Appl. Math. and Comp. Sci., 1994, vol.4, No.1, 125-138

DECOMPOSITION OF MULTIPLE-VALUED
BOOLEAN FUNCTIONS

Tapeusz LUBA*, RoBerr LASOCKI*

In this paper we consider the problem of decomposition of Multiple—Valued
Boolean functions and its implementation using Programmable Logic Arrays
(PLAs) as examples. The main reason behind using the described method is its
economic realization of logic circuits in PLA implementations and in all the other
applications of multiple-valued logic systems. The procedure is very general and
suitable for various implementation styles, including standard PLAs, PLDs and
PLAs with two—bit decoders.

1. Introduction

Multiple-valued logic has been the subject of considerable study during the past
decade (Ciesielski and Yang, 1992; Devadas et al., 1988; Muzio and Wesselkamper,
1986). In particular, multiple-valued logic (MVL) has gained more attention due to
its application in optimal PLA design.

The PLA optimization goals are to minimize the area occupied by the PLA
and to minimize the delay through the PLA. A complete strategy for the design
of a PLA macrocell involves: (1) logic optimization of the PLA equations inclu-
ding input variables assignment and output phase assignment (Sasao, 1984; 1988),
(2) optimization of the PLA layout using simple folding or partitioning techniques;
and (3) generation of the mask geometries implementing the PLA.

Devadas et al. have proposed a Boolean decomposition of a PLA into two casca-
ded PLAs (Devadas et al., 1988). This procedure is conceptually similar to multiple—
valued symbolic minimization, rather than to the classical decomposition. Moreover,
the method is confined to PLA synthesis and cannot be considered as a general func-
tional decomposition approach applicable to different implementations. However, we
can find several similarities between MVL systems and binary logic with respect to
functional decomposition concept. ' '

Recently published papers try to generalize old decomposition procedures to
make them applicable to more complex cases (Ciesielski and Yang, 1992). This ap-
proach has proven to be quite successful; in many cases, the synthesized circuits have
been less complex than the circuits designed using a conventional approach based on
logic minimization. Following this trend, we propose an original method for decom-
position which produces even better results.

* Warsaw University of Technology, Institute of Telecommunications, ul. Nowowiejska 15/19,
00-665 Warszawa, Poland

126 T. Luba and R. Lasocki

A distinguishing feature of our method is an original calculus based on the re-
presentation of a function by a family of partitions over the set of minterms. Our
decomposition procedure is universal, i.e. it can be applied to completely or incom-
pletely specified, binary or multiple-valued Boolean functions. Thus, it favorably
compares with the earlier PLA-based decomposition methods, limited to two-valued
Boolean functions.

The paper is organized as follows. In Section 2, we introduce the basic notions
and discuss the partition-based representation of a Boolean function. In Section 3,
the theoretical fundamentals of the decomposition algorithms are given. Section 4
shows how the proposed decomposition procedure is used for synthesis of PLAs. The
presented results of the benchmark design experiments demonstrate that, in several
cases, our method produces circuits of significantly reduced complexity compared to
the solutions reported earlier.

2. Basics of Decomposition

Let z; be a multiple-valued variable, and C; = {0,1,..,¢; — 1} be a set of
values that it may assume. A generalized Multiple~Valued Boolean function with n
input, m output variables is defined as a mapping:

F(z1,...,2n): C1xC2x oxCp— D™

where D ={0,1, -} represents the binary value of the function (0 or 1)!. The value
— (don’t care) at one of the outputs means that the value is unspecified, and a value
of 0 or 1 will be accepted to realize this part of the function.

Every element of the domain Cyx Cax ...xCp s called a minterm. A listing
of minterms with the value of the function is called a truth table. Truth tables do
not include minterms with the function value not specified for all outputs. Set of
minterms for which the function value is unspecified is called a DC-set (Don’t Care-
set). Functions with non—empty DC-set are called partially defined.

