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MULTIPLE TIME SCALE AND PARAMETER
ESTIMATION FOR STOCHASTIC
DISTRIBUTED PARAMETER SYSTEMS

M.Z. ZGUurROVSKY,* W.FRED RAMIREZ**

The main idea of this work is to use combined experience and comple-
mentary work to jointly investigate the combination of separation/dua-
lity concepts and singular perturbation methods in order to develop
‘new algorithms for the simultaneous estimation of stochastic distri-
buted parameter process state and model parameters when both can
experience multiple and different time domains. Besides the develop-
ment of general theoretical concepts, specific process applications are
considered both computationally and experimentally.

1. Introduction

Sophisticated technological processes based on nonstationary diffusion or
heat /mass exchange phenomena which are affected by stochastic disturban-
ces are widely found in numerous industries. To control these processes
efficiently, one needs to have information concerning the fundamental phy-
sical laws and the important model parameters.

However, to obtain complete information about a distributed parame-
ter system (DPS) is rather difficult because of random error in pointwise
measurements and other uncertainties which are difficult to take into acco-
unt. Indeed, some DPS parameter measurements are currently impossible.
Thus, the only way to obtain complete process information is to construct a
state and parameter estimation. This estimation is usually based on Kalman
filtering techniques (Sage et al., 1976).

In some works (for example Azhogin et al., 1986) the state estimation
problem is solved under parametric uncertainty conditions based on the
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nonstrict separation principle. According to this principle, one may use pa-
rametric identification and the suboptimal Kalman filter algorithms in turn
as an iterative procedure. The nonstrict separation principle is based on
the structural separability of state estimation and identification problems.
However, it does not account for the parametric dependence that exists for
these problems. This leads to state and parameter estimation error. Ano-
ther source of error in these algorithms (Zgurovsky, 1988) is the necessity to
approximate the covariance matrix in the suboptimal Kalman ﬁlterélgori—
thm. In addition, these algorithms require the process to satisfy stationary
conditions which substantially decrease their practical value.

The use of quasi-steady state and perturbation analysis for state varia-
ble identification has been investigated, too. The works of Clough (1975)
and Ramirez and Clough (1976) showed that classical distributed parameter
identification algorithms were not effective in estimating the fast dynamic
response of composition and temperature profiles down a fixed- bed cataly-
tic reactor for the production of styrene monomer and the slow coking of the
catalyst activity. The styrene system is described by Clough and Ramirez
(1976). A new steady-state distributed parameter filter was developed for
composition and temperature identification and a dynamic Kalman filter
was used to estimate the catalyst activity. The use of these two different
time scale filters resulted in an efficient and stable identification scheme.

Gaafar and Ramirez (1985), Ramirez and Gaafar (1985) and Gaafar
(1987)-showed the usefulness of using perturbation analysis techniques in-
troduced by Kokotovic and colleagues (Sannuti and Kokotovic, 1969, Chow
and Kokotovic, 1976 , Kokotovic et al., 1976) for control and identification
problems. Gaafar and Ramirez (1985) extended the analysis to multiple
time domains and applied it to the fixed-bed catalytic reactor problem.

A large number of physical processes in nature are based on the phe-
nomena of a heat and mass diffusion and convection. The intensity of each
mechanism depends upon numerous conditions and these mechanisms can
change independently each with a different time scale. Therefore, it is very
important to extend the singular perturbation approach for lumped parame-
ter system to distributed parameter systems of the diffusive and convective
type. ;

We perform this extension on the basis of combining the singular
perturbation approach with the separation/duality principle for distributed
parameter systems.
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2. The Development of Joint Singular Perturbation and
Separation Duality (SPSD) Approach

In terms of both singular perturbation and separation/duality approaches,
the mathematical description of the stochastic diffusion and convection pro-
cesses is:

K
PR = N OG0 = W(1,2) = 5@ )
: 2
N(X,t,z) Z 3 [ X)k(t, )8 | - Z;c(t z)g— —dt,2)X (2
6 202 - 1%, k(12), et 2), (1,2, ®
62002 = 1, k(t,2),c(t,2), dit,2) @
53@—%}—2 = fa[X, k(t,2),c(t,2),d(t,z)]. (5)

