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PARTIAL AND TOTAL RELATIVE
CORRECTNESS FOR ANALYSIS
OF REAL-TIME SYSTEMS

ToMASZ SzMuc*

This paper is a continuation of the former works dealing with the
correctness verification of concurrent systems. The correctness in the
sense of criterion (relative correctness) is a basic notion in these in-
vestigations. Two classes of the problem: partial and total relative
correctness are considered. Formal tools and conception of computer
support for the correctness verification are developed.

1. Introduction

Relative correctness is a relation between verified process (sequential descrip-
tion of verified system) and criterion process (specification of correctness
requirements). In the processes algebra area the introduced partial correct-
ness corresponds to the macro—homomorphism (Szmuc, 1986; 1989a; 1985b)
from the verified process to the criterion one, while the total correctness
corresponds to the macro—~endomorphism. On the other hand, these notions
may be treated as generalizations of partial and total correctness which are
defined for sequential programs. Moreover, strong analogies between safety
and liveness properties (Manna and Pnueli, 1974) may be observed.

2. Partial and Total Relative Correctness

The notation used in this paper was introduced in the former works by the
author. For any relation T C X x Y the domain (range) of the relation is
denoted by Dom T (Ran T'). If T is the relation defined above, then for any
zeX: T(z)={y]|(z,y) € T}.

For any subset A C X, the image of the subset is denoted by T'(A) =
Uzea T(2). This operation is extended for the empty set, i.e. : T(§) = 0.
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Sequential nondeterministic process (Bartol et al., 1977; Pawlak, 1969)
is a generalization of automata notion. This process is the fundamental
notion in the corresponding algebra (Szmuc, 1986; 1989a; 1989b), which is
a language for the correctness considerations.

- Definition 1. By a process we mean a relational structure P = (S,B,F,T),
where § is a countable set of states, B C S is a set of initial states, ' C §
is a set of final states, T C § x 9 is a transition relation, and the following
condition is satisfied:

BC DomT and FN DomT =0. m

Any sequence of n(n > 1) states of process P, sc(s1,-) = Y(s1, ...)is called
semicomputation iff any of the two successive (in the sequence) elements
8i,8i41 are in the relation, (s;, si+1) € T. The set of all elements which are
in semicomputation sc is denoted by ¢(sc). Any semicomputation sc(sy,-)
such that s; € B is called computation iff the semicomputation ends in a
state that belongs to F.

The relative correctness is defined for a verified process (describing con-
current system) and correctness criterion, which consists of criterion process
and correctness relation. This relation connects selected (so—called charac-
teristic) states in the verified process with the corresponding states in the
criterion process. The correctness may be interpreted as a convergence be-
tween verified system (exact description) and its specification (rough model).
The correctness definitions will start from the same auxiliary notions as used
in (Szmuc, 1989a; 1989b).

Let P = (S,B,F,T), P' =(5,B',F',T') be processes and k cCSxS
a relation. For every pair (s,s') € k we define:

— lower semicomputation referring to the pair — such a semicomputation
s¢(s,-) that the following condition is satisfied:

(Vs1 € p(se(s,))) (Vsh € k(s1)) (5',87) ¢ T";

~ upper semicomputation referring to the pair — such a semicomputation
sc(+,8) that the below condition is satisfied:

(Vso € @(se(5)) (Vsh € k(s0)) (558 ¢ T".

A set of lower semicomputations referring to a pair (s,8") € k is denoted
by §L(s,s'), while the set of the upper ones by SU(s,s"). The generalizations

1Symbol” ” means any.
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referring to subsets X C .S and Y C 5’ are defined:

SLX,Y)= |J SL(s,¢) and SUX,Y)= |J SU(s,s).2
s€X, s'eY seX, s'eY

We additionally introduce closures of the sets:

SL(s0,5") = {(50)} U {s¢(50, ) | 5¢(50,5n-1) € SL(so,s')};
SL(8n,8") = {(sn)} U {sc(50,8n) | 5¢(51,8) € SU(85,5")}, see [12,13].

The generalizations referring to subsets of the sets, .9,.5' may be corre-
spondingly transformed to the closures defined above. In the case when
argument is a maximal set will be denoted by "*”, e.g. SU(B,*).

Definition 2. Let P = (5,B,F,T), P! = (5',B', F',T') be processes and
k C §x S’ arelation. We say that process P is partially correct in the sense
of the correctness criterion (P’ k) iff the following conditions are satisfied:

1. SU(B,*) = SU(B, B');
2. SL(F*) = SL(F, F');

3. for any s;, € Ran kN Ran T”, there exist states sg, sn, sy such that
so € T'"Y(s!,) and the condition is satisfied:

SL(s0,8' YN SU(5,5,)#0. =

It is easy to notice, that the above mentioned definition is equivalent to
the one, introduced in the former works (Szmuc, 1986; 1988; 1989a; 1989b),
however the form seems to be simpler and more clear. ‘

Let us assume that P, P’ considered in any correctness problem are finite,
and may be specified by sets of computations (Szmuc, 1986; 1989b). The
latter property means, that if any computation (in any process) is finite then
it ends in the final state of the process.

