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FAULT DETECTION IN COAL
FIRED POWER PLANTS
USING NONLINEAR FILTERING

ZoHRrREH FaTHr*, Jézer Korsicz**, W. FRED RAMIREZ*

On the contrary to many recent attempts using knowledge-based system
techniques where diagnostic analysis is based solely on measurable and obser-
vable data, in this work we propose to investigate the adaptive inclusion
of a state and/or parameter estimation module in the diagnostic reasoning
loop, in addition to employing information based on measurable data. The
design methodology is a new layered knowledge base that houses heuristics
knowledge in the high-levels and the process-general estimation knowledge
in the low-levels. The purpose of this paper is to present the failure detection
issues of the deaerator control subsystem for the coal fired power plant. The
main emphasis is placed‘ upon the model-based redundancy methods which
create the low-levels of the knowledge base. Due to the highly nonlinear
nature of the power plant dynamic, the modified extended Kalman filters are
designed for use as detection filters. The developed approach is shown to be
effective in detecting and isolating failures of a subsystem of a power plant
with an appropriate degree of complexity.

Introduction

Process fault detection and diagnosis is important from both a theoretical and
practical viewpoint. The increasing complexity of process plants such as the nuc-
lear power plants or aerospace vehicles systems, and a growing demand for fault-
tolerance encourage industry to look for new methods and techniques for detecting
and diagnosing process abnormalities. To date many fault detection and diagnosis
methods have been proposed for dynamical systems. Several surveys of these ap-
proaches exist (Willsky, 1976; Isermann, 1984; Frank, 1990; Korbicz et al., 1991).
More comprehensive sources are the excellent book edited by Patton et al., (1989)
and the preprints of the IFAC/IMACS symposium SAFEPROCESS’91 (Germany,
1991) for the fault detection and isolation techniques mainly based on the use of
mathematical models of process systems. :

In general, various known approaches to the fault detection and 1solat10n (FDI)
problems using analytical redundancy can be traced back to a few basic concepts.
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Among these are: the detection filter (Jones, 1973), the innovation test using
Kalman filters or Luenberger observers (Yoshimura et al., 1979; Watanabe and
Himmelblau, 1982), the generalised parity space approach (Gertler and Singer,
1990; Luck and Ray, 1991; Patton and Chen, 1991), the parameter estimation
technique (Isermann, 1984), signal processing (Yung and Clarke, 1989), statistical
tests (Chien and Adams, 1976; Kerr, 1982), Petri nets approach (Prock, 1991),
the expert system applications (Tzafestas, 1989; Neumann, 1990), and the neural
networks applications (Naidu et al., 1990; Yao and Zafiriou, 1990; Sorsa and Koivo,
1991).

Among the above mentioned methods and techniques are the expert system
and neural network approaches, which are especially interesting and important
from a practical point of view. They can complement the existing analytical and
algorithmic methods of fault detection by application of artificial intelligence (Miller
et al, 1990; Kramer and Leonard, 1990; Johannsen and Alty, 1991). The main
advantage of expert system approach lies in fact that it makes use of qualitative
models, based on the available knowledge of the system. The combination of both
strategies allows the use of all available information given by numeric and symbolic
models for performing the fault detection and diagnosis task.
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Fig. 1. Framework of the knowlege base.
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This work considers an integrated approach based on combining the analytically—
redundant FDI schemes and the knowledge-based techniques. The overall structure
of our diagnostic methodology of embedding estimation based techniques within
the framework of a knowledge base is represented in Figure 1. The raw data are fed
to a fault detector (a preprocessor) which performs statistical tests to identify the
process condition (normal or abnormal). The preprocessor is basically an alarm
system that is used to trigger the initiation of the knowledge-based system. The
task of the knowledge base is to determine the source and extent of the true fault.
Both a state/parameter estimator and a statistical analyzer are included in the
loop of diagnostic reasoning. The design methodology is a hierarchical knowledge
structure with compiled knowledge at higher levels of abstraction and analytical
redundancy at lower levels of abstraction. This integrated approach reduces the
computational complexity associated with functionally-redundant schemes and in-
creases the effectiveness of the knowledge—based approach. ‘