For the sake of clarity, truth tables may be viewed as a set T'= (M, A, X, Y),
where M is a non—empty, finite set of objects, A 1is a finite set of variables
(arguments); A = X UY, where X is a set of input variables and Y is a set of
output variables, XNY = 0. Moreover, a is a function assigning a value of variable
for every object m, l.e.

a: M-V,

where V, is a domain (set of possible values) of variable a. According to physical
implementations we assume that the set of values of output variables V, = {0,1,—}.

In general, any pair of minterms in a specification table of Multiple-Valued Bo-
olean (MVB) function may have identical values for some number of input variables.
A convenient way to reflect such similarities can be introduced with the help of the

1 The assumption of binary values of outputs is implied from the structure of commonly used
PLAs, i.e. multi-valued input, two—valued output PLAs (Sasao, 1984; 1988; Rudell
and Sangiovanni-Vincentelli, 1987).

decomposition of multiple-valued boolean functions 127

so called indiscernibility relation (Pawlak, 1991). This relation, denoted by IND | is
assoclated with any subset of input variables as follows:
let BCX, mi,ms €M,
(m1,mq) € IND(B) iff z(m,)=x(m3) forall z € B
This means that (mi,my) € IND(B), if' the values of the arguments belonging
to B are identical for both m; and m,. Minterms m; and ms are said to be

indiscernible by arguments from B. The indiscernibility relation is an equivalence
relation on M and

IND(B) = () IND(x) (1)
z€B

Thus, the relation IND partitions M into equivalence classes M/IN D(B).
Such partitions are of primary importance in logic synthesis (Hartmanié and Stearns,
1966; Luba et al.,, 1991). To simplify, we shall denote partition M/IND(B) by
P(B) and call such a partition an input partition generated by set B. Then, the
formula equivalent to those of (1) may be written as

P(B) =[] P(=). 2

z€B

where [] denotes the product of partitions.

Two output vectors, y, and y,, are said to be consistent if their corresponding
entries are the same whenever they are both specified, i.e.

Vi € {n + 15 T + m}) (ylg = y2,;) \ (yli = *) \% (yl’,‘ = *)
The consistency relation on output vectors is denoted as y; ~ ¥y,.

In general, any pair of minterms in a logic specification table may have consistent
output values for some number of output variables. Thus, the relation called output-
consistency relation and denoted as CON, can be associated with any subset B of
the output variables. The output—consistency relation is defined as follows:

let BCY, pgeM,
p,q € CON(B) iff y(p) ~ y(q) for every y€ B
where aj ~ ag if aj,ay are the same whenever both are specified.

A set of minterms constitutes a consistent class, if every pair of minterms in the
set is consistent. Those classes that are not subsets of any other output—consistent
class are called Mazimal Consistent Classes (MCCs).

Clearly, the consistency relation is not an equivalence relation on M. Hence, it
»partitions” M into non—disjoint subsets; but for a given CON relation there is
a unique collection of maximal output—consistent classes of minterms. Therefore, we
can use the same notation for output consistency subset, i.e. Pr(B), where index F
is intended to distinguish input (IND) and output (CON) relation. When B =Y,
then we can denote the CON relation simply as Pp. Because of non—-disjointness
of blocks of Pp, relation CON is called a rough-partition (r—partition).

128 T. Luba and R. Lasocki

Conventions used in denoting r—partitions and their typical operators are the
same as in the case of partitions, i.e. an r—partition on a set M may be viewed as a
collection of non—disjoint subsets of M, where the set unionis M. Thus, r—partition
concepts are simple extensions of partition algebra (Hartmanis and Stearns, 1966),
with which Reader’s familiarity is assumed.

Especially the relation less than or equal to holds between two r—partitions IIy
and II,(II; < Iy) iff for every block of II, in short denoted by B;(11,), there
exists a Bj(]]z) such that B,‘(Hl) - Bj(Hz).

If I; and II, are partitions, this definition is reduced to the conventional
ordering relation between two partitions.

