base vectors maximize separability of the
classes instead of the variance of the entire dataset.

LDA is formulated as an optimization problem:

max
w

wTSbw

wTSww
, (2)

Sb =

C∑

i=1

(µi − µ)(µi − µ)T , (3)

Sw =

C∑

i=1

ni∑

j=1

(µi − xi,j)(µi − xi,j)
T , (4)

where Sb is the between-class scatter matrix, Sw is the
within-class scatter matrix, µ is the mean of the data set,
µi is the mean of the i-th class, xi,j is the j-th vector of
the i-th class, ni is the number of vectors in the i-th class
and C is the number of classes. It is worth noting that Sw

may be replaced with the total scatter matrix St because
of the following equation:

St = Sb + Sw, (5)

where

St =

n∑

i=1

(xi − µ)(xi − µ)T , (6)

with n being the total number of vectors. This
optimization criterion leads to a generalized
eigenvalue-eigenvector problem, which in the case
of an invertible Sw or St can be solved by performing
eigendecomposition on S−1

t Sb or S−1
w Sb and taking the

eigenvector belonging to the largest eigenvalue. More
discriminant dimensions may be extracted by taking
the eigenvectors corresponding to the second, third, etc.
largest eigenvalues. Note that this solves a different,
but very similar optimization problem (Cunningham and
Ghahramani, 2015).
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Numerous variations of LDA have been proposed,
such as penalized discriminant analysis (PDA) (Hastie
et al., 1995), which is a weighted version of LDA.
Weights allow the algorithm to penalize unstable features,
thus improving the robustness of the method. Another
variant is nonparametric DA (NDA) (Fukunaga, 1990),
which uses a nearest-neighbors approach to define
the between-class scatter matrix to relax the normal
assumption of LDA. Górecki and Łuczak (2013) used
the Moore–Penrose pseudoinverse to generalize LDA to
problems with few observations.

Another important problem with LDA is that it does
not take the local geometry of the dataset into account
(Chai et al., 2007). To overcome this issue, locality
sensitive discriminant analysis (LSDA) (Chai et al., 2007)
has been proposed, which discovers the local manifold
structure of the dataset, and uses this information to find
the optimal discriminating projection. Methods such as
structured semi-supervised discriminant analysis (SSDA)
(Yang and Yuan, 2009) employ similar strategies, while
using the local manifold information to make use of
unlabeled data as well.

Lastly, some researchers have used the kernel trick to
extend LDA into nonlinear cases, such as the generalized
discriminant analysis method (Baudat and Anouar, 2000).
In the work of Harandi et al. (2011) a Grassmannian
graph embedding framework is employed to implement
kernel-based DA. However, none of these methods are
applicable to the case of SC classes, since they all assume
at least partly labeled data.

2.2. Subclass and mixture methods. In this section
we discuss particular variations of LDA which make the
assumption that the data of each class are generated by the
several different normal distributions, or in other words,
they assume a mixture of Gaussians (MoG) model. Our
reason for discussing these variants separately is that they
are relatively easy to extend to the problem of SC classes,
since the only important difference is that in the latter
instances from different subclasses might be present at the
same time.

Some of the mixture methods (Hastie and Tibshirani,
1996; Yang and Ahuja, 2001) use the expectation
maximization (EM) (Dempster et al., 1977) algorithm
to estimate the underlying distributions of the classes,
and then employ classic LDA to find the optimal
discriminating projection. A drawback of these methods
is that they are not applicable if the number of data points
is too low (Zhu and Martinez, 2006).

A different approach, subclass discriminant analysis
(SDA) (Zhu and Martinez, 2006), uses clustering to
estimate the means of the underlying normal distributions
of the subclasses. With the help of subclass means they

define the between-subclass scatter matrix as follows:

Sbs =

C∑

i=1

H∑

j=1

(µi,j − µ)(µi,j − µ)T , (7)

where C is the number of classes, H is the number of
subclasses, and µi,j is the mean of the j-th subclass
of the i-th class. SDA replaces the between-class
scatter Sb with the between-subclass scatter Sbs. The
procedure also determines the number of clusters using a
brute-force iteration from one to a user-defined maximum
and selecting the number that maximizes classification
accuracy.