Let SC(X,Y) be a set of lower or upper semicomputations defined as
above. The set of all states of criterion process which are referred to by
semicomputations from the set is denoted by CH(SC(X,Y)), i.e. :

CH(SC(X,Y))={s' | (3s) SC(s,s') C SC(X,Y)}.

Corollary 1. If process P is partially correct in the sense of (P’, k), then:

*The unions are defined for all these pairs (s,s') € X x Y for which the corresponding
semicomputation exists.
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1. CH(SU(B,*)) C B';
2. CH(SL(F*)) C F
3. Rank C S

Definition 3. Let P = (5,B,F,T), P' = (S, B', F',T') be processes and
k C S x S arelation. We say that process P is totally correct in the sense
of the correctness criterion (P', k) iff the following conditions are satisfied:

1. CH(SU(B,*)) = (B');
2. CH(SL(F)*)) = (F');

3. for any s;, € Ran T’, there exist states sg, s, and .sh such that
sg € T'"Y(s.,) and the condition is satisfied:

SL(s0,8')NSU(sp,8')#0. m
Corollary 2. If process P is totally correct in the sense of (P, k), then:
1. CH(SU(B,*)) = B,
2. CH(SL(F*)) = F';
3. Rank = 5.

Informally speaking process P is totally correct in the sense of correctness
criterion (P’, k) iff k-projection of P into covers process P’.

Example 1. Let us consider process P = (5,B,F,T) and correctness
criterion (P’,k) defined in the following way:

1. =B UF/;
2. T"C B'x F';
3. DomkC BUF.

It is easy to notice, that the class of partial (relative) correctness problem
corresponds to the classical partial correctness notion (Manna, 1974). The
interpretation of the total correctness does not meet directly the classical
formulation. Let us additionally assume that Dom k = BU F and Ran k =
S'. This relative total correctness includes a requirement of concordance

between jnfinite computations too. Jt must be mentioned however, that
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these computations may be detected using more detailed specification of
the criterion, e. g. by adding intermediate characteristic states indicating
infinite loops. The general formulation may be a first step in the analysis
and may support specification of the intermediate states.

Example 2. Safety property may be defined using temporal logic (Manna,
1981):
| = b(z) = Ow, where b(z) is a precondition of program (process) and
w is a formula.
This formula may be transformed into the equivalent specified by ”process
language” one:

(Vi > 0) w(¢), where w(7) means that w is true for final segment of
computation, i.e. semicomputation derived from the computation after ele-
mination of ”i” initial states.

Let us notice that almost all examples of the property are usually descri-
bed by implication. Antecedent of this implication specifies a state/states
in which property defined by consequence should be satisfied. The class
of correctness problems may be defined as the partial relative correctness
(Szmuc, 1989b).

Example 3. Liveness property defined using temporal logic (Denis, 1974):
| = O(w1 = <> wa),

may be transformed into the following one, satisfied for every computation:
(V) (wi(§) = (3 > ) wali)). |

It is easy to notice that this property may be described by the total relative

correctness (compare with (Szmuc, 1989b)).

2. The Correctness Verification

The verification of the relative correctness may be performed in two ways
(Szmuc, 1988; 1989a; 1989b) as a so—called static verification and as dynamic
correction. The static verification of the partial correctness and a concept
of dynamic correction_has been presented in (Szmuc, 1988; 1989b). The
verification process consists of four stages: construction of an exprssion
_ that specifies verified process, extention and reduction of the expression
(elimination of non-characteristic states), and the correctness verification
by simulation of the correspondingly reduced coupled process. The three
initial stages are based on algebra of processes which is described in (Szmuc,
1989b). An idea of construction of expression is shown in Figure 1. The
simulation is carried out by an analysis of ”characteristic computations”
corresponding to every reduced subexpression. The conditions from theorem
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1 are examined in every transition (state) of the computation. If at least
one of them is not satisfied, then the verified process is incorrect in the
transition/state. ‘

The process is correct in the sense of a given criterion when such transitions
are not found. More detail explanations and corresponding algorithms may
be found in (Szmuc, 1989a; 1989b).

E= Pjywhere P=Pj + Ejza v Pji

E=P = Pjsy ++- Pi*

Fig.1. Rules for construction of expression
2.1. Total Correctness Verification

Total correctness verification will be performed in a similar way to the partial
one (Szmuc, 1986; 1988; 1989a; 1989b). however the fundamental formal
tools: coupled process and local testability theorem will be modified.