This points out the main difference between completely and incompletely spe-
cified Boolean functions. While the equivalence classes of partitions in completely
specified functions consist of disjoint subsets, the subsets of consistent minterms for
partially specified functions may be overlapping. This is the reason for generalizing
the typical partition description.

To present a Boolean function F,i.e. a functional dependence between outputs
Y and inputs X, usually described by formula Y = F(X), the table specification
should be consistent.

A logic specification table is consistent iff for every pair of row vectors r; =
(21,9;), 72 = (T2,Y5), ©1 = z2 implies y; ~y, (ie. for every my,my,my =my
implies F(m1) ~ F(mz3)).

Example 1. Consider partially defined, multiple-valued Boolean function F' shown
in Table 1.

In the example:
M={1,.,10}, X =A{zy,..,ze}, Y ={yl,y2}

and V;, = {0,1,2}, Vi, ={0,1,2,3}, Ve, ={0,1,2}. The IND relations for.
By = {z1} and Bj = {x2,z3} are as follows:

P(By) = {{1,2,4,5,8,9}, {3,6,7}, {10}}
P(B2) = {{1}, {2,8}, {3,6,7,10}, {4}, {5,9}}

Proceeding in the same way for the output—consistency relation CON , we
obtain the following r—partitions:

PF(yl) = {{1;2)3;4:6y7)9)10}7 {5:8}}
Pr(y2) = {{1,2,5,7,8}, {3,4,5,6,8,9,10} }

Pr=(1,2,7; 3,4,6,9,10; 5,8)?

2 For the sake of simplicity we separate the blocks of partitions by semicolons only, i.e. curly
brackets are omitted.

decomposition of multiple-valued boolean functions 129

Tab. 1. Function F from Example 1.

8
—
8
v
8
9]
8
S
8
o
]
-
<
—
@
v

O 0 I O O A W N =

N OO == O =IO O
N O = N N O = N = O
W W = N W N OO =

N = O NN == NN O
RN O O OO OO
[R e R =T e Y e S e
O O = O O = O C©C O <O,
e e = e e e = R =}

it
[en)

3. Functional Decomposition of Multiple-Valued Functions

3.1. Basic Theorem

Let F' be a multiple-valued function representing functional dependence ¥ = F(X),
where X 1is a set of multiple-valued input variables and Y is a set of binary output
variables. Let X = AUB, ANB=10 and C C A.

We say that there is a functional decomposition of F iff
F=H(AG(B,C) = H(4,2) (3)

where G and H denote functional dependencies: G(B,C) =2 and H(A,Z)=Y
and Z is a set of two-valued variables. If, in addition, C = §, then H is called
a simple disjoint decomposition of F.

In other words we try to find functions G and H, such that G depends on
variables in B U C, whereas H depends on variables in A and variables in -Z,
where Z is the set of binary outputs of G. The outputs of the function H are
consistent with those of function F. So the function F can be implemented as
a multi-level PLA structure, but in contrary to the method proposed by Devedas
(1988) and Ciesielski and Yang (1992), PLAs implementing components ‘G and H
are, in general, PLAs with two-bit decoders (i.e. multiple-valued input, two-valued
output PLAs). Moreover, as the decomposition process can be applied iteratively, the
first level may contain an arbitrary number of PLAs (components G) and the second
level contains a single PLA.

The following theorem states the sufficient condition for the existence of a serial
decomposition.

Theorem 1. Functions G and H represent a-serial decomposition of function F,
i.e. F=H(A G(B,QC)), if there ezists a partition llg > P(BUC) such that

P(A)ellg > Py (4)

130 T. Luba and R. Lasocki

where all the partitions are over the set of minterms and the number of two-valued
output variables of component G is equal to [log, L(Ilg)], where L(II) denotes
the number of blocks of partition I, and [z| denotes the smallest integer equal to
or larger than =x.