A modified version of SDA called mixture subclass
discriminant analysis (MSDA) (Gkalelis et al., 2011)
computes the scatter matrix only between the subclasses
of different classes in order to prevent the algorithm
from preferring directions that can separate subclasses of
the same class. The between-subclass scatter matrix is
computed as follows:

Sbsb =

C−1∑

i=1

Hi∑

j=1

C∑

k=i+1

Hj∑

l=1

(µi,j − µk,l)(µi,j − µk,l)
T ,

(8)
where Hi and Hj are the numbers of subclasses in the
i-th and j-th classes. It is important to point out that
SDA assumes that all classes have the same number of
subclasses, since it uses the same H for all classes during
clustering. This is assumption is false in many cases, and
it may cause the algorithm to fail to separate subclasses if
their number is underestimated for a given class.

3. Structured composite discriminant
analysis

In this section we present our first method for performing
discriminant analysis for SC classes. As mentioned
before, SC classes represent a single instance of a class
as a set of vectors, where an individual vector is called
the node of an object. We assume that the nodes are
drawn from normal distributions; however, all of the
nodes within a single object are drawn from a different
distribution. Also, all nodes in all objects of every
class are in the same vector space. Lastly, we make no
assumptions regarding the number of nodes per object;
they may vary both between and within classes.

A central premise of the SCC problem is that
although the nodes within a single object are different,
there are similarities between certain nodes of distinct
objects from the same class. However, there is no prior
labeling available for these types of similarities. Nodes
are only labeled according to which class and instance
they belong to. In some cases spatial information might
also be available for the nodes, which may be used by the
application to estimate the pose of an object.
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It is easy to see that it would be ill-advised to
replace the nodes representing an instance of a class with
their mean, since the difference between classes might
be significant between individual nodes, while the classes
have the same mean. It is also obvious that the distribution
of all nodes in a class is not even approximately normal,
therefore performing LDA on the level of nodes would
produce suboptimal results as well. Lastly, classic LDA
will not discriminate between the nodes of the same
instance, which is an important requirement. These points
are illustrated in Fig.1.

(a)

(b)

Fig. 1. Typical cases: separable nodes but indistinguishable
means (a), where LDA fails to separate between nodes
(b). The solid line is the dimension selected by LDA,
while the dashed line shows a dimension that separates
all subclasses.

3.1. Within-instance scatter matrix. The last
problem of LDA we presented above can be addressed
in a relatively straightforward way: by adding a
second discriminant criterion that encourages selecting
dimensions that separate nodes within instances. We call

this addition the within-instance scatter matrix, which is
computed as follows:

Swi =

C∑

i=1

Ni∑

j=1

ni,j∑

k=1

(µi,j − xi,j,k)(µi,j − xi,j,k)
T , (9)

where C is the number of classes, Ni is the number of
instances in the i-th class, ni,j is the number of nodes
in the j-th instance, xi,j,k is the k-th node of the j-th
instance of the i-th class, and µinst

i,j is the mean of nodes
in the j-th instance of the i-th class. We can then define
the between-class node scatter matrix similarly to classic
LDA:

Sbcn =

C∑

i=1

(µ− µi)(µ− µi)
T , (10)

where µ is the mean of all nodes and µi is the mean of
all nodes in the i-th class. Then the optimization criterion
of structured composite discriminant analysis (SCDA) can
be written as

max
w

wTSbciw

wTStw
, (11)

Sbci = Sbcn + Swi. (12)

It is important to note that in some cases the two
scatter matrices might not be in the same order of
magnitude, which may lead to one of the criteria being
suppressed in the favor of the other. In such cases, it is
desirable to weigh the two scatter matrices to be added.
The relative weight might be determined manually or by
iterating through possible values. A special value that
ensures the equal importance of the two criteria is

Sbci = Sbcn +
tr(Sbcn)

tr(Swi)
Swi. (13)

3.2. Rank adjustment. In Section 2 we explained that
if the total scatter matrix of a dataset is invertible (which
it usually is), then the generalized eigenvalue-eigenvector
problem is reduced to a standard eigendecomposition
performed on the discriminatory matrixDb = S−1

t Sb, and
selecting the eigenvectors corresponding to the few largest
eigenvalues. With LDA and other classical methods,
determining the exact number of dimensions to use is
relatively simple. Since we know that,

rank(AB) ≤ min(rank(A), rank(B)), (14)

and that the equality holds if one of the matrices is
nonsingular. Since S−1

t usually has a maximal rank, we
can conclude that the discriminatory matrix has a rank
that is equal to the rank of Sb. According to (3) the
between-class scatter matrix is computed as a sum of C
dyads, which all have a rank of one. We also know that

rank(A+B) ≤ rank(A) + rank(B), (15)
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therefore the rank of Sb is less or equal to the number
of dyads. However, in the case of discriminant analysis
the between-class scatter matrix looses another degree of
freedom, since µ is usually computed from the dataset,
which means that the dyads are not independent. Note
that the same logic applies to the subclass and mixture
subclass methods, except that the ranks are determined by
the number of subclasses in those cases.

