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FAULT DETECTION IN DYNAMIC
SYSTEMS.
STATE ESTIMATION APPROACH

Jozer Korsicz*, ZoHREH FATHI™, W. FRED RAMIREZ*

The state estimation problem for dynamic systems is one of the funda-
mental problems in the fields of modeling, optimal control, and fault
detection and diagnosis. The linear and nonlinear state estimation has
been a very active research field during the last 30 years. The purpose
of this paper is to give a brief review of the basic fault detection and .
diagnosis methods based upon the analytical and knowledge-based
redundancy. The main emphasis is placed upon estimation methods
that are widely applied for fault detection. The advantages and
disadvantages of these methods also are discussed both in general and
in diagnostic applications.

1. Introduction

Contemporary automatic control systéms are becoming more complex to
achieve the demanded characteristics of technological processes. Control al-
gorithms are also getting to be more sophisticated. Consequently, there is a
growing demand for fault-tolerance which is traditionally achieved through
the use of hardware redundancy. In such an approach, the repeated har-
dware elements (actuators, measurement sensors, process components, etc.)
are usually distributed spatially around the system to provide protection
against localized damage. Usually a triplex or quadruplex redundancy con-
figuration is applied and redundant outputs are compared for consistency.
This approach to fault-tolerance is simple from a theoretical point of view
and in many cases is reasonably straightforward to apply, and thus it is
widely used in cost—is—no-object situations such as aerospace vehicles or
nuclear power related systems.
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In most actual plants, the major problems associated with hardware re-
dundancy are the extra cost and software. To overcome these and other
problems, another approach to fault detection and isolation in automa-
tic processes using analytical (physical or artificial) redundancy has been
proposed since the early 1970’s. (Himmelblau, 1978; Patton et al., 1989;
Thompson and Fleming, 1990). Hardware and analytical redundanc1es are
distinguished in the following manner. For example, the two sensors, s;
and sy, are hardware redundant if both measure an identical variable (noise
and other characteristics of s; and s; may not be the same), and ana-
lytically redundant if they measure different variables but the variable that
81 measures can be observed from s, and vice versa.

Functionally-redundant fault detection and isolation (FDI) schemes are
basically signal processing techniques employing state estimation, parameter
estimation, adaptive filtering, variable threshold logic, and statistical deci-
sion theory. In general, the FDI schemes use mathematical process models,
state estimation techniques, and statistical decision algorithms. It is reaso-
nable to point out that the appeal of the analytical redundancy is in the fact
that it can be simply evaluated using the information under well-featured
operational conditions without the need of additional physical instrumenta-
tion in the plant.

In general, the problem of fault detection in dynamic systems can be
formulated as the detection problem of changes of unknown magnitudes
which occur at unknown times in controllers, sensors, and /or components of
the actual plan. Fault detection and diagnosis for actual plants is important
in two aspects. The first aspect is an improvement in system availability,
and the second, which is more important, is the protection from disasters.
From a technical point of view, it seems that the realizability of a practical
detection and diagnosis system has been fairly enhanced by the remarkable
development of computer processing technology.

To date many fault defection and diagnosis methods have been propo-
sed for stochastic and deterministic dynamical systems. There exist several
surveys of these approaches. Willsky (1976) is a classic paper, discussing
many of the techniques available at the time. More recently, an excellent
survey was published by Frank (1990) where he presents more important
techniques of model-based residual generation using state and parameter
estimation methods with emphasis on the latest attempts to achieve robu-
stness with respect to modeling errors. Other earlier surveys have been
prepared by Isermann (1984), Himmelblau (1986), and Besseville (1988).
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The interested reader can refer to Himmelblau’s book (1978) for the fault
detection and diagnosis in chemical processes, and to the book edited by
Basseville and Benveniste (1986) and the recently published book edited by
Patton et al. (1989) for the fault detection and isolation techniques based
on the use of mathematical models of process systems.

In general, various known approaches to FDI problems using analytical
redundancy can be traced back to a few basic concepts. Among these are:

e detection filter (Jones, 1973),

e innovation test using Kalman filters or Luenberger observers (Mehra and
Peschon, 1971; Clark et al., 1975; Yoshimura et al., 1979; Kerr, 1982;
Watanabe and Himmelblau, 1982; Loparo et al., 1991),

e parity space approach (Deckert et al., 1977; Gertler and Singer, 1990;
Gertler et al., 1990; Luck and Ray, 1991),

e parameter estimation technique (Kitamura, 1980; Iserman, 1984),

e expert system applications (Tzafestas, 1989; see Tzafestas in the book
by Patton et al., 1989; Neumann, 1990),

e neural networks apphcatlons (Naidu et al., 1990; Yao and Zafiriou, 1990
Haesloop and Holt, 1990).

