Appl. Math. and Comp. Sci., 1991, vol.1, No.1, 19-29 19

A FLEXIBLE APPROACH TO
TRANSACTION MANAGEMENT IN
DISTRIBUTED, MULTIMEDIA SYSTEMS

M. BeEaTriZ F. DE ToLEDO, GORDON S. BLAIR*

This paper discusses the potential impact of multimedia on one classic
distributed systems problem — the provision of transaction mechanisms
to support fault tolerance and concurrency control. Several features
of distributed multimedia sytems are highlighted: the real-time requ-
irements of continuous media types, the cooperative styles of working
and the engineering requirements across the range of media types. It
is argued that, given these demands, multimedia will require a more
flexible approach to transaction management. A framework for flexi-
ble transaction management is described. This framework is based on
the ANSA architecture and allows applications to specify particular
policies for concurrency control, recovery and real-time behaviour.

1. Introduction

The emergence of multimedia has provided a great stimulus to distributed
systems research. Many of the traditional problems of distributed systems
are made considerably more difficult with the introduction of multimedia
services. This paper discusses the potential impact of multimedia on one
classic distributed systems problem, namely the provision of transaction
mechanisms to support fault tolerance and concurrency control.

The traditional approach to transactions is to provide specific mechani-
sms to deal with the issues of synchronization and recovery. In such systems,
the algorithms for synchronization and recovery tend to be fixed by the sy-
stems and hence they suffer from a lack of flexibility. However, as transac-
tions started to be used in other environments, a revision in this traditional
model became necessary. In particular, for multimedia environments where
applications can have widely different requirements, a more flexible model
is required.

*Distributed Multimedia Research Group, Computing Department, Lancaster Univer-
sity, Bailrigg Lancaster LA1 4YR U. K.

20 M.B.F. de Toledo and G.S. Blair

A new flexible model for transaction management is proposed; this ap-
proach gives applications more control on transaction management enabling
them to state policies for services such as synchronization and recovery. The
model also provides facilities to deal with real-time transactions (a vital con-
cern in multimedia computing).

The paper is structured as follows. Section 2 traces the emergence of
distributed multimedia computing. This is followed by section 3 with a
commentary on the various styles of multimedia information. Section 4 then
discusses the impact of multimedia on the field transaction management.
Section 5 proposes a new model for transaction management with the aim
of achieving the flexibility required by multimedia applications. A simple
example of use of transaction services is presented in section 6. Finally,
section 7 makes some concluding remarks.

2. The Emergence of Distributed Multimedia Computing

Distributed systems have been one of the major growth areas in computing
over the past decade. This interest can be attributed to two factors:

Enterprise Demands

Most medium and large scale organisations are distributed, with ma-
nagement, equipment, skilled personnel and administration spread across
a number of geographically dispersed sites. Therefore, they have a great
interest in techniques to integrate their computing and communications in-
frastructures and allow network wide access to company resources.

Technology Developments

Both computer and communications technology have advanced conside-
rably over the past decade. It is now economically feasible to have a large
number of workstations spread across a large organisation. In addition, it is
possible to connect such computer facilities with high speed local area and
wide area digital communications systems.

As a consequence, there has been considerable research and development
in distributed systems both in industry and in academia. Recently howe-
ver the new field of distributed, multimedia systems has emerged. Again,
this can be seen as a natural development resulting from demands from
industry/commerce and new technological developments.

From above, there is a realisation that facilities such as electronic mail
and remote access to computing services are not enough. Industry and

A flexible approach to transaction management... 21

commerce are looking for more sophisticated communications services such
as voice, image and video in addition to traditional text based services.
From below, technological developments are starting to make distributed,
multimedia systems feasible. For example, local area network technologies
such as FDDI (Heywood and Greenfiel, 1990) and the fast Cambridge Ring
are now being developed. In addition, wide area Integrated Service Digital
Networks (ISDN) (Ludwig, 1989) are becoming available.