The rank of the discriminatory matrix is relevant
because it determines the number of nonzero eigenvalues
and sets an upper cap on the number of dimensions to
select. Since the eigenvalues of Db can be understood
as the magnitude of (linear) discriminatory information
contained by each dimension, by selecting all eigenvectors
that correspond to nonzero eigenvalues, we can compress
all discriminatory information into a low dimensional
feature space.

In the case of SCDA the within-instance scatter
matrix is also a sum of dyads; the number of dyads,
however, is relatively large. In practice it is safe
to assume that the number of dyads is considerably
higher than that of the original dimensions, which likely
results in a nonsingular matrix. This causes several
problems: First, determining the number of dimensions
to keep is no longer trivial, since all eigenvalues are
likely nonzero (Fig. 2). As a result, the method
might select too many dimensions, which leads to
computational inefficiency. Second, several nonzero
eigenvalues of the within-instance scatter matrix are due
to random variations in the data. When adding it to the
between-class scatter matrix, these values might dominate
the actual information contained in Sb. If the relative
weight of the within-instance scatter is set so low that
eigenvalues resulting from noise are negligible, then the
discriminatory information represented in Swi is also
weighed by a very small value. In other words, the relative
weighting of the two matrices is problematic because the
within-instance scatter has a considerably better condition
number.

Luckily, this problem is manageable by compressing
the within-class discriminatory information. In order to do
this, we introduce the between-class and within-instance
discriminatory matrices, Db = S−1

t Sb and Dwi =
S−1

t Swi, respectively. Using these, SCDA can be rewritten
as

S−1
t (Sb + Swi) = Db +Dwi. (16)

By performing eigendecomposition on Dwi and
setting its smaller eigenvalues to zero we produce a
new discriminatory matrix that only contains the most
relevant separating information. The basic principle of
this method is similar to PCA, except that here we find an
optimal compression of the discriminatory information, as
opposed to all information in the dataset.

3.3. Selecting the number of dimensions. The
method discussed in the previous section leaves one last
gap to fill in, and that is determining the number of
eigenvalues to keep in the within-instance discriminatory
matrix. A commonly applied practical heuristic is to look
for a breakpoint in the graph of eigenvalues either visually
or automatically. A similar approach is to set the ratio
between the sum of eigenvalues retained and the sum of
all eigenvalues, effectively setting an upper cap on the
discriminatory information lost in the operation.

These methods, however, require arbitrary decisions
on the part of the researcher. Therefore, we provide two
simple methods that can be applied automatically. In the
first one, we make use of the mathematical properties
discussed in the previous section, namely, that you can
discriminate between n classes using n − 1 directions.
The same is true if we wish to discriminate between n
subclasses within the same class. If we can estimate the
number of nodes per object Hi for all C classes (which is
difficult if the number of nodes varies within the classes),
then the number of eigenvalues to retain is the following:

Nr =
C∑

i=1

Hi − C. (17)

With this method, however, we run the risk of
selecting too many dimensions, since this only provides an
upper cap to the dimensions actually needed. Therefore,
in our second method we evaluate the subsequent
classification algorithm on our dataset for all possible
values of Nr and select the value that provides the best
result. While this method guarantees finding the best
possible value, it does so at the cost of greatly increased
computational requirements.

Fig. 2. Singular values of the between-class and within-instance
scatter matrices. With the between-class scatter matrix,
a clear breakpoint is visible in the singular values, while
the break is much less pronounced in the within-instance
scatter matrix.



174 M. Szemenyei and F. Vajda

4. Subclass SCDA

4.1. Improved clustering for SDA. Despite the
addition of the within-instance scatter, SCDA still suffers
from the inaccuracy of the between-class scatter matrix
due to the invalid normal assumption. This problem has
been, however, solved by mixture models and SDA by
assuming a mixture of Gaussian models and computing
the between-subclass scatter accordingly. It is important
to recognize that SDA is fairly easy to apply to the
problem of structured composite classes, especially the
variants that discriminate between the subclasses of the
same class as well.