Proof. For each block H; of the partition P(BUC), there is a corresponding vector
v; = (a)j.c,e Buc Where

0, if H;C PG(:L']')
a; —
1, if H;C Pl(.'l:j)

(P9, P! denote the first and the second block of P, respectively). If we assign
to each block of partition IIg a binary vector gy, ..., g; (I = [logy L(Ilg)]), then
(as Pg < IIg) for each vector wv; there is one and only one corresponding vector
g = (g1,...,91). Therefore, on the set of vectors V = {v;}, an l-output function G
is specified. Similarly, for each block of partition P(A)eIlg we can assign a vector
g with its positions ;,,...,%;,, g1,...,91 defined by the variables of set A and
the auxiliary variables gi,...,q1. As Iy = P(A) e Ilg < Pp, each block of Iy
corresponds to one and only one block of Pr, and consequently to one and only-
one vector of the output variables yi,...,y». This is ensured by the fact that the
minterms in consistent classes of Pr are consistent. The above-mentioned mapping
of blocks of Il into blocks of Pp is a one-to—one mapping because for each block
of Iy (as Iy < Pp) there exists one and only one block of Pp. It 1s evident that
partition IIg rtepresents component G, and the product of partitions P(A) and
Il corresponds to H. The truth tables of the resulting components can be easily
obtained from these partitions.

Example 2. Let us decompose the function F' of Table 1. For A = {z1, 72,23},
B = {z4, 25,26}, C =0, we have

P(A)=(1; 2,8; 3,6,7; 4; 5,9; 10)

P(B)=(1; 2; 3; 4, 5,7; 6,9,10; 8)
Consider

g = (1,2,4,5,7; 3,6,8,9,10)

It can be easily verified that since P(A) e Ilg < Pp, function F is decompo-
sable as F = H(zy,22,23, G(z4,25,26)), where G is one-output function of three
variables.

The truth tables of components G and H can be obtained from partitions
P(A), Ilg, and Pp. Encoding the blocks of IIg respectively as 0 and 1, we
immediately obtain the truth table of function Gj it is presented in Table 2. The
truth table of function H can be derived by reencoding input vectors of F' using an
intermediate variable g. The truth table obtained in this way is shown in Table 3.

decomposition of multiple—valued boolean functions 131

3.2. The r—Admissibility Test

Direct application of Theorem 1 to find functions G and H would make the
problem computationally intractable. To overcome this difficulty, we present condi-
tions that allow us to check if, for a given set of input variables A C X, function
F is decomposable so that component H has a given number of input variables,
and variables in A directly feed H. These conditions are based on the concept of
r—admissibility of a set of partitions.

Tab. 2. Function G from Tab. 3. Function H from
Example 2. Example 2.

T4 Ts Ts | g z 2 T3 ¢ Y1 Y2
1 0 0 0 1 1 0 0 1 0

1 2 1 0 1 1 0 1 0 0

2 0 1 1 2 2 1 0 0 1

3 3 0 0 2 2 1 1 1 0

0 0 0 0 1 0 0 0 0 1

0 0 1 1 1 0 0 1 0 0

0 2 1 0 0 1

Let P; be a partition on M induced by some input variable z;. The set of
partitions {Pi,.., Px} is called r—admissible with respect to partition Pp if there
exists a set {Pg41,..., Pr} of two-block partitions, such that

P10....Pk.Pk+1....OP,-SPF

and there exists no set of r—k—1 two-block partitions which meets this requirement.

The r—admissibility has the following interpretation. If a set of partitions
{P1,...,Py} is r-admissible, then there exists a serial decomposition of F in
which component H has r inputs: k primary inputs corresponding to input
variables which induce {Pi,..., Py} and r —k inputs being outputs of G. Thus, to
find a decomposition of F in which component H has r inputs, we must find a
set of input variables which induces an r—admissible set of input partitions.

To formulate a simple condition that can be used to check whether or not a given
set of partitions is r—admissible, we introduce the concept of a quotient partition.

Let 7 be a partition and o be an r-partition, such that 7 > o. In a quotient
partition of 7 over o, denoted r|o, each block of 7 is divided into a minimum
number of elements being (not necessarily disjoint) blocks of &.