3. What is Multimedia?

Multimedia comprises information such as audio and image, in addition to
traditional data such as text.- A fully fledged system is then one which can
store, transmit and manipulate the various media types. In more detail, the
following media types can be identified:

text

raster graphics

vector graphics

audio

video (moving raster)

animation (moving vector)

The latter three categories are particulary interesting and are generally
refered to collectively as continuous media types to reflect the fact that they
can continue over a period of time (Anderson et al., 1990). Continuous
media therefore make specific real-time demands of the underlying system
infrastructure. For example, a network must guarantee to deliver audio at
a particular rate for the quality to be acceptable.

One of the key challenges of multimedia is to achieve integration of the
various media types. This is particularly difficult given the wide range of
characteristics of each of the media types listed above. This makes the pro-
blem of managing multimedia information in a distributed system extremely
difficult. This is our prime motivation in seeking more flexible management
strategies for distributed multimedia computing.

4. The Impact of Multimedia on Transactions

Transaction mechanisms have traditionally been concerned with the main-
tenance of the consistency of a group of objects in spite of concurrent access
and the possibility of partial failure of parts of the system. A wide range
of techniques (two-phase locking, timestamps, logs, versions, etc) have been
developed to assist in this task. The original model provides integrated,

22 M.B.F. de Toledo and G.S. Blair

fized mechanisms to treat concurrency control and recovery and thus gua-
rantees the properties of serializability and atomicity. For the traditional
model refer to (Bernstein and Goodman, 1981; Ceri and Pelagatti, 1984;
Eswaran et. al., 1976). ‘

More recently however there has been greater interest in less rigid tech-
niques which are more geared towards the semantics of the application do-
main and hence tailored towards the cooperative nature of the task. This is
having a major impact on the design of transaction mechanisms with tech-
niques such as non-serializable transactions starting to appear (Skarra and
Zdonik, 1989). Multimedia systems will require other alternative designs for
transaction services.

The main factors which influence the design of a transaction mechanisms
are discussed below:

i) real-time requirements of multimedia

It is common for multimedia services to have stringent real-time requi-
rements. This is particularly true for continuous media types (as discussed
above). It is already recognised that real-time requirements can severely
affect transaction mechanisms. For example, transaction aborts or delays
through locking can prejudice the required real-time behaviour of an inte-
raction. Similarly, it is often not possible to recover in the conventional sense
from a real-time transaction because of the real world interactions involved.
Transaction mechanisms are therefore required which cater for a variety of
real-time constraints in a distributed environment.

ii) cooperative modes of work

Computer Supported Cooperative Work (CSCW) is emerging as a major
topic in distributed, multimedia computing (Rodden and Blair, 1991). In
CSCW, emphasis is placed on support for the cooperative nature of the task
rather than on the control of competitive access to resources (Bancilhon et.
al., 1985; Bannon and Shmidt, 1989; Fernandez and Zdonik, 1989). This
inevitably effects the design of transaction mechanisms. Hard locks are now
seen as inappropriate for many classes of interaction; alternative synchro-
nisation mechanisms based on soft locks or version histories are preferred.
- Such developments will lead to synchronisation mechanisms more closely
geared toward ‘floor passing strategies’ or ‘joint editing metaphors’ as fo-
und in CSCW applications. It is important for developers of distributed,
multimedia infrastructures to be aware of these trends.

A flexible approach to transaction management... 23

iii) dealing with variety

The key characteristic of multimedia computing is that a range of services
with widely differing characteristic can co—exist in a single system. A typical
multimedia system is a very rich environment with many dimensions. For
example, a system may have a high performance audio-visual store, a range
of sound and vision devices and a spectrum of communications protocols
to carry the various forms of multimedia traffic. In contrast, a traditional
distributed system has a fairly small number of storage services, communica-
tion services and devices. This variation in services has major consequences
for the management of a distributed system.