In spite of the apparent simplicity of the solution,
there are several issues with this approach. First, in
certain cases the clustering step of SDA might not put
nodes of a given instance into different subclasses. This
might occur if there are similar nodes within instances but
large differences between different instances. Secondly,
SDA might not guess the number of nodes (subclasses)
correctly, since it selects the number that optimizes
separability of classes, not the separability of nodes within
instances. Moreover, since SDA assumes that all classes
have the same number of nodes, it will certainly fail to
find the optimal separation in cases where classes have a
different number of nodes.

Lastly, SDA uses a brute force approach to
determine the correct number of subclasses, which means
performing several clustering and discriminant analysis
steps on high dimensional data. This is computationally
expensive and should be avoided if possible.

Fortunately, it is possible to address all of these
issues by improving the clustering procedure (SDA-IC).
It is possible to estimate the number of subclasses in
each class separately by setting them to the number of
nodes in the largest instance of the given class. We
may initialize subclass means by setting them to the
nodes of the largest instance. Then, by using a nearest
mean approach we can assign the remaining nodes to the
different subclasses. This is equivalent to using a single
iteration of the k-means clustering algorithm. During the
assignment step it is possible to penalize the algorithm
for putting two nodes of the same object into the same
subclass cluster.

Since we initialized the clusters by considering our
requirement of separating the nodes of a single instance,
the resulting clusters are much more likely to be close
to the optimum. Using this trick we used the additional
information in our dataset to achieve significantly more
accurate subclass clusters at reduced computational cost.

4.2. Combining SDA-IC and SCDA. A minor issue
with the SDA-IC algorithm is that it compresses the two
separability criteria into the same scatter matrix. This
prevents us from scaling the relative importance of the two

Fig. 3. Simple case where the vertical dimension, which only
required to separate between nodes of the same class, is
included in the between-subclass scatter.

matrices which may be important for the reasons given in
Section 3.1. An additional reason for doing this is that
certain applications demand significantly less tolerance
for one type of error than the other. This may justify
adding artificial bias to the DA algorithm.

This may be achieved by combining the SDA-IC and
SCDA methods by defining the Sbci matrix of SSCDA as:

Sbci = Sbcb + Swi, (18)

where Sbsb is the between-subclass scatter given by (8)
and the actual subclasses are determined by SDA-IC.

It is important to recognize, however, that values
resulting from the within-instance scatter may remain in
the between-subclass scatter matrix, even if the MSDA
definition is used. This is because the scatter is computed
between a given subclass and all the subclasses from the
other class. The phenomenon is illustrated in Fig. 3.

Our argument is that with the introduction of the
within-instance scatter matrix it is sufficient to compute
the between-subclass scatter only between the closest
subclasses of different classes (in case of ambiguity all
‘close’ subclasses will be used). The reason for this is that
the within-instance scatter matrix will include all the other
scatter information that is required to separate subclasses.
Therefore, this modification will not harm the algorithms’
ability to discriminate.

It brings two advantages, however. First, using
this new definition we could completely separate the two
criteria into two scatter matrices, which can be weighted
according to the applications’ requirements. Second,
during the classification of SC classes their nodes have
to be classified first. During the classification of the
individual nodes only similar nodes from the other classes
may be responsible for misclassification. Therefore,
discriminating between these nodes is far more important
than discriminating between dissimilar ones. This way,
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the between-subclass scatter matrix only contains the
most important information, while the within-instance
scatter contains secondary information.

It is worth noting that without the within-instance
scatter matrix the SSCDA method would likely select
a projection which ignores the dimensions that separate
given nodes from relatively distant ones in other classes,
resulting in a deeply flawed solution. The steps to perform
SSCDA are given in Algorithm 1.

Algorithm 1. Steps of SSCDA.
1. Determine clusters using instance labels.
2. Compute St.
3. Compute Swi using instance labels.
4. Compute Sbsb from clusters, using only the nearest
subclasses.
5. Db = S−1

t Sbsb and Dwi = S−1
t Swi.