The space 3 = Q x [0,t7]; @ € IR? is a two-dimensional spatial
domain with boundary Q. In equations (1)—(7) ¢ is time; z = [21, 29} is
the space coordinate vector; X(-),W(-) and U;(-) denote the state variable,
the stochastic disturbance and the control variable at the point 27, U;(t) =
U(t,2%), corresponding; b(-),c(-) and d(-) are parameters of the process; N()
is the non-linear operator describing the process. The initial and boundary
conditions are given by

X(0,2) = Xo(2), - (6)

0X(t,z)
on
We suppose that the diffusion coefficient 5(X), the convection coefficient
¢(t,z) and forcing coefficient d(t,z) change independently of each other in
different time scales £1,&2 and &3, respectively.
The restrictions on the model parameters are:

= 7(t,2)[X(t,2) — Xexi(t,2)] + Wi (t,2), z € 0. (7)

by <b(X)< by, ki <k(t,2)<k
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a< x(t7 Z) <ew, &< d(t7z) < dy, (8)

n < T(ta 2) <ty =< ak(t7 Z)/az < Gu-

Let’s define a cost functional to develop the time recursive state and
parameter estimation algorithms:

I(X,P) = /t:f {/ P(t,z,r)dzdr + ZY(t z') - X(t, z')]2} dt. (9)

=1

The state estimate X(¢,z) and differential sensitivity function P(t,z,r)
- are defined from the Kalman filter equations as:

- 0X(t,2)

r = N(X,t,2)X(t,2) - zﬁ(z U;(t)-

N
- Y (P(t,2,t)H(t,r')/R(t,2)[Y (t,2°) - H(t,2)X(1,2°)],  (10)

=1

_O0P(t,z,r 2 ob(X) OP(t,z,r
T =Yg [Ca s M7 G] -
2 ap(t z,1) | 8 [ab(X) 2Pz, r)]
T;C(t —_— d(t Z)P(t z, ) ;.871[———8)? k(t, )———ari ]

- E (t ap(t 2,r) _ d(t,v)P(t,2,r) + ¥(t,z,r)+ (11)

=1

N N R ) ) .
+2 Y HZ)/RE2)Y (4,2) - H(t,2)X(4,2)]P(t,2,x') P(t, 27, ),
0k(t,z)

o = NX k(t2),c(t,2),d(1,2)], (12)

&
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62908 = 4R, k1, 2),c(t,2), d(1,2)) (13)
6207 _ L% Kem) et ()

The initial and boundary conditions are given by

X(0,z) = Xo(z), P(0,z,r) = Py(z,r),

b(X)le=0 = ¥5(2); €(0,2) = ¥¢(2), d(0,2) = ¥3(z)- (15)
oX 2 24,2 (1,9) ~ Xew(1,2)) Q
OPUET) _ (1,2)0(R)/R(t,2) = (1, 9)Plti2,r), €00 (16)
?ﬂ%ﬂ = k(t,r)b(R)/R(t,r) = 7(t,2) P(t,2,1), r € O9.

For the system (1)—(9), we need to define estimates of the state X*(t,z)
and spatially distributed parameters b(X),e(t,2), k*(t,2), d*(t,z),7*(t,2)
under the condition that X(t,z), b(X ),"(t z), d(t z) change in different time
scales, for which the inequality I(X*,e* ke d, ) < I(X, 6,b,k,¢,d, ,T)
should be valid for all admissible values of states and parameters.

The solution of the above problem is sought on the basis of combining
the singular perturbation technique and duality method of joint filtering.