Distributed systems in the future will have to cater for at least some
aspects of multimedia computing. Therefore it is important to address the
issues raised by the above problems. Inevitably this will mean a major
change to the design of transactions. In our estimation, more flexible ma-
nagement should replace the rigidity of traditional transactions. More spe-
cifically, it will be necessary to tailor particular transaction mechanisms for
the requirements of given classes of application. As highlighted above, it
is also necessary to cater for real-time requirements within the transaction
framework.

5. Towards Flexible Transactions
5.1. Background

The framework for transaction management was designed in the context of
related research in the Distributed Multimedia Research Group, Lancaster
University. The main goal of this research is to develop a distributed systems
infrastructure to support interactive multimedia applications.

The approach taken in the research is to extend an existing distributed
systems platform, namely the ANSA testbench, to cater for multimedia. The
ANSA testbench is an experimental system designed for Open Distributed
Processing (ODP). To cater for heterogeneity, the ANSA testbench layers a
platform on top of the host environment providing a unified abstraction of
the underlying system.

The testbench is based on the client-server model of distributed proces-
sing. More specifically, all services are treated uniformly as objects accessible
through one or more interfaces. An interface describes the operations defi-
ned on an object, the parameters and results of operations, and a range of
properties associated with the object, e. g. levels of distribution transpa-
rency. The testbench also provides a system trader which acts as a registry

24 M.B.F. de Toledo and G.S. Blair

of available services. Clients wishing to access a service must import an ob-
Ject interface by specifying a set of requirements in terms of operations and
properties. The role of the trader is to choose a suitable candidate among
the registered services. Once an interface has been selected, the system must
bind the requester object to the object implementing the service and thus
allowing operations to be invoked. In the ANSA testbench, this binding is
provided by the remote procedure call protocol, REX.

Research at Lancaster has made a number of extensions to the ANSA
testbench to support multimedia (Blair et al., 1991). Firstly, it was neces-
sary to implement key multimedia services, requiring real-time response,
on a separate multimedia network interface (Ball et al., 1990). Secondly,
the basic architecture was extended to include streams as abstractions for
high speed isochronous protocols and a more flezible approach to trading
to accommodate multimedia services (MaCartney and Blair, 1990). With
respect to distributed management, it was necessary to provide a more fle-
- xible framework suitable for applications with different requirements. The

main features of this management framework are described in the following
section.

5.2. A Model for Flexible Transaction Management
5.2.1. General .Approach
The main features of the transaction model are described below:

Support for Real-Time

Traditionally, transactions deal with two separate but closely related is-
sues, namely synchronization and recovery. This is extended in our model
to include real-time. The issue of real-time transactions is vast and com-
plex. We focus on one particular aspect of real-time, i.e. the guarantee of
resources to achieve the necessary performance. This is seen as analogous
to the guarantee of serializability to achieve correct concurrent behaviour.
Thus, the model supports operations to gain and release resources to mirror
operations to gain and release locks. '

Separation of Mechanism and Policy

The problem with existing transaction mechanisms is that management re-
sponsibility is completely delegated to the underlying system. This means
that the system is responsible for making policy decisions. The key to our
approach is to separate out policy from the mechanisms required to support

A flexible approach to transaction management... 25

the policy. In particular, objects support mechanisms to achieve concur-
rency control, recovery and real-time guarantees. The exact policy stating
how to use these mechanisms is provided by higher levels of authority.

Co—existence of Different Approaches

To increase the level of flexibility, objects can use a variety of mechanisms to
achieve concurrency control, recovery and real-time guarantees. For exam-
ple, it is possible for some objects to use locking algorithms whereas others
adopt timestamp approaches. Similarly, recovery techniques based on log-
ging can co-exist with techniques based on shadows. In order to achieve this
generalisation, all objects must provide a generic interface mapping on to
the range of possible mechanisms. Such an interface has been defined for the
three areas, e. g. for locking the operations are request_access_permission
and release_access_permission. These operations can clearly be implemen-
ted in a variety of ways.