For example, if
oc=(1; 2,6; 3,6; 5,7; 4,5), r=(1,2,3,6; 4,5,7)
then, we have quotient partition 7|o:

Tlo = ((1)(2,6)(3,6); (5,7)(4,5))

132 T. Luba and R. Lasocki

The following theorem can be applied to check whether or not a set of input partitions
is r—admissible.

Theorem 2. For partitions o and T, such that o < 7, let 7|0 denote the
quotient partition and n(r|o) the number of elements in the largest block of T|o. Let
e(r|o) denote the smallest integer equal to or larger than log, n(tl|o), i.e. e(7]o) =
Mog, n(r|e)]. Let I be the product of partitions Py,..., Py and Ilp = Il e Pp.
Then, {Pi,..., P} is r—admissible in relation to Pp, with r =k + e(I|IIF). |

Proof. Let us modify II|Il e Pr so that the elements in each block of the resulting
quotient partition are disjoint. By the definition of a quotient partition, each element
of every block of the modified II|Ile Pr is included in one or the other block of Pp.
Let us construct a partition II' in such a way that, for each block of the modified
II|II P, its elements are placed in different blocks of II'. It can easily be seen that
partition II’ with n(II|ILe Pr) blocks can be constructed. For such a partition I,
we have I oI’ < Pr. As each g-block partition can be represented as a product of
[log, ¢] two-block partitions (Hartmanis and Stearns, 1966), we obtain

MePje..eP, <Pr

where Pj, ..., P!, s = [log,n(II|ll e Pr)], are two-block partitions, which completes
the proof.

Example 3. The following set of partitions on M = {1,...,15} represents the
function F of three two—valued variables, i, z3, 4, and one four-valued variable,
z3, as shown in Table 4.

P, =(1,2,3,4,5,6,7; 8,9,10,11,12,13,14,15)
P, =(1,2,3,13,14,15; 4,5,6,7,8,9,10,11,12)
Ps=(1,7,8,13; 2,3,9,14,15; 4,5,10; 6,11,12)
P, =(1,3,4,6,7,8,9,10,12,15; 2,5,11,13,14)
Pr =(1,8,9,14; 2,6,8,12,14; 3,6,12,14; 3, 10,14, 15;
4,8,11,12; 5,7,8,13)
By examining the admissibility of {P;} we obtain
P e Pr = (1; 8,9;14; 8,12,14; 5,7; 8,13; 2,6; 4; 8,11,12; 3,6; 10,14,15)
P[Py e Pr = ((1)(2,6)(3,6)(4)(5,7); (8,13)(8,9,14)(10,14,15)(8,11, 12))

Hence, r =14 [log,5] =4, i.e. {P,} is 4-admissible.

decomposition of multiple-valued boolean functions 133

Tab. 4. Function F from Example 4.

Ty X2 T3 Tyq Y1 Y2 Y3
1{0 0 0 o]0 0 0
210 0 1 110 1 0
310 0 1 0] 1 - 0
410 1 2 0|0 1 1
500 1 2 1 0 0 1
6| 0 1 3 0| - 1 0
710 1 0 o]0 0 1
8] 1 1 0 0 o - -
9/ 1 1 1 0] 0 0 0

)1 1 2 0 1 0 0
1m|y 1 1 3 1 0 11
1201 1 3 0| - 1 -
13/ 1 0 0 110 o0 1
401 0 1 1 | - - 0
501 0 1 0 1 0 0

Also, as

Py e P3| Py e Pye Pp = ((1)(7); (8,13); (2)(3); (9,14)(14,15); (4)(5);
(10); (6); (11)(12))

{P;, P3s} is 4-admissible. Similarly, we can show that {Ps, P4} is 4-admissible.
Therefore, F = H(z1,z3, Gi(z2,24,C1)) with C1 C {zy,z3} or F =
H(z3,z4,G2(z1, 22,C3)) with Cy C {z3, 24}, where both G; and G, are single-
output functions.