For transforming the above minimization problem under the restric-
tions (10), (11) to an unconditional minimization problem, we introduce the
Lagrange function:

L{~}:I(t,X,P)+/t:f/Q{[a-%§’—z)—N(X,t,z))?(t,z)+

K N
+ 3820+ Y P(t,z,2")H(t,2")/R(t,2)[V (t,2')—

7=1 1=1
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—H(t,2)X(t, zi)]] ¢(t,z) + [QE%&Q—

i 2 [8b(X) K, )BP(t z r)] N Z (i, z)aP(t z,r)

+

[3b(X) k(i)

—d(t,2z)P(t,z,r) — E o op (t % ’)]

+E (t,r) 22 (t % r)+d(t r)P(t,z,r)— i f:{H(t 2)/R(t,2)[Y (t,2°)—

i+1 i=1 j=1

~H(t,2)R(t,2))P(t,2,5)P(t,27 )]} Qllt,2,m)+

+ :&Q_kgft,_z) - fl[fc,b(}?),k(t,z),c(t,z),d(t,z)]] Fi(t,2)+
+ :gzg'i(;;—z) - fz[f(,b()?),k(t,z),c(t,z),d(t,z)]] Fy(t,z)+
+ [§3Qfdg__t’f_) - fg[.i', b()?), k(t,2z),c(t,z), d(t,z)]] F3 (t,z)} dzdrdt,

where ¢(t,2),Q(t,r,2z), F1(t,2), F5(t,z), F3(t,z) are conjugate functions,
which are defined by the co-state equations:

3¢th) ; [b(X)k(t )3¢( > )]+ (t, )Zafﬁ(‘g;Z)

. |
— d(t,2)g(t,2) +2 SUFi() - R(1,2)8(z — )~ (17)

=1
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N
~ Y P(t,2,2)H(t, 2)$(t,2)b(z — 7')—

i=1

—2 /Q EZ[H(t 2)/R(t,2)] x [H(t,2)k(1,2,5)8(z — 7))

T i=1j=1

x P((t,z,r*)P(t,2°,r))dr,

0Q(t,z,r) 3b(X) aQ(t z,r)
T Z <9z, [ K(t.2) ]

HR)
0xX

=1 =1

+c(t,z)za_Q_(at_:_l_'_)_ d(t,z)Q(t,z,r) + Z o [

X k(t,z)'a—'Q‘%;‘;z,_r)] + c(t,z)z aQ(t,nz r) d(t,r)Q(t,z,r)-}— (18)

i=1

N N
+ Y Y IH(L,2)/R(t,2)|i(t) - H(t,2)X (1,2)8(z ~ 2°)| P(t, 2,x) X

i=1j=1

N
x[Q(t,2,r)8(z — 27)] - Y [H(t,2")/ R(t,2)][¥i(t)-

=1

—H(t,2)X(1,2)6(z — 2*)|4(t,2)8(z — 2°) — I,

and the co-state equations which define conjugate functions Fy(t,z), F3(t,z),
F5(t,2z) can be derived from the following expressions if a special form of

f1(4), f2(+), fa(+) is known
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/t: /Q { Elﬁak} dgdrdt = /t: /ﬂ {A()+684()} Fldzdrdt~ (19)

t
- / ' / F1() Frdadrt,
o Jo

/;k /g {_62%%66} dzdrdt = _/t:: /(; {f2(") + 6 f2(+)} Fodzdrdt—  (20)

- /t:‘ [ 7 Fadadra,
,/t;k,/g{ €3§fzéd}d drdt = /:L{fs(')+5f3(-)}F3dzdrdt— (21)
—/t:/i;fg(-)ngzdrdt.

The final conditions for these equations are

#(t,2) = Q(t7,2) = Fi(t;,2) = Fa(ts,2) = Fa(ty,z) = 0.

The necessary conditions for implementation of the state and parameter
estimation algorithms may be given by

313( ) 3X(t 2) 9¢(t,2) | 5~ 1 Ofi[]

T = K2 ); P Egj ) e @)
OL() _ 09X (t,2) 3¢(1,2) 9b(X) & 9P(t,z,r)

6k(t,z) ; 0z; 0z + Q. 0X . Z 9z; X (23)

Q(t e r) Z 1 0f;[]

& ok )

7=1
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a‘Z(Lf,Z) | ZaX(t 2 gtz H/, Z;BP(t LSO PR
+Zéa€{;[] Fj(t,2),
% = X(t,2)$(t,2) + /Q P(t,21)Q(t 5 r)dr+  (25)
o1()

o7 (t, z) [X(t z) — Xe:z:t(t z)|y(t, z) ——/ P(t,z r)Q(t z,r)dz. (26)

For implementation of the state and parameter estimation algorithm, we
follow (Zgurovsky, 1988). It is first necessary to define the time scales &,
and &3 for the parameters b(X),¢(t,2),d(t,z) and for the state X. Then
to order these time scales, we solve the algorithm for the fast time domain
first, and for the slow time domain next.