Among the above mentioned methods and techniques are the expert sy-
stem and neural networks approaches, which are especially interesting and
important from a practical point of view. They complement the existing
analytical and algorithmic methods of fault detection by application of arti-
ficial intelligence (Miller et al., 1990; Johannsen and Alty, 1991). The main
advantage of the expert system approach lies in the fact that it makes use
of qualitative models, based on the available knowledge of the system, and
quantitative analytical models. The combination of both strategies allows

“the use of all available information given by numeric and symbolic models
for performing the fault detection and diagnosis task. In general, the archi-
tecture of a fault detection and diagnosis system using knowledge- -based
models is shown in Figure 1.

We should point out that the latest advances in the area of artificial
intelligence, in particular in the neural networks (Miller et al., 1990), provide
the potential for new approaches to fault detection and diagnosis in dynamic
systems. Such trainable networks have been successfully used in sensor
failure detection for control systems by Naidu et al. (1990) and Yao and
Zafiriou (1990). Application of neural networks to failure state recognition in
chemical plants has been studied by Venkatasubramanian and Chen (1989)
and Watanabe et al. (1989). At the present state of development, it seems
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Figure 1. The fault detection and diagnosis system architecture

that the main advantage of the use of neural networks is the improvement
of the failure cognition system after on-line implementation. Such designed
systems can be trained on-line to improve the initial off-line training by
learning to avoid false alarms from which it may initially suffer.

The extended Kalman filter considered below has been applied to the lear-
ning algorithms of layered neural networks by Watanabe et al. (1991).

As mentioned previously, the research in the area of fault detection and
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diagnosis in dynamic systems using analytical and knowledge-based redun-
dancy has been conducted by many authors. Most of the work that considers
this problem from the point of analytical redundancy proposes to use the
Kalman filter in the stochastic case, and the Luenberger observer in the de-
terministic case. For example, Mehra and Peschon (1971) have shown how
the innovation properties can be used for fault detection (tests of whiteness,
mean, covariance, and chi-square). The detector of Yoshimura et al. (1979)
that considers parametric failures is composed of a normal mode filter and
an adaptive extended Kalman filter. The latter filter estimates the system
parameters and the state under the failure mode. Another strategy (a two—
level approach, a Kalman filter for the states and a least squares estimator
for the parameters) has been proposed by Watanabe and Himmelblau (1933)
for process models nonlinear in states but linear in coefficients. An adaptive
filtering-based method for failure detection has been considered by Willsky
et al. (1974). Halme and Selkainaho (1986) introduced the idea of partitio-
ning the system into smaller submodels and applied an extended Kalman
filter to detect sensor faults. Few works have been completed to date on
the study of FDI schemes using nonlinear estimators (Misawa and Hedrick,
1988) in case of nonlinearities in the process. The nonlinear Luenberger
state observers approaches of Hengy and Frank (1986) and Wunnenberg and
Frank (1990) are the nonlinear local state observers for component-fault de-
tection. A nonlinear filtering approach based on a reparameterization of the
Kalman filter has been proposed by Davis (1975) and Loparo et al. (1986)
for failure detection problems. Some applications of nonlinear filtering
approach to process diagnosis and failure detection are presented by Loparo
et al. (1991) for leak detection in a heat exchanger process and Eckert et
al. (1986) for instrument failure in a pressurized water reactor.

Each of the cited references represents a different approach to fault
detection and diagnosis, but most apply the Kalman filter algorithms in dif-
ferent ways to solve the problem. State estimation approaches have been a
very active research field in the last 30 years both from a theoretical (An-
derson and Moore, 1979) and applications (Sorenson, 1985; Ramirez, 1987)
point of view. In this paper a survey of currently available recursive state
estimation techniques applicable to a broad class of linear and nonlinear
systems is presented. Especially, the focus will be on those Kalman filter
algorithms which are actually applied or can be applied for fault detection
and diagnosis systems.

The methods that are considered in this paper are the linear Kalman
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filter, the extended Kalman filter, the adaptive filtering approach, the non-
linear Kalman filter, the nonlinear approach for systems with coupled static
and dynamic models, and the suboptimal filtering algorithms for linear and
nonlinear systems. The advantages and disadvantages of these methods are
discussed both in general and in the area of diagnostic applications.