5.2.2. Incorporating Flexible Transactions in ANSA

In order to support generic objects, the ANSA notion of a factory was exten-
ded. Factoriesin ANSA (ANSA, 1990) are used to create instances of objects
of a given type. To cater for different choices of mechanisms, factories are
parameterised. The same factory is now able to create objects with different
characteristics depending on the parameters given. A parameter expresses
a creation policy for a service and thus determines which mechanisms im-
plementing this service are to be linked to the created object. For example,
the support environment may provide locking and optimistic concurrency
control mechanisms; according to the specified policy (pessimistic or opti-
mistic concurrency control), one of the mechanisms is linked to the created
object.

Parameterised factories support the creation of individual objects with
a variety of characteristics. This is one level of flexibility provided by the
model. A second level of flexibility is provided by the approach to trans-
action management (across a group of objects). Applications have a cho-
ice in the way they access objects. In particular, they can opt for either
transparency in dealing with concurrency, recovery and real-time issues or
non-transparency.

For non-transparency, the application itself is responsible for managing
the required objects. The application must therefore invoke the various
operations for concurrency, recovery and real-time directly. For example,
the application would have to manage locks correctly.

26 o ‘ M.B.F. de Toledo and G.S. Blair

Non~transparency imposes a considerable burden on applications. The-
refore, application writers may decide to opt for transparency. In this case,
a management policy may also be specified. This can be used, for example,
to state if the application requires serializability or recovery. It is important
that this policy statement is compatiﬁle with the creation policies of the
objects participating in the transaction.
~ If transparency is selected, a transaction manager is created by a fac-
tory (as any object in the system). In this case, the parameters specified at
creation time express the management policies for the transaction and are
~ meant to force constraints on the objects involved in the transaction. Every
time a new object joins a transaction, a consistency check must be made
between the characteristics of an object and the policy of the transaction;

the application is only allowed to proceed if there is no incompatibility. The
~ interface for the transaction manager object consists of operations for trans-
action cortrol such as begin transaction, end transaction, abort, checkpoint
and also reserve a group of resources if real-time control is necessary. The
transaction manager will be responsible for invoking the appropriate opera-
tions on underlying objects, thus removing this management burden from
applications.

6. Transaction Services — an example of use

Applications rely on services exported to the trader for transaction manage-
ment. As mentioned in previous sections, services are related with concur-
“rency control, storage and real-time. In addition to these services, factories
for creating reliable objects and transaction managers are provided.
If an application is interested in transparent transaction management, it
must import the Transaction Factory for creating a transaction manager.
The import is done through a prepc (ANSA, 1990) statement:

! itf <~ ANSAImport (”TransFactdry”, context, constraints)
and then a transaction manager can be created by invocating the Transac-
tion Factory create operation. The create operation will return an interface
reference to the created transaction manager.

' {itm} <~ itf$create (policies for transaction management)

Once the transaction manager is ereated the transaction is initiated by
the begin operation and terminated by either end (if successful - objects are

A flexible approach to transaction management... 27

updated) or abort (updates are discarded). With'rﬁ the transaction, objects
may be created and operations invocated on them. The execute operation
tests conflicts (in case of pessimistic concurrency control) and invocates the
specified operation on a given object. '

' {} <-itm$begin()

! irf <~ ANSAImport (”ReliableFactory”, context, constrains)
! {01} <—irf$create (policies for services, type;)

! {02} <- irf$create (policies for services, type;)

! {result;} <- itm$execute (opo1, 01)

! {result;} <- itm$execute (op,z, 02)

' {} <—itm$end()

In case an application does not choose transaction management transpa-
rency; it will have to invoke operations for concurrency control and storage
itself.