Remark. A prior determination of the time scales is a special case of this
procedure.

For defining the time scales post priori, we can use the second derivatives
as an estimate of the state and parameter rate of change

L) | _|$ Pl g
‘6E2(t,z) " |H )

L) | _|& 250,

91, 2)| j;azﬂ(t,z)ﬂ(t’z) ’ (27)
02L(-) | _ 0*f;[]
!ai‘zu,z) B ;a«i?(t, ) (1)

We can then order the time scales and perform the state and parameter
estimation procedure as described in (Zgurovsky, 1988) for the fast time
domain first, and for the slow time domain last.
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3. Examples of multiple time scale state and parameter
identification

3.1. Nuclear reaction with iodine—xenone poisoning (Yemelianov,

1976)
z 2 z 2

7t = b )‘9 S+ 0@ 55D 4 (KF () - Do)

— vXe(t,2)]9(t,2) — U(t?z)qﬁ(t,z) + Wé(t,z), (28)
0X.(t,2z)
El—-——-é—t———— =Yx . F(2)$(t,z) + Arl(t,z) — AxeXe(t,2) — 6X.(t,2)¥(t,2),

(29)
& gt %) _ Y, F(2)é(t,2) — ML, 2). (30)

The initial and boundary conditions are given by

¢(0,Z) = ¢0(Z), I(O,Z) = 10(2)7 XC(O,Z) = XeO(z)’

a¢f(3tZ,Z) - ¢1(t )’ aI(t Z) = ¢2( ’ )’ M - ¢3(taz)? z € 0N. (31)

Where ¢(t,z) is the density of neutron flow in the reactor, F(t,z) is
the cross section of the uranium nucleus; Y (z) is absorbtion cross section;
U(t,z) is additional absorbtion (control action); I(t,z) is iodine concentra-
tion; X.(,2) is xenon concentration; v is the constant of neutron absorbtion
by xenon; Y7,Yyx, are the constants of separation for iodine and xenon ac-
cordingly; Ay, Ax, are the constants of S—disintegration iodine and xenon
accordingly; ¢1(t,z), @2(t,z), ¢s(t,z) are the functions which determine
&(t,z), 1(t,2); X.(t,2z) on boundary 99 accordingly; &1, &2 are time scales
of I(t,z) and X,(t,z) changing accordingly.

The problem is to estimate the ¢(t,z),I(t,z) and X.(t,z), which change
in different time scales.

»
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3.2. The Process of Water Flooding for an Oil Reservoir (Chavent,
Cohen, 1977)

MEHZ0D - 2 a0 222 - vl =0, (2)
622 = ffa(s), b(s) (33)
620 = fila(s), €l (5)

The initial and boundary condltlons are described by
S(t,9) im0 = 0(2),  5(t,2) =0 = sw(t), (39)
(02) msy = 300 4 ) - (D Y- t0). (36)

Where s{t, z) is water saturation of the porous media; V(¢) is velocity
of water flow; k(s) is the permeability of the porous media; a(s) is the sa-
turation function which defines the intensity of the diffusion process; b(s) is
the saturation function which defines the intensity of the conviction process;
Sm(t), sp(t) are the minimum and maximum values of saturation, respecti-
vely; Y (t) is a step function at time instant ¢ = to; & and & are time scales
of a(s) and b(s) changing accordingly.

The problem is to estimate the state s(¢,2) and parameters a(s), b(s),
which change in different time scales.

3.3. Styrene Reactor (Gaafar, 1987)

Due to multiple time scales of the styrene reactor’s concentration wave and
thermal wave and the catalyst deactivation, SPSD approach for this plant
is preferable.