2. Linear Kalman Filter

In 1960 Kalman introduced the concept of an optimal linear filter minimizing
the mean square estimation error that is now known as the Kalman filter.
The Kalman filter provides estimates of the state vector for a given system
at the current time based on the sequence of measurements including the
present time.

2.1. Static System

Very often the process under consideration can be represented by a static
model, or in other words, by a steady—state vector. Suppose we want to
estimate the n—dimensional state vector @ of a static system described by

0= f(z,u,0)+w (1)

and observed according to
y=Hz+v (2)

where f(-) denotes an n—dimensional nonlinear vector function, w is a
p—dimensional input (control) vector, € is an s—dimensional parameter
vector, y is an m—dimensional output measurement vector (n > m), and
H is a known measurement matrix (m X n).

It is assumed that the system uncertainty w and the measurement
errors v have the following characteristics

Elw]=0 Ev]=0

ElwwT)=Q EvvT)=R ®)

where Q(n x n) and R(m x m) are known covariance matrices and E[)
denotes the expectation operator.

On minimizing a weighted-least-squares performance index (Bryson
and Ho, 1975), the solution for the optimal estimate of = = Z 1is as
follows
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z = Sol.{f(Z,u,0) = 0} (4)
#(i)=z+ PHTR [y(i)- H=), i=12,.,N (5)
P=Q-QHT(HQHT + R)'HQ (6)

where Sol.{-} denotes the solution of the static equation, T is the
state estimate before measurements are taken, ¢ denotes the measurement
number, and P is the covariance matrix of the error in the state estimate.

It is worthwhile to point out that after the estimation process is com-
pleted, the actual value of the performance index J given by

1 .
J= 3 {(m—’a‘:‘)TQ"l(w——E)+(y—Hm)TR'l(y—H:c)}; z=z+w (7)
should be close to (n + m)/2, its prior expected value.

2.2. Dynamic Models

Consider a class of discrete—time, linear stochastic systems described by the
following equation

2(k +1) = A(k)s(k) + B(kYu(k) + C(k)w(k) (8)

where k is a discrete time, (k) is an n—dimensional state vector,
u(k) is a p—dimensional input (control) vector, w(k) is a g—dimensional
system noise vector, A(k) is a known (n X n)—dimensional system matrix,
B(k) is a known (n X p)—dimensional input matrix, and C(k) is a known
(n X ¢)—dimensional system noise matrix.

Assume that the measurement system for the process (8) is given by the
algebraic equation ‘
y(k) = H(k)z(k) + v(k) (9)

where y(k) is an m-—dimensional output measurement vector, v(k)
is an m—dimensional observation noise vector, and H(k) is a known
(m x n)—dimensional observation matrix. Note that dimz > dimy.

It is assumed that the system noise w(k), the measurement noise v(k),
and the initial condition x(0) are Gaussian random variables with known
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statistics

Elw(k)] =0 Efv(k)] =0 Elz(0)] = 2(0]0) (10)
Elw®w’ (0=Q®bu El®v" D=REs El=0z" 0=PO|)

where Q(k) is a (¢ X ¢) symmetric non-negative definite matrix, R(k)
is an (m X m) symetric positive-definite matrix, P(0/|0) is an (n X n)
symmetric non-negative definite matrix, and dy; denotes the Kronecker
delta function. '

"In addition, it is assumed that the random sequences w(k), v(k), and
the random variable (0) are uncorrelated,

Efw(k)aT(0)] =0 Ef[u(k)2"(0)]=0 Elw(kp’()]=0 (11)

Assuming that the mathematical process model (8), the measured outputs
Y(k) = {y(D)y(2),...,y(k)} (9), and the statistics (10), (11) are known,
the filtering problem can then be formulated as determining the estimates

Z(klk — 1) = E[z(k)|Y (k - 1)]

R (12)

z(klk) = E[z(k)|Y (k)]

and the associated error covariance matrices
P(klk — 1) = E[ x(k|k - 1) 6azT(k|k - 1)] (13)
13

P(k|k) = E[ §2(k|k) 62T (k|k)]

where éxz(klk — 1) = x(k) — Z(k|k — 1) is the one-step—ahead prediction
error and dx(k|k) = x(k) — Z(k|k) is the filtering error. From this point
on, the notations Z(i|j) and P(i|j) denote the state estimate and the
associated covariance matrix given the available data Y (j), respectively.