6. Adjust the rank of Dwi using SVD.
7. Perform LDA using the matrix Db +Dwi.

4.3. Extension of Wilks’ lambda. In the last part
of the current section we show that it is possible to use
the ideas developed in the previous sections to provide
an extension of Wilks’ lambda statistic. This is done by
creating two different lambdas: one for between-class and
the other for within-instance separability. Since

Swc = Sbi + Swi, (19)

where Swc is the within-class scatter, Sbi is the scatter of
instance means, and Swi is a within-instance scatter, we
can use a statistic for within-instance separability that is
computed as follows:

λwi =
Sbi

Swc
. (20)

The lambda statistic used for between-class
separation can be computed simply using the classic
formulation (1). Here, the within-group scatter Swg

contains within-subclass scatter values. In order to select
dimensions using these two criteria one might use the
sum or the weighted sum of the two lambda values
λSSCDA = λbsc +μλwi, or simply combine the dimensions
selected by using the two lambda statistics separately.

5. Experimental results

In this section we present the evaluation procedure we
used to assess the efficiency of our methods. We
have compared the performance of LDA, SDA, SDA-IC,
SCDA, SSCDA, and the Wilks lambda method on several
different datasets. The methods used in evaluation are
summarized in Table 1. We used 10-fold cross-validation
for computing validation accuracies. We begin by

Table 1. Methods used for comparison.
Method Description

LDA As given in Section 2.1
SDA Uses the between-class scatter matrix
SDA-IC SDA with the improved clustering method
SCDA LDA with the addition of the within-

instance scatter matrix
SSCDA Combination of the two previous methods
Wilks Uses the Wilks lambda statistic for

feature selection

presenting our classification method, followed by results
on different types of datasets.

Our classification method is a semi-supervised one,
since we assume that the nodes of instances are not
labeled. This means that we have to construct a class
model first that can be used to classify nodes individually.
After running the DA algorithm we use the k-medoids
clustering method to create node clusters, since it is more
robust in the case of outlier data points. Unlike during
discriminant analysis, this clustering step determines
the number of clusters automatically by minimizing the
within-group scatter, while penalizing the number of
clusters.

In the next step, nodes are labeled according to their
distance to the model clusters. Each node is given two
different labels: the first is the class label, while the
second is the label of the node cluster within the given
class. The class label of each node may be interpreted as
a vote for the presence of a certain class. The class label
of the object is then decided on by the plurality of node
votes. The node cluster labels can be used to discriminate
between nodes of a single instance.

We compute two important statistics to measure the
methods’ performance on the two criteria. The first, awi,
is the percentage of nodes that have a different node label
within the correct class. This measures the algorithm’s
ability to discriminate between nodes in the same object
instance. The second, ac, is the percentage of object
instances that were assigned to the correct class.

5.1. Random synthetic classes. Since there is not a
great number of online databases that contain SC classes,
we first tested the efficiency of our method on synthetic
datasets. The first dataset contains five random classes,
each with five different random nodes that have unique
probabilities to appear in a given instance of the class.
There are four variations of this dataset: In two cases
there is no overlap between dimensions that are useful
for separating classes and those that can be used to
discriminate between nodes of a particular instance. In the
remaining two cases the same dimensions can be used for
both kinds of separation. Also, in all four datasets we add
noise to the nodes, drawn from a normal distribution with
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Fig. 4. Results of our method for synthetic datasets (top) and for shape-graph and image datasets (bottom).

zero mean, but in two cases the noise is relatively small,
allowing easy separation, while in the other two cases the
variance of the noise is comparable to that between the
nodes and classes. The datasets are: disjunct, disjunct
noisy, overlapping, and overlapping noisy.

The results (Fig. 4) demonstrate that our methods
outperform the standard ones for random structured
composite classes. The one exception is the overlapping
noisy dataset, where our methods trade some of

Fig. 5. Performance of SURF features on image datasets.

the classification accuracy for better within-instance
separation.

In addition to the previous four datasets we created
examples for peculiar situations in which the classic
methods clearly fail. One such case is when the closest
subclasses from different classes are very close compared
with other subclasses (close nodes dataset). If other
subclasses contain significant noise in the directions that
can separate the closest subclasses then all methods with
the exception of SSCDA will perform poorly. Another
case where LDA and SDA give suboptimal results is when
there are classes with a different number of nodes (ΔN ).
We already mentioned a third case in Section 4, where the
classes have the same mean but different subclass means,
causing LDA to fail (Δμ dataset). We created datasets
to illustrate all three cases, each containing two different
classes with 500 instances of both classes.