3.3. The Compatibility Relation

Using the r—admissibility test, we can find a suitable set of input variables for com-
ponent H. To find the corresponding set of inputs for component G, we have to
find P(BUC), such that there exists IIg > P(BUC) that satisfies condition (2) in
Theorem 1. To solve this problem, consider a subset of primary inputs, BU C, and
the g-block partition P(BUC) = (By, By, ..., By) generated by this subset.

A relation of compatibility of partition blocks is used to verify whether or not
partition P(B U C) is suitable for the decomposition.

Two blocks B;, B; € P(BUC) are compatible iff partition P;;(BUC) obtained
from partition P(BUC) by merging blocks B; and B; into a single block satisfies
condition (4) in Theorem 1, i.e. iff

P(A)e P;;(BUC) < Pp (5)

134 T. Luba and R. Lasocki

A subset ‘of partition blocks ina P(BUC) is a compatible classiff all blocks in this
subset are pairwise compatible. A compatible class is called a Mazimal Compatible
Class (MCC) iff it is not included in any other compatible class.

To obtain Hg, we first find all MCCs and then find a minimum cover of the set
of all blocks of P(BUC) by MCCs. Partition Ilg is formed by merging blocks in
each MCC in this miniimal cover and making the resulting blocks disjoint.

Partition IIg represents function G corresponding to the assumed set C (set
B is obtained from the admissibility test). In particular, the number of blocks in
g, |Hg|, determines the number of outputs of G,mg.

For P(BUC) to be suitable for the decomposition we must have mg equal to
the number of outputs of G obtained from the admissibility test, i.e. mg =r —k.

If this condition is not satisfied, then P(B UC) is not suitable for the decom-
position and another C, possibly including more variables, must be tried.

Once an appropriate set C and the corresponding partition IIg are found, the
truth table description of functions G and H can be easily derived from P(4), Mg,
and Pp. ' '

Example 4. For the function of Example 3, let A = {23}, B = {21,22,24} and
C = 0. Then,

P(A) = (1,7,8,13; 2,3,9,14,15; 4,5,10; 6,11,12)

and

P(BUC) =(1,3; 2; 4,6,7; 5 8,9,10,12; 11; 13,14; 15)
Let us check if B; = {1,3} and B, = {2} are compatible. We have

P12(BUC) =(1,2,3; 4,6,7; 5; 8,9,10,12; 11; 13,14; 15)
As

P(A) e P(BUC) = (1; 2,3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15)
does not satisfy

P(A)» Pias(BUC) < P

B; and B; are not compatible.
For B, ={1,3} and B4 = {5}, we obtain

Pis(BUC) =(1,3,5; 2; 4,6,7; 8,9,10,12; 11; 13,14; 15)
and

P(A) e P4(BUC) =(1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15) < Pp

decomposition of multiple-valued boolean functions 135

Thus, B; and By are compatible. In a similar way we check the compatibility rela-
tion for each pair of blocks in P(BUC) and subsequently find Maximal Compatible
Classes:

MCC1 = {By, Bs, B7, Bs}
MCC2 = {By, B4, Bs, Bs}
MCC3 = {Ba, Bs, Bs, Bz}
MCC4 = {Bs, By, Bs}
MCC5 = {B,, B3, B;}
MCC6 = {Bs, Br}

For the above obtained MCCs, one of the minimal covers is {{Bj, Ba, Bg, Bs},
{Bs, Bs, B7}, {Bs, B7}}, and the corresponding Il is

Mg = (1,3,5,11,15; 2,4,6,7; 8,9,10,12, 13, 14).

We can easily see that s corresponds to a 2-output function G. As the admis-
sibility of A = {z3,z4}, r(A) = 4, the number of outputs of G required by the
admissibility test is 2 and the above Il satisfies this requirement.

Thus

F = H{z3, G(z1, 22, 24))

where G is a 2-output function.