The solution of the formulated problem (12)—+(13) gives the optimal state
estimator for the system defined by equations (8)—(11) and is described by
the following set of equations (Anderson and Moore, 1979)

Z(k+1k) = A(k)z(klk) + B(k)u(k) (14
P(k+1lk) ‘= A(k)P(klk)AT(k) + C(k)Q(k)CT (k) (15
V(k+1) = H(kk+1)Pk+1k)HT(k+1)+ R(k+1) (16
K(k+1) = Pk+1HT(k+ 1)V ik +1) (17

~— N N N
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vik+1) = y(k+1)- H(k)z(k+ 1]k) (18)
Bk+1k+1) = a(k+1k)+K(k+1v(k+1) (19)
Pk+1k+1) = P(k+1|k)- K(k+1)H(k+1)P(k +1]k) (20)

The initial conditions Z(0|0) and P(0|0) are defined by (10). In the
above equations, v(k + 1) denotes the innovation sequence, which is an
independent Gaussian random sequence with zero mean and known cova-
riance matrix V' (k + 1) given by (16). This property of v(k + 1) is very

~attractive for the FDI schemes. For stationary processes, i.e., when the ma-
trices A, B, H, Q,and R are constants, the filter covariance matrices
(P(k + 1}k) and P(k+ 1|k + 1)) approach a steady-state constant value
M, and P,, respectively. In these cases, only a constant filter gain K,
needs to be stored for on-line applications.

Unfortunately, the Kalman filter (14)-(20) can be designed correctly
only if the mathematical model (8)-(11) describes the actual plant exac-
tly without any system uncertainties. However, most real systems contain
system uncertainties (variation of parameters, nonlinearities of the system,
and ”coloured” noises). Filters designed neglecting these system properties
provide state estimates that can be confusing as to whether the observed
behaviour is caused by the system uncertainties occurring in normal opera-
tion or by the faulty instrument. Hence, as it was pointed out earlier by
many authors (Clark, 1975; Watanabe and Himmelblau, 1982; Frank, 1990),
for such systems with uncertainties, robust filters should be designed, i.e.,
filters which are minimally sensitive to system uncertainties. The adaptive
and nonlinear estimators are more complex than the linear one; however,
they decrease the effect of modeling errors. It should be noticed that the
sensitivity to modeling errors is the key problem in the application of FDI
schemes based on analytical redundancy (Frank, 1990). Keeping this in
mind, in the next part of our paper adaptive and robust algorithms of the
Kalman filter will be discussed.

3. Adaptive Estimation

Assume that in our mathematical model (8)—(9) describing the ac-
tual plant, some of the elements in matrices A(k), B(k), and/or
H(k) are unknown. Denoting these unknown elements by the vec-
tor @(k) (dim@(k) = s), the mentioned matrices can be redenoted as
A(0,k), B(0,k), and H(O,k). In general, the filtering problem for the li-
near system (8)—(11), but with unknown parameter vector 8 , can be solved
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by three different approaches (Anderson and Moore, 1979):
e parallel bank of Kalman filters (parallel processing),

e two-level estimation strategy (extended least squares),
e extended Kalman filtering (nonlinear estimation).

Among these approaches, the two-level estimation strategy is rarely applied
in the FDI schemes (see Watanabe and Himmelblau, 1983). Thus, here we
consider only the two other approaches.

3.1. Parallel Bank of Kalman Filters

The idea of parallel processing is very attractive in the solution of many
- problems both in fault detection (Frank, 1990) and filtering theory (Pat-
ton et al., 1989). The application of the parallel approach to the adaptive
estimation problem is described below.

Assume that the unknown parameter vector @ is constant and
can be discretized or suitably quantized to a finite number of grid po-
ints {61,60,,...,05} with assumed a prior: probability for each
6;, i =1,2,..,M. Under such assumptions, the conditional mean state
estimate Z(k + 1|k) can be expressed using the conditional estimates
Z(k + 1|k; 6;) and the conditional probabilities p(6;|Y(k + 1)) as

M
Z(k+1lk) = Z:’i(k + 1|k; 6;) p(6;|Y (k + 1)) (21)
1=1 -
The conditional estimates Z(k + 1|k; 6;) are defined using condi-
tional Kalman filters (14)—(20) for each of the parameter values 6;, ¢ =
1,2,...,M. The conditional probabilities p(6;|Y (k + 1) are calculated re-
cursively according to the following expression (Anderson and Moore, 1979)

p(6:|Y (k+1)) = o | (22
|V (k41;6:)% exp {— SV T 6V L (k4L 0w ei)}p(ei; Y (k)

where ¢ is a normalizing constant independent of 6;, chosen to ensure
that M p(6;|Y(k+1)) =1, and wv(k+ 1; 6;) denotes the innovation
sequence of the Kalman filter with the covariance V(k + 1; 6;) for 6;.