The results (Fig. 4) for the special dataset mostly
meet our expectations. The CN and ΔN datasets are
shown to confuse LDA and SDA, while our methods
perform remarkably well on them. The Δμ dataset proves
to be difficult for LDA, exactly as predicted in Section 3.

5.2. 3D shape-graphs. In the second stage of testing
we use 3D shape recognition as an illustration of our
method’s efficiency. We created three different databases
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Fig. 6. Graph constructed from primitive shapes (only signifi-
cant edges are drawn).

for testing. The first one uses synthetic shape descriptors
with random noise added, while the second one is made
from synthetic images created in Blender. The third
dataset employs real image series of simple objects.
In both image-based cases we introduced significant
variations within object classes. The two synthetic
databases include around 2000 shapes in five classes,
while a real-world database includes roughly 8000 shapes
in five classes.

For our test we use a shape description method
that approximates the 3D shape of an object by a
graph primitive shapes, where each node of the graph
represents a shape while the edges describe the geometric
relationship between them. The advantage of using this
approach is that it is able to represent both global and local
geometry well (Szemenyei and Vajda, 2015).

In both image-based cases 3D reconstruction was
performed using a multi-view technique (Wu, 2013) with
15 successive images of the objects. Then, the 3D
point cloud is segmented into primitive shapes, for which
we use the efficient RANSAC algorithm developed by
Schnabel et al. (2007). The graph constructed from the 3D
scene (Fig. 6) contains the following five primitive shapes:
spheres, cones, cylinders, planes and tori.

In the next part of the description algorithm,
we assign features to the nodes and edges of the
graph. For the nodes of the graph (which represent
primitives) we compute features, using the point cloud
of inliers determined by the RANSAC algorithm. Since
there are five primitive shape categories with different
possible features we would need to construct separate
feature vectors for each primitive type, which would
make comparing nodes difficult. In order to avoid
this, we construct just one feature vector for nodes
by concatenating the feature vectors for the different
primitive types. The features that belong to another
primitive type are set to zero.

It is important to note that it is possible to assign
a coordinate system to all primitive shapes that may be

Table 2. Primitives, their features and reference frames.
Primitive Features Reference frame

Area Centroid
Plane Diameter Normal

Bounding box area
Sphere Radius Centroid

Radius Peak
Cone Height Axis

Angle
Radius Centroid

Cylinder Height Axis
Torus Inner radius Center

Body radius Axis

used to describe geometric relations between given nodes.
However, almost all shapes have symmetric properties,
therefore these coordinate systems will be ambiguous.
Nevertheless, we can still assign an origin to all shapes
unambiguously and a direction to all primitives, with the
exception of the sphere. The features and the reference
frames are shown for each primitive type in Table 2.

The edges of the graph represent the relations of
these coordinate systems. We store the translation
and the rotation between the two coordinate systems.
Because of the ambiguity of these coordinate systems, we
determine the smallest possible rotation between the two
vectors representing the directions. Also, since the world
coordinate system might be different for different scenes,
we use only the magnitude of translation and the angle of
rotation between to coordinate systems as features.

Another essential property of our shape description
algorithm is that we always create full graphs. This way
we need no arbitrary threshold to determine the adjacency
of nodes, since this property has already been encoded
in the edge features. Moreover, this way the adjacency
property remains a real value instead of a binary one,
which allows a more robust solution.

The last step of our shape description algorithm is to
convert the graph of vectors representation into a set of
vectors by embedding the nodes of the graph into a vector
space. Since in this case the nodes and edges of the graph
are vectors instead of real weights, methods such as the
one developed by Demirci et al. (2011) are not applicable.
Therefore, we construct a descriptor vector by ordering
the nodes of the graph by the distance from the node we
want to embed and concatenating their descriptor vectors.
In order to limit the size of the descriptor vector we only
consider the N closest nodes. We can also add edge
features to the descriptor vector by concatenating them to
the descriptor vector in the same order.

The results (Fig. 4) indicate that our methods are
able to provide better results on 3D shape graphs. The
difference between the algorithms is much more subtle on
the synthetic dataset, which is likely due to lower noise.
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(a)

(b)

Fig. 7. Average ranks of the different methods (a), 95% credible
interval of the effect of our methods (b).