Definition 4. Let P, P’ be processes and k¥ C § x §’ a relation. By the
coupled process we mean a quadruple P = (5, B, F,T), where:

- §CSxM, MC25 x25 x25,
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- B ={(s,(pS",pB',pF")) | s € B A pS' = (B'UT'(k(s))\ k(s))ApB' =
B’ Nk(s) ApF' = k(s)};

- I:-‘g- {(5’('a‘a'))|3 € F};

-TcSx$- relation such that for any ((s,(pS, pB’,pF")), (s1,(pS1,
pBi,pF{))) € T the following conditions are satisfied:

1. (s,51) €T,

2. pS1 = pS" U(T"(k(s1)) \ k(s1),

3. pB, = B'Nk(sy),

4. pF{ = pF' Uk(s1) \ (T (k(s1))\ F}). =

The modifications include extention of memory state by adding coor-
- dinate (pB’) and condition (3) describing changes of the coordinate. The
later one contains information about those initial states (of criterion pro-
cess) which has appeared (in the coupled process) until current state in the
verified process have been reached. Set F! (condition 4) is a set of pseudo-
final states of process P’. Note that any infinite (looping) computation may
be represented by a finite sequence of states (finite expression) which de-
scribes the corresponding loop (Fig.1). A last element of such a sequence is
designated by addition of ”*” to a symbol of a first state in the loop (Szmuc,
1989a; 1989b) and Figure 1. It results from condition 4 that if a state from
" F! has appeared in set pF, in any state, then the state (with star) will not be
removed in future states (of process 13) On the other hand an appearance
of a state from F! means that all states in the corresponding computation
have been reached.

Theorem 2. Let P, P’ be processes and k C S x S’ a relation. Process P is
totally correct in the sense of correctness criterion (P’, k) if for the coupled
process P (def.4) the following conditions are satisfied:

1. (Vs € B) k(s) C B';
2. (V(-,(pS'",pB'pF")) € F) pF' C F';
3. for any tramsition ((-,pS’,-)),(s1,(*,"))) € T k(s1) C pS';

' — inll A NN
4 UPB (o per = B" and UPF(( pyep = IO UL

where ?i is any (in particular empty) subset of states which do not belong
to set F! and which appear in computations ending in states from F..
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Proof. The proof related to conditions 1-3 may be performed in a similar
way to the partial correctness in (Szmuc, 1989b). Condition 4 expresses a
requirement of convering of process P’ by k-projection of process P. The
first part of condition 4 means k(B) = B’. It results from the second one that
k(F) = F' and all states of infinite (looping) computations have appeared
(UpF' 2 F]). Hence it results that all states of process P’ belonging to
finite and infinite computations have been reached. The fact that set F, is
nonempty means that its elements have appeared more than one time. m

Let us notice that local (dynamic) conditions related to the partial cor-
rectness are complemented by the global condition (4) referring to final
states (of process P). The total correctness verification is rather static in
character and for this reason the dynamic correction of the correctness is
not considered. It should be noticed however, that the global feature covers
only one set of final states (of P) and is related to the two cordinates only.
The fact simplifies the verification process.

2.3. Static Verification of Concurrent Processes

The verified process may be interpreted as a sequential description of a
system of concurrent processes. This system consists of a family of the so-
-called component processes { P, }nen, a set of states of the system.

Definition 5. System of (concurrent) processes is the structure, I =
({Pr}nen, S, ®), where:

e {P,}nen — family of processes;
o 5 C XnenSn — set of states of the system;
e & C {¢n,m'n # m A ¢n,m c (Sn X Sn X Sm) X Sm}

Any relation ¢, defines an interaction between processes P, and P,,.
For example, ((sn,58;,,8m ), 8%, ) € ¢n.m means that when in process P, trans-
ition from s, to s/, is performed, then this transition causes a simultaneous
change from s,, into s/, in process P,,. Interpretation and a more detailed
description may be found in (Szmuc, 1989b). This formal model covers any
of the three main types of parallel program constructions (Szmuc, 1989b):

e processes executing within global environment (Brinch, 1976) (shared
data, monitors),

® processes communicating by message passing (Communicating Sequ-
ential Processes (Hoare, 1985)),
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¢ data flow programs (Denis, 1974).

Behaviour of the system is described by sequential process (Szmuc,
1989b). The construction realizes a transition between the non-sequential
(system of processes) and sequential (process describing behaviour of the
system) ways of describing parallelism.