Thus, the adaptive estimator realizing this algorithm (21)-(22) consists of
a bank of M parallel Kalman filters, each tuned to 8;(i = 1,2,...,M).

It is worth to note that this approach is very useful for fault detec-
tion and has been applied by Watanabe (see book: Patton et al., 1989) for
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detecting sensor faults and estimating the state under faulty modes. The
relatively high computing complexity of this algorithm can be considered
a disadvantage; however, applying the decomposition approaches and the
parallel computing methods, the computational cost can be considerably
reduced.

3.2. Extended Kalman Filtering

In many applications of the fault detection and diagnosis, both the states and
parameters are estimated via extended Kalman filtering (Himmelblau, 1978;
Yoshimura et al., 1979; Halme and Seikainaho, 1986; Chao and Padlella,
1990). In this technique, the unknown parameter vector € is augmented
to the process state vector. In other words, our process model (8) and (9)
with unknown parameter vector 8 can be described as follows

z(k+1) = A(0,k)z(k) + B(0,k)u(k) + C(k)w(k) (23)
O(k+1) = 6(k)+wo(k) (24)
y(k) = H(0,k)z(k)+ v(k) (25)

Equation (24) models the parameter dynamics by using a zero mean
s—dimensional white Gaussian disturbance vector wg(k) with the cova-
rince given by (sxs)—dimensional matrix Qy(k). On defining the following
augmented state vector z(k)

(k) & [27(k),07 (k)] (26)
equations (23)—(25) may be rewritten as
2k 41) = F(2(k),u(k), k) + Co(b)wa (k) (27)
y(k) = h(z(k),k) + v(k) (28)
“where
wl(k) & [o”(k),wf (k)]
and

ck) o Q) o
C.(k) & [ 0 I]’ Q.(k) & [ 0 Qe(k)]

f(-) and h(-) are (n+s)— and m—dimensional known nonlinear function
vectors, respectively.
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Since the augmented model (27)—(28) is nonlinear, the filtering problem
for such systems can be formulated as a direct nonlinear optimization pro-
blem (Seinfeld and Gavales, 1970; Kalogerakis and Luus, 1980), or can be
solved by using the extended Kalman filter algorithm (Anderson and Mo-
ore, 1979). In summary, the solution procedure of the first approach requires
long computation times while the latter is more attractive in applications
(Himmelblau, 1978; Ishii et al., 1980; Yoshimura et al., 1980), and will be
presented in the next section.

4. Nonlinear Filtering

Consider the nonlinear state estimation problem for the discrete model de-
scribed by equations (27)-(28) with known statistics (10)—(11). Different
nonlinear techniques for solving this problem are available (Anderson and
Moore, 1979; Sorenson, 1985) and a short survey of the recursive state esti-
mation techniques is given by Misawa and Hendrick (1988). Among these
techniques, the extended Kalman filter method is widely used by most in-
vestigators to solve practical problems (Sorenson, 1985). Therefore, this
suboptimal filter for the process (27)-(28) will be presented below.

As a result of applying different approaches to derive the extended Kal-
man filter (Jazwinski, 1970; Anderson and Moore, 1979; Sorenson, 1985),
the following system of equations can be obtained

2(k+1k) = FE(Kkk),u(k),k) (29)
P(k+1lk) = As(k)P(klk)AT (k) +Q.(k) (30)
V(k+1) = Hy(k+1)P(k+1|k)Hj(k+ 1)+ R(k+1) (31)
K(k+1) = Ph+1kHI(k+ 1)V k4 1) (32)
vk+1) = ylk+1)-h(Z(k+1]k),k+1) (33)
z(k+1k+1) = Z(k+1]k) + K(k+ Lw(k+1) (34)

P(k+1lk+1) = P(k+1]k) — K(k+ 1)Hy(k +1)P(k + 1]k) (35)
where the initialization is provided by
2(0|0) = 20, P(O]O) = P()

In equations (29)-(35), the following notations have been used

_ 9f(z(k),u(k), k) HA(k) = Oh(z(k), k)

A
d 0z z=2(k|k) 0z Z=Z(k+1[k)