5.3. Feature-based object recognition. The third
problem we applied our discriminant analysis algorithms
to was visual object classification. Here, we constructed
structured composite classes by detecting 15 strongest
SURF features on each image and storing them as nodes
of an instance of the given class. However, instead of
using the SURF descriptors we vectorized the 32×32
image patch surrounding the key-points. Thus our
nodes consist of 1024 raw pixel values. We performed
this on several object recognition databases, including
datasets with few classes, such as the VML Action Class
Database (Wang et al., 2006), the UIUC Image Database
for Car Detection (Agarwal et al., 2004), the GRAZ
dataset (Marszałek and Schmid, 2007), and sets with
numerous classes, such as the Caltech Computational
Vision Archive (CVA) (Fei-Fei et al., 2007) and the VGG
Flower Database (Nilsback and Zisserman, 2008), and the
UIUC Bird database (Lazebnik et al., 2005).

The results (Fig. 4) demonstrate the efficiency of
our methods for image classification, with SCDA and
SSCDA consistently outperforming the other methods.
Interestingly, SDA, SDA-IC and the Wilks method are
bested by LDA on some datasets. We also evaluated the

performance of our classification method by using full
SURF features as a baseline (Fig. 5). When using SURF
features, no dimension reduction was performed.

5.4. Statistical analysis. In this section we perform
statistical analysis of the results in order to illustrate the
efficiency of our methods. The first measure used is the
average ranks of the methods on all datasets, computed
separately for the values ac and awi.

In the next part of our analysis we compute the 95%
credible intervals (CIs) for the size of the improvement
brought by our methods. To get credible intervals we
use a Bayesian alternative of the paired samples t-test
(Bååth, 2014) based on BEST (Kruschke, 2013). We
compute this statistic for both awi and ac while comparing
our methods against LDA and SDA. The results (Fig. 7)
show that while our methods tend to perform better or
the same as LDA or SDA, only SCDA and SSCDA have
a credibly positive effect on both measures against LDA
and SDA. Also, we can compare the two best methods,
getting the credible intervals [−1.4, 3.2] for awi with a
76.9% probability that SSCDA outperforms SCDA on
node separation, and [0.18, 2.8] for ac with a 98.7%
probability that SSCDA performs better in classification
accuracy. This allows us to conclude that SSCDA is the
superior method of the two.

We also compared the SURF descriptor to SSCDA
using the same Bayesian test. The results are [−6, 16]
for awi with a 85.6% probability that SSCDA outperforms
the SURF descriptors at node separation, and [0.88, 18]
for ac with a 98.2% probability that SSCDA performs
better at classification accuracy. This proves that SSCDA
is a good way to extract features from an image, since
it credibly outperforms SURF at classification accuracy.
This is unsurprising, since the SURF descriptor was not
optimized for structured composite image classification.

5.5. Comparing methods for rank selection. In this
section we compare our methods for selecting the rank
of the within-instance scatter matrix. We evaluated our
methods for all datasets, and computed the accuracy
((awi+ac)/2) and the number of dimensions kept. We use
SSCDA and the Bayesian t-test to compare the different
methods. We employ the iterative method as a baseline
to compare the other methods against, since it evaluates
all possible values and therefore it is bound to find
the the best possible accuracy at the lowest number of
dimensions.

Figure 8 shows the results of the test for the
two criteria. The results justify adjusting the rank of
the within-instance scatter, since without it our method
produces clearly suboptimal results both in terms of
classification accuracy and dimension reduction. Among
rank adjustment methods, iterative trial and error clearly
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Fig. 8. 95% credible interval of the effect of rank selection
methods.

outperforms all other methods on accuracy. It is worth
noting that the other methods tend to keep a similar
number of dimensions. This means that it may be a viable
strategy to use one of these methods to find an initial value
and check the surrounding few values for the optimum.

6. Conclusion

In this paper we presented methods for dimension
reduction of structured composite (SC) classes by
discriminant analysis. An extension of LDA called
structured composite DA was introduced, followed by an
extension of SDA called subclass structured composite
DA. We also discussed improving the clustering method
of SDA and extending the Wilks lambda statistic for SC
classes.

We evaluated the efficiency of the methods using
both synthetic and real-world datasets and compared
them with the classic versions. We found that our
additions significantly increased the efficiency of the
original algorithms by taking the structure of the data
into account. The results show that our methods are
successful in achieving two criteria on both synthetic and
real-world datasets. It was also demonstrated that SCDA
and SSCDA usually outperform the usual methods on
structured composite classes.
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