7. Concluding Remarks

This paper discusses the characteristics and requirements of multimedia sy-
stems which affect transaction management. It is argued that these require-
ments demand a revision of the traditional model in order to achieve more
flexibility. ’

With this aim, a new model for transaction management is proposed.
In this model, applications have more control over transaction management
through the specification of policies for concurrency control and recovery. In
addition, real-time issues are dealt with under the umbrella of transaction
management.

In brief, the design of the framework for transaction management is ma-
inly concerned with achieving more flexibility through the separation of
policies and mechanisms, the independence of the supported objects, the
provision of se’eral mechanisms in the implementation of objects and also
with the possibility of choice between transparency or non—transparency for
transaction management.

28 M.B.F. de Toledo and G.S. Blair

Work on flexible transaction management is continuing with an examina-
tion of the policies required in the model and also the constraints a transac-
tion can impose on its participating objects. The generic interfaces for ob-
jects and transaction managers have already being defined. Implementation
work is about to be started. In particular, a prototype is being developed
on the extended ANSA platform developed at Lancaster.

References

Anderson D.P., Tzou S.Y., Wahbe F., Govindan R. and Andrews M.
(1990): Support for continuous media in the DASH system.— Proc. of the
10th Int. Conf. on DISTRIBUTED COMPUTING SYSTEMS, Paris.

ANSA (1989): ANSA Reference Manual, Release 01.00.— APM Ltd., Cambridge,
U. K., March. ‘

ANSA (1990): DPL Programmer’s Manual.— APM Ltd., Cambridge, U. K.

Ball F., Hutchison D., Scott A. and Shepherd D. (1990): A Multimedia
Network Interface (MNI).~ 3rd IEEE COMSOC Int. Multimedia Workshop,
Bordeaux, France.

Bancilhon F., Kim W. and Korth H. (1985): A model of CAD Transactions.—
Proc. of the 11th Int. Conf. on VLDB, Stockholm.

Bannon L. and Schmidt K. (1989): CSCW: Four characters in search of
contezt.— Proc. of EC-CSCW, Gatwick Hilton, 1989.

Bernstein P.A. and Goodman N. (1981): Concurrency control in distributed
database systems— ACM Computer Surveys, v.13, No.12.

Blair G.B., Coulson G., Davies N. and Williams N. (1991): Incorporating

multimedia in distributed open systems.— Proc. of EurOpen’9l, Tromsoe,
Norway.

Ceri S. and Pelagatti G. (1984): Distributed Databases—Principles and
Systems.— New York: McGraw Hill.

Ellis C.A., Gibbs S.J. and Rein G.L. (1991): Groupware- Some issues and
ezperiences.— Comm. ACM, v.34, No.1.

Eswaran K., Gray J., Lorie R. and Traiger L. (1976): The notion of consi-
stency and predicate locks in a database system.— Comm. ACM, v.19, No.11.

Fernandez M. and Zdonik S. (1989): Transaction groups: A model for con-
trolling cooperative transactions.— Workshop on Persistent Object Systems:
Their Design, Implementation and Use.

A flexible approach to transaction management... 29

Heywoood P. and Greenfiel D. (1990): FDDI: Just Say Not Yet— Data Com-
munications International.

Ludwig L.F. (1989): Multimedia in ISDN and BISDN: A Paradigm shift driven

by evolving user technology and applications.— Bellcore Digest of Technical
Information.

MaCartney A. and Blair G.S. (1990): Flezible trading in distributed multime-
dia systems.— Computer Networks and ISDN Systems, (submitted to print).

Rodden T. and Blair G.S. (1991): CSCW and distributed systems: the pro-
blem of control— Proc. of the European Conf. on Computer Supported
Cooperative Work (ECSCW’91), Amsterdam.

Skarra A. and Zdonik S. (1989): Concurrency control and object-oriented
databases.— Object—Oriented Concepts, Databases and Applications, (Ed:
Kim W., Lochovsky F.H.).— ACM Press Frontier Series, Addison—Wesley.