(36)
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and .
Q.(k) = C:(k)Q,(K)C7 ()

One should notice that the above extended Kalman filter (29)(35) has the
same structure as a linear one (14)-(20), but now the notations Z(k + 1|k)
and P(k + 1|k) denote approximate conditional means and covariances,
respectively. In this case, equations (29)—(36) are coupled because matrices
Ay(k) and Hy(k) arefunctions of Z(k+1|k) and should be computed on-
line. The lack of guaranteed robustness and difficulties in implementation
are considered as the main drawbacks of such an algorithm, even though
it is widely used (Sorensen, 1985). Therefore, to overcome some of these
drawbacks, different improvements have been proposed. For example, as
suggested by Safonov and Athans (1978) and implemented by Chao and
Paolella (1990), the constant gain extended Kalman filter allows us to reduce
the substantial real-time computational burden imposed by the algorithm
(29)—(35). Another attractive approach that allows one to alleviate the
computational difficulties and provide robustness in the case of uncertainty
in the mathematical model (27)—(28) has been proposed by Krasovsky (1976)
and then extended to the distributed parameter systems by Korbicz (1986).

5. Suboptimal Nonlinear Filtering

The main idea of the suboptimal approach can be formulated as follows. By
definition, the one-step ahead prediction error covariance matrix is defined
by

P(k+1lk) = E[ 6z(k + 1]|k) 62T (k + 1|k)] (37)
where 6z(k+1|k) = z(k+ 1) — Z(k+ 1|k) is the one-step ahead prediction
error. As we know, this matrix is described by equation (15) in the linear
case, and by equation (30) on applying the extended Kalman filter for the
nonlinear estimation problem. In many cases, the matrix P(k +.1|k) can
be approximated by using the following formula

k+1

=~ 1
Plk+1lk) = — 3 sz(l+ 1) 62T (1 + 1)1) (38)
=1

where P(k+ 1|k) denotes the estimate of P(k +1|k).

As a result of simple transformation of (38), the estimate P(k + 1]k)
can be defined by the following recursive expression (Korbicz, 1986)

P(k+ 1[k) = P(klk) +9(k) { 82(k + 1)k) 8z7(k + 1[k) - P(klK)}  (39)
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where the sequence (k) is chosen from some convergence conditions.
Taking into account the approximate solution (39), the suboptimal filte-
ring algorithm for the nonlinear system (27)—(28) is implemented as (Korbicz

and Zgurovsky, 1991)

zZ(k+ 1k) = f(Z(klk), u(k), k) (40)
b2k + 1) = Ag(k) 82(klk) + Ca()ws (k) (41)
P(k+1lk) = P(klkyry(k) [5z(k+1|k)azT(k+1|k)-13(k|k)] (42)
V(k+1) = Hh(k+1)13(k+1|k)HT(k+1)+R(k+1) (43)

K(k+1) = Pk+1)HLG+1D)V (k+1) (44)
v(k+1) = y(k+1)—h(Z(k+1]k),k + 1) (45)
Z(k+1lk+1) = z(k+1k)+ K(k+ Dv(k+1) (46)
bz(k+1k+1) = 6z(k+1]k) — K(k+ 1)v(k+ 1) (47)
Plk+1lk+1) = PE+1H—-KEk+)Huyk+)PE+1]k (48)

with initial conditions, 2(0/0) = 2o, P(0]0)=

In comparison with the extended Kalman filter (29)-(35), the subop-
timal algorithm (40)-(48), is described by the additional equations for the
prediction error (41) and the filtering error (47). As the covariance ma-
trix estimate P(k + 1]lk) is defined with respect to measurement data,
this suboptimal estimator (40)—(48) is less sensitive to the incompleteness
of a priori data about the actual system. It is a robust algorithm and
therefore can be implemented both for nonlinear and linear discrete—time
systems.

6. Kalman Filter for Nonlinear Systems with Coupled Static
and Dynamic Models

In practice, actual systems are often described by coupled static and dynamic
models. Thus it is important to consider the application of the extended
Kalman filter algorithm to the joint parameter and state estimation for
systems with coupled static and dynamic models.