The mathematical representation of the dynamic behaviour of the
distributed parameter styrene reactor is (Gaafar, 1987):

Oc; + % =—ar;, 1=1,2,...,10 (37)

7VE 0z

, OT T
(1 =7)pcCy. +1Co) 7 = —PCpt— - — > R;AHj; k=1,2,..,6 (38)
J=1
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da _ B(SOR)e~H/ —
E - T2
Note that the concentrations ¢; change fast (per 2 sec), the temperature
of reactor T} changes moderately (per 20 min) and the activity a changes
slowly (per 30 min for steam regeneration (steam) and per ! month for
coking).
Defining

(39)

Or =t, & =(1-7)pLCr +710Cp)[7, & =7V/T,

where 7 is the time scale for reactor, the system (18) can be rewritten in
terms of SPSD approach:

da _ B(SOR)e=®/n —a

00 T2
0Ty 0T} al
1= 55 =—pChg— =3 B;AH;, k=1.2,..,6 (40)
i=1
523& L i=1,2,..10
0z ‘

Thus, the problem is to estimate the catalyst activity parameter o, and
the states of concentrations C;(t,z) and temperature T%(t, 2) each of which
“change in different time scales.

3.4. Atmosphere Pollution Processes

The atmospheric pollution processes take place due to both diffusion and
air convection. The intensity of each mechanism depends upon numerous
conditions and can be changed independently with different time scales.
Suppose that dangerous components ¢(t,z),z = (21, 22,23) are spread over
the region  with the boundary surface 99 consisting of the cross sectional
surface of a cylinder, its bottom 0§ at 23 = 0 and the top 99 at z3 =
h, where h is a height of the cylinder. The spread of pollution over the
atmosphere may be described by the stochastic partial differential equation
having the form

6‘15,;2) + (u,grad g(t,2)) - Z 97 ( it )6q(t z))
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+aq(t,z) = f(t,2) + w(t,z), z€Q, te(0,t),

6= 202 < fuq(9), (41)
62 = %‘% = f2[u’7(taz)]’

with boundary conditions

dq(t,2)

¢(t,z) =0, z¢€ 09, = apq(t,2z), (42)
623
"z € 0, te(0,ty), @g’—z—) =0, ze€0R,
62'3
and initial conditions
¢(t,2) |t=0 = qo(2). : (43)

For point-wise sources of pollution (of chimney type), the function f(t,z)
may be presented in the form

M M.
f(t,2z) = Zu;(t,z)&(z —-z') = Zu,-}(t), (44)
. =1 1=1

where u;(t) is the intensity of the i-th source of emission; M is a total
number of pollution sources; v(t,z) is the vector of diffusion coefficients; u
is the vector of flow velocities; « is the coefficient of species absorbtion by
the atmosphere; a3 is the coefficient of species interaction with the surface
09y, at z3 = 0; w(t,z) is random disturbance, which describes the stochastic
nature of meteorological conditions.

In the simplest case, one may reduce the concentration pollution fore-
cast problem to the simulation problem under the condition that all model
parameters u, 7, , a; and u;(t), go(2z) are known. Since those parameters de-
pend on weather conditions, their exact description cannot be obtained on
the basis of a priori data only, especially for the diffusion and convection co-
efficients. Thus, the problem is to estimate the state ¢(¢,z) and parameters
u, 7(t,2z), which change in different time scales.
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4. Conclusions

Two main approaches to estimation of both state variables and model pa-
rameters of stochastic distributed parameters systems are considered. The
first approach which is based upon the singular perturbation theory was
developed and carefully investigated for multiple time scale state estimation
of lumped parameter stochastic systems. The investigations showed that
the singular perturbed algorithms are computationally more efficient than
the complete Kalman estimator algorithms. The singular perturbation tech-
nique increases in usefulness as the stiffness, the number of stiff equations
increases, or the length of time the filter is allowed to proceed increases. The
second approach is based on the separation/duality theory. It was develo-
ped for state and parameter estimation of distributed parameter stochastic
systems. '

The singular perturbation and separation/duality approaches are com-
bined to develop a new joint method for multiple time scale state and para-
meter estimation for lumped/distributed parameter systems. Four examples
of possible applications of joint method SPSD were presented. The concept
was developed only theoretically. It is therefore very important to continue
experimental and computational investigations of the SPSD-method and use
it for practical applications.
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