3.4. The Algorithm

The algorithm for functional decomposition based on the presented theory is summa-
rized below. The algorithm first determines the input variable sets A and B for
components G and H using the r—admissibility criterion. Next, for an assumed set
C, it calculates the maximal compatibility classes for the blocks of partition P(BUC)
and a minimal cover of the compatibility classes. The number of blocks in that cover
is equal to the number of outputs of component G. If the number of outputs of G
is consistent with the result of the r—admissibility test, then the solution is found, if
not, another set C' is tried. In the first run of the decomposer, we check the existence
of a disjoint decomposition by assuming C = 0. If such a decomposition does not
exist, we add variables to C until the decomposition existence criteria are satisfied.

4. Experimental Results

Decomposition algorithm presented in this paper has been implemented for MS-DOS
and HP-UX operating systems. For testing purposes we were using a large set of
benchmark examples. However, most of them were binary examples so a proper
translation was necessary. It usually meant pairing binary variables into 4-valued
variables, as PLA with two-bit input decoders was our target. Several results are
presented in Table 5. '

136 T. Luba and R. Lasocki

Tab. 5. Decomposition results for benchmark examples.

Area after Profit rate
Name Or[gcl)xzajl area decfgn;[]))(?lsxtlon (1- %) 100%
z9sym | 1045 475 54%
rd84 1620 660 59%
life 798 369 54%
td53 234 180 23%
test4 4830 3524 27%
z4 720 556 23%
ard4 3360 1585 53%

The Table provides PLA area of the original example minimized using ESPRESSO~-
MV (Brayton et al., 1984) logic minimizer and the total PLA area of the decomposed
and then minimized example. To calculate these values we applied the following
formula:

AREA = (Z vk + [log, vo]) oP (6)

ir€l

where I is the set of input variables, vz — the number of values of input variable
ik, Vo — the number of output values, and P — the number of product terms.

3. Conclusions

We have presented a general method for decomposition of incompletely specified
multiple-valued Boolean functions. Our approach is based on the original repre-
sentation of an incompletely specified Boolean function by a set of r—partitions and
the corresponding calculus.

Based on the decomposition algorithms presented here, we have developed a
prototype version of a logic synthesis system. In this system, the functional decom-
position is always carried out at the very beginning of the design process, when the
existing don’t care conditions can be effectively exploited to minimize the complexity
of the resulting components. The system has been used to design several circuits
implemented with PLAs, and PLDs.

The presented decomposition procedures are very general. The user can arbitra-
rily specify the maximum number of inputs and maximum number of outputs required
for-all the components of a function to be decomposed. Alternatively, the designer
can interactively control the decomposition process by selecting, for each iteration of
the decomposition, the component of the partially decomposed function to be dealt
with and the type of decomposition. The maximum acceptable number of inputs,
outputs, and cubes (if the minimization procedure is included) for the resulting sub-
functions can also be specified. In this way, our decomposition procedure combined, if

decomposition of multiple-valued boolean functions 137

necessary, with an appropriate minimization procedure allows the designer to examine
several alternative solutions. In particular, it makes it possible to compare different
implementation styles, e.g., standard PLA vs. PLA with two-bit decoders, and select
the one which is most suitable for a given project. This means that the presented
algorithms can form a basis for the development of a general decomposition-based
synthesis tool which would accept a set of design constraints and decompose a given
function so that to meet those constraints.

References

Ashenhurst R.L. (1959): The decomposition of switching functions. — Proc. Int. Symp.
Theory of Switching Functions.

Brayton R.K., G.D. Hachtel, C.T. McMullen and A. Sangiovanni-Vincentelli (1984): Logic
Minimization Algorithms for VLSI Synthestis. — Kluwer Academic Publishers.

Brayton R.K., G. Hachtel and A. Sangiovanni-Vincentelli (1990): Multilevel logic synthesis.
— Proc. IEEE, v.78, No.2, pp.264-300.