Let the model of a general stochastic system with unknown parameter
vector 8 be described mathematically by the following equatlons (Fathi et
al., 1991)

md(k +1) = Fa(za(k), zs(k), 0(k), u(k), k) + wa(k) (49)
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0
y(k+1)

fo(xa(k+1),z5(k+1), 0(k+1), w(k+1), k+1 Haw, (k+1)(50)
h(zg(k+1),z,(k+1),0(k +1),k+1)+v(k+1) (51)
where equation (49) describes the dynamic model, and equation (50) descri-
bes the steady-state (static) model. In (49)—(51) sub-indices d and s

denote variables and parameters associated with slow and fast dynamics, re-
spectively. All remaining notations are the same as in the previous sections.

Assuming that the true parameter vector € varies according to
0(k + 1) = 6(k) + wy(k) (52)

the augmented state vector z(k), and the noise vector w(k) can be defined
as

(k) & [l (k) 2T (), 07 (k)]

(53)
wl(k) A [w] (k), w],w] (k)]

Furthermore, we assume that we have the statistical information for all the

random variables, which are Gaussian sequences and uncorrelated.

Then, the modified extended Kalman filter for this problem can be
defined by the following system of equations (Fathi et al., 1991)

Ba(k+1lk) = fa@a(klk), Zs(kIF), B(k|k), u(k),k) (54)
&,(k+11k) = Soly {f,(Za(k + 1|k),,(k + 1]k),
8(k + 1/k), u(k+1),k +1) =0} (55)
Ok +1|k) = 8(k|k) , (56)
v(k+1) = y(k+1) - h(Z(k+1]k),k +1) (57)
P(k+1]k) = Ag(k)P(klk)AT (k) + Q4(k) (58)
V(k+1) = Hy(k+1)P(k+1|k)Hf(k+1)+ R(k+1) (59)
CK(k+1) = P(k+1jk+ )HE(k+ 1R (k+1) (60)
Z(k+1k+1) = Z(k+1]k)+ K(k+ 1)v(k+1) (61)
Pk+1k+1) = P(k+1|k)—P(k+1|k)Hf(k+1)V 7 (k+1) x
Hy(k+1)P(k + 1]k) (62)

with initial conditions, Z(0]0) = Zo and P(0[0) = Po. Solg denotes
the solution of the static equations for the vector, Z,. It should be noticed
that 27(k+ 1[k) & [&](k + 1K), 27 (k + 1|k), 67 (k + 11k)] -
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The submatrices A;; of the matix Af(k) = {EA,'J'E} for 4,7 =1,2,3

are given by

0f4 _ %4 _ 0%,
An = oz, Arz = oz, Az = 59

e _ (0T 0F, 0F.  , __(9F,\ 9F, 9%,
a dz,) Oxq Ozy 2 oz, | Oxy 0z, (63)

_ 8?3 - 3?5 6?(1 3?5
A= - (Bws) ((%:d I

A3 =0 Az =0 A3$=I

The submatrices Q,; of the matrix Qf(k) = {EQHE} for i,7 = 1,2,3

are defined by the follewing expressions

— T — -T
@1y = Qu(k) Q12=—Qd(k)(afs> (?f—) Q=0

ozq dx,

I AN _ (9%, oF,
Q21 - - (aws) 8wde(k) Q23 - (633) 80 Qﬂ(k)

— \ =1 ’— =\ 7 £ £ F\T
aue(E) oo (E)aun G2 () oun () (02

\T 67\ " (64)
Q3 =0 Q3 =-Qyk) (%1;3) (6fs) Qa3 = Qy(k)

Oz,
where _ R
9%, _ of. 0, _ 05
o 0z | Z=Z (k+1]k) 0z 0z zZ=Z(k+1|k+1)
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and (-)~7 denotes the transposed inverse of ().

The effectiveness of such a modified extended Kalman filter algorithm
was shown by Fathi et al. (1991) for the solution of the estimation problem
for a complex nuclear reactor system. Nevertheless, the extended Kalman
filter used to solve the joint state and parameter estimation for the dyna-
mic or the coupled static and dynamic systems has some drawbacks, which
should be attenuated through additional improvements for applications in
fault detection and isolation systems.

7. Correction of the EXtended Kalman Filter

From many applications (Sorenson, 1985), it is known that the extended
Kalman filter can respond properly to parameter variations if they are re-
latively slow with time. However, in fault detection systems, the variations
of unknown parameters can be abrupt and in addition can occur any time.
In that case, the estimation of unknown parameters becomes difficult since
the covariance matrix of estimation errors in the extended Kalman filter
algorithms for the unknown parameters decreases monotonically, and thus
the filter' cannot effectively estimate the parameter changes occuring later
in time. To prevent such filter degradation, several techniques have ‘been
proposed by Jazwinski (1970) and Yoshimura et al.(1979) in which the mo-
notonical decrease of the filter gain is prevented by additional conditions.