Let I = ({Pn}nen, S, ®) be system of processes. A set of all projections

from system states into component processes states will be denotes by H =

{H,:S5 — Sp|ne N}.
1. For every n € N we define relation T™ C § X § such that:
hn(Dom T") = Dom T,, and for any (s,s’) € T™:
a) (hn(s),hn(s") € Tn,
b) for any m € N \ {n}:
hon(5") € G (An(5), hin(s"), o (5)) i (n(5), hin(s")s () € Dom
(hm(s") = hy(s) otherwise;

2. For any sequence of different indexes p = nj,n,,... we define relation
TP C §x S:

T®) — ™ if p=m,
T™ o T(P2) if p = ny,nq,... and py = ng,...

(o specifies composition of relations).

3. P=(S,B,F,T) is process describing behaviour of system
+ I =({Pu}nen,S,®) when relation T is defined as follows:
(s,8") € Tiff (3p) (s,8) € T?), m

Concurrent execution of component processes is simulted by the inter-
leaving of their atomic actions. More detailed specification of sets B and
F depends on the application, in particular the set F' may be empty. The
definition is applied in algorithm that translates parallel specification into
the equivalent sequential one (Szmuc, 1989b).

The class of correctness problems for verified processes specified by a
system of concurrent processes and relation k, which satisfies condition
Dom &k C |J,en Sn — is very important in the correctness verification. This
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property simplifies the three initial stages of verification and increases the
level of automation.

Let us consider a system in which every component process is specified
using a programming language. Let us additionally assume that characte-
ristic states are specified by selected instructions of the multiprocess pro-
gram (system). Every component process may be described by the quotient
process (Szmuc, 1989a and 1989b). The construction of the expressions
specifying the quotient processes may be performed automatically in the
compilation (parsing) time. The selected rules of transformations are pre-
sented below.

1. Composed instruction, Py; Py;...;P;: E= P, - Py-...- Py;

b

2. while instruction, while C do Pp; Py; :

B P, + P, - Py + Py if P, is simple instruction,
Prowo oPyo-Pf+P-c.-Py-Pp+Pp if Py=Py-...- Py

3. if instruction, if C then P, else Py;: E = P, 4+ P,.

The above mentioned transformations (and additional in (Szmuc, 1989b))
may be used for the automatic generation of expression specifying compo-
nent processes.

By theorem 7.3 in (Szmuc, 1989b), the reduced verified process (of the
. system) may be obtained by a separate reduction in every component process
and by constructing this verified process from the reduced component ones.
Hence the three initial stages of the verification may be simplified and may
be carried out automatically. E

The above mentioned class of correctness problems refers to computer
network protocols (Szmuc, 1989a) and real-time programs (Szmuc, 1988;
Szmuc, 1989a).

2.4. Implementation Remarks

Implementation of the system for relative correctness verification has been
developed in the Institute of Automatics for a few years. The system is
divided into two layers:

o a kernel implementing the correctness verification (partial and total)
for processes described sequentially,

o a collection of modules which realize transformations from different
parallel specifications into the sequential one.
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The implementation of the kernel has been completed, while realization
of the modules is under development. The two modules applying Petri nets
specification and CSP like languages seem to be near completion.

2.5. Dynamic Correction

Static verification is based on the reduced description of the verified process
and simulation of the corresponding coupled process. Another approach to
the verification consists in adding the correction module to the verified pro-
cess running in the computer system. This process and the module consti-
tute the coupled process. The local testability theorem is used during any
computation in the verified process P. Transitions in non-characteristic
states are performed without any interference with the module. In every
characteristic state process P calls the module, in which conditions of the
theorem are examined. If they are satisfied, then the transition may be rea-
lized in process P, otherwise the transition must be blocked. The correction
module consists of the memory (definition 4) and procedure implementing
transition to the next states in coupled process (related to the memory).
Implementation of dynamic correction is simplified in the cases of the
correctness problems mentioned in the previous subsection. Blocking of the
incorrect transitions is performed thereby by suspensions of the correspon-
ding component processes. Implementations of the correction module in
procedural and message—passing systems are discussed in (Szmuc, 1989b).

3. Concluding Remarks

Formal tools and a conception of computer support for specification and the
correctness analysis have been presented. The investigations are based on
two statements: nondeterministic process, being a fundamental notion, and
the relative correctness (partial or total), being defined as a relation between
the verified and criterion processes.

The first statement facilitates the description of many objects using the
same process notion. Differences are obtained by changing the interpretation
of objects constituting the process. The formal tools (homomorphism, con-
gruences, decomposition) may be used in the correctness analysis (Szmuc,
1989a). The general form of the model causes that it may be applied in
the development of other formalisms. The correctness is partialy similar to
the bisimulation notion (Castellani, 1985) based on Milner’s CCS (Milner,
1980). It seems, however, that the correctness enables stronger reduction of
specification in the case of parallel systems, because the correctness relation
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absorbs the whole permutations of states sequences, which are specified as
parallel ones. Hence, the criterion process may be described in a simpler
and more natural form. More detail characterization and application of the
proposed approach may be found in (Szmuc, 1989a).
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