Bolton M. (1990): Digital Systems Design with Programmable Logic.. — Wokingham:
Addison-Wesley Publishing Company.

Ciesielski M. and S. Yang (1992): PLADE: A two stage PLA decomposition. — IEEE
Trans. on CAD, v.11, No.8, pp.943-954.

Curtis H.A. (1962): A New Approach to the Design of Switching Circuits. — Princeton,
N.J: D. Van Nostrand Company.

Devadas S., A.R. Wang, A.R. Newton and A. Sangiovanni-Vincentelli (1988): Boolean
decomposition in multi-level logic optimization. — Proc. Int. Conf. Computer-Aided
Design, pp.290-293.

Dresig F., Ph. Lanches, O. Rettig and U.G. Baitinger (1992): Functional decomposition for
universal logic cells using substitution. — Proc. European Conf. Design Automation,
Brussels, Belgium, pp.38-42.

Hartmanis J. and R.E. Stearns (1966): Algebraic Structure Theory of Sequential Machines.
— New York: Prentice-Hall.

Hurst S.L., D.M. Miller and J.C. Muzio (1985): Spectral Techniques in Digital Logic. —
New York: Academic Press.

Jézwiak L. and F. Volf (1992): An efficient method for decomposition of multiple—output
boolean functions and assigned sequential machines. — Proc. European Conf. Design
Automation, Brussels, Belgium, pp.114-122.

Luba T, J. Kalinowski, K. Jasifiski and A. Krasniewski (1991): Combining serial decompo-
sttion with topological partitioning for effective multi-level PLA implementations. —
In: P. Michel and G. Saucier (Eds.), Logic and Architecture Synthesis, pp.243-252,
Amsterdam: Elsevier Science Publishers B.V. (North-Holland).

Luba T., J. Kalinowski and K. Jasiniski (1991): PLATO: A CAD tool for logic synthesis
based on decomposition. — Proc. European Conf. Design Automation, Amsterdam,
The Netherlands, pp.65-69.

Luba T., M. Markowski and B. Zbierzchowski (1992): Logic decomposition for programmable
gate arrays. — Proc. Furo—Asic’92, Paris, France, pp.19-24.

138 T. Luba and R. Lasocki

Luba T. and J. Rybnik (1992): Rough sets and some aspects in logic synthesis. — In: R.
Stowinski (Ed.), Intelligent Decision Support — Handbook of Application and Advances
of the Rough Sets Theory, Dordrecht: Kluwer Academic Publishers.

Luba T., K. Gérski and L.B. Wrotiski (1992): ROM-based finite state machines with PLA
address modifiers. — Proc. European Conf. Design Automation, Hamburg, Germany,
pp-272-277.

Muzio J.C. and T.C. Wesselkamper (1986): Multiple-valued Switching Theory. — Bristol
and Boston: Adam Hilger Ltd.

Pawlak Z. (1991): Rough Sets. Theoretical Aspects of Reasoning about Data. — Dordrecht:
Kluwer Academic Publishers.

Rudell R.L. and A. Sangiovanni-Vincentelli (1987): Multiple-valued minimization for PLA
optimization . — IEEE Trans. Computer—Aided Design, v.6, No.5, pp.727-750.

Sasao T. (1984): Input variable assignment and output phase optimization of PLA’s. —
JEEE Trans Comput., v.C-33, No.10, pp.879-894.

Sasao T. (1988): Multiple-valued logic and optimization of programmable logic arrays. —
IEEE Computer, v.21, pp.71-80.

Saucier G., P. Sicard and L. Bouchet (1990): Multi-level synthesis on PALs. — Proc.
European Conf. Design Automation, Glasgow, U.K., pp.542-546.

Wan W. and M.A. Perkowski (1992): A new approach to the decomposition of incompletely
specified multi-output function based on graph coloring and local transformations and
its application to FPGA mapping. — Proc. European Conf. Design Autcmation,
Hamburg, Germany, pp.230-235.

Received March 19, 1993