In general, this filter degradation problem is solved in the following
way. First, a new condition is checked and then the extended Kalman filter
is modified. For instance, Yoshimura et al.(1979) proposes to check the
following condition

07 — Biklk)| > d(Pai(k + )M, i = 1,2,y (65)

where 67 and é\,(klk) are nominal values and estimates of §;, respectively.
Py;(k + 1|k) are diagonal elements of the error variances Pg(k + 1|k) and
d denotes a positive constant. If the condition (65) is satisfied for one or
more parameter estimates, then the modified variances Pj*(k + 1|k) are
redefined as

PRk + 1]k) = .[9? — G:(klk)] 2/ d? (66)

and are substituted into the filter equation. In addition, after such modifi-
-cation, new values of 6 are changed as 67 = 6;(k|k).
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Another filter gain modification was proposed by Sriyananda (1972) and
then extended to the discrete-time distributed parameter systems (Korbicz,
1985). To detect divergence in the Kalman filter algorithm, the following
condition is tested

vI(k+ 1) v(k + 1) < yTrace{V(k + 1)} (67)
where the left side of this inequality is defined by using the innovation sequ-
ence from the filter while the theoretical covariance matrix of the innovation
sequence V(k + 1) is used on the right side of (67). In equation (67)
7 denotes a positive constant (y < 1.2). If during the execution of the

Kalman filter algorithm the condition (67) is satisfied, then the covariance
matrix P(k + 1|k) is modified as follows :

P™(k + 1|k) = s(k + 1)P(k + 1]k) (68)
where the scalar correction coefficient s(k + 1) can be a positive constant

(s > 1) or can be defined as a more complex function (Kuzovkov et al.,
1978; Korbicz, 1985).

Here it should be pointed out that the suboptimal filtering algorithm
presented in section 5 does not have any modifications for the filter gain or
equivalently for the prediction covariance matrix. However, on the contrary
to the extended Kalman filter algorithm, in the suboptimal case the cova-
riance matrix is defined with respect to the real estimation error, or in other
words, with respect to the measurement data.

8. Conclusions

In this paper, a brief review of linear and nonlinear state estimation methods
has been presented with respect to their application for fault detection and
diagnosis using analytical redundancy and knowledge-based techniques. It
is shown that there exist various state and parameter estimation methods
(such as linear Kalman filter, extended Kalman filter, and adaptive filtering
approach) that are often used in designing FDI schemes. These methods are
basic in state estimation theory. However, the designed FDI systems can be
more efficient by using the nonlinear filtering algorithms for dynamic systems
or for systems with coupled static and dynamic models, or the suboptimal
robust filtering algorithms for linear and nonlinear systems.

It should be noted that this paper has focused on state estimation me-
thods used in FDI schemes, and implementational problems of these me-
thods have not been discussed. We refer the reader to the overview papers
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(Willsky, 1976;Frank, 1990) or to the book by Patton et al. (1989), for a
detailed description, where the various known techniques for FDI systems
design have been classified and discussed. For example, Willsky (1976) di-
vided these techniques into the following groups: failure—sensitive filters,
voting systems, jump process formulation, and innovation-based detection
systems. The key problem in designing FDI systems which should be consi-
dered in all cases is the robustness problem. Therefore, taking into account
the rapid development of the knowledge engineering for industrial expert
systems (Johannsen and Alty, 1991), it seems that the robustness problem
can be effectively solved by using coupled analytical and knowledge-based
techniques. Recently, many simulation studies and experimental results have
shown that FDI systems using simultaneously the analytical and knowledge—
based redundancy are more powerful and more flexible (see Tzafestas, 1989).
Unfortunately, at present most designed FDI systems do not use the power
of analytical redundancy techniques. In our opinion, the estimation system
conducts important and crucial information, which is of substantial assi-
stance, to the expert system. ’

Furthermore, it should be noted that in the FDI schemes for large-
scale systems, the computational burden is often a very crucial problem.
In general, in the analytical model-based approach, this problem can be
solved by using one of many different methods to decentralize estimation in
large-scale systems (Gardner, 1989; Watanabe, 1989). Another approach
that can reduce computational complexity is the use of an expert system
accompanied by system decomposition. For each of the components of the
decomposed system, individual estimators can be designed and then a set of
rules in the knowledge base allows us to coordinate the information flow from
each of the local estimators and make decisions about global estimators.
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