It is beyond the scope of this paper to discuss the knowledge-based redun-
dancy problems in detail. The main emphasis is placed upon the model-based
redundancy problems. First, a brief description of the deaerator control subsy-
stem of a coal-fired power plant and its mathematical model are given. Then, the
estimation-based approach to FDI is presented. Due to the highly nonlinear nature
of the power plant dynamics, the modified extended Kalman filters are designed
for use as detection filters. These analytical algorithms create the low-levels of the
knowledge base. The design of local filters and simulation results for the power
plant subsystem illustrating the validity of the implemented filters are shown in
the last section.

1. Process Description and Model Formulation

The process schematic shown in Figure 2 represents the plant components and
flow paths selected for prototype diagnostic system development. This diagram
shows the condensate pump, the control valve, the deaerator level controller, the
extraction steam pipe, and the deaerator and its storage tank. It does not include
the low—pressure feedwater heaters; they are represented only as a flow resistance
between the control valve and the deaerator. The objective is the analysis of
problems associated with the transportation lines, the deaerator, and its control
system.

The mathematical model for each component consists of conservation of mass,
conservation of energy, fluid mechanics, and fluid properties. In the following,
each component is briefly described and only the more representative equations
are presented.

1.1. Valve

The valve is primarily used for modulating to control the flow rate through the
valve for maintaining the liquid level in the deaerator storage tank. The basic
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Fig. 2. Process schematic.

assumptions used in modeling the valve are quasi—steady state, adiabatic, no seal
leakage, and no reverse flow.

On writing a steady-state mechanical energy balance for the valve with a con-
stant density fluid and solving for the mass flow rate, we have

wy = Cy [ppu (Pp — P.) + p2, AH, /144]"?

1
where C, is valve conductance, P, is pressure of water leaving pump and entering
valve (psia), P, is pressure of water leaving valve (psia), w, is mass flow rate of

water leaving pump and entering valve (lb,,/hr), AH, is difference in elevation

between inlet and outlet (ft), and pp, is average of upstream and downstream
fluid densities (Ib,,/ft3).

Since the low-pressure heaters are only modeled as a flow resistance, the valve
conductance can be combined with the flow conductance of the pipe associated with

the heaters. Upon combining the valve conductance, Cy, and the pipe conductance,
Cp, in series, the equivalent conductance is
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Cuq = 1\/(1/C0)* + (1/Cy)? @)

The valve conductance, Cy, varies with valve stroke according to its inherent valve
characteristics (equal percentage, linear, or quick opening).

1.2. Extraction Pipe

This pipe is the interconnecting component between the turbine and the deareator.
The extraction steam flows through this pipe before entering the deaerator. The
primary phenomenon to be modeled is pressure losses due to friction and elevation.
The friction factor is a function of Reynold’s number and pipe roughness. However,
for a given pipe roughness and turbulent flow, the friction factor can be assumed
constant. The basic assumptions used in developing the model are: quasi-steady
state, single-phase flow, fully-developed turbulent flow, and no reverse flow.
Using the quasi-steady state assumption and replacing the fluid density by the
average of the upstream and downstream values, the mechanical energy balance
for the extraction pipe can be solved for the mass flow rate as
we = Cf [pee (P — Po) + p2,AH, [144]" (3)
where C; is flow conductance, P, is pressure of steam entering pipe (psia), P
is pressure of steam leaving pipe (psia), w. is mass flow rate of steam leaving
pipe (b, /hr), AH,. is elevation difference between upstream and downstream
segments (ft), and p,. is average of downstream and upstream fluid densities

(Ibm/ ££%).

1.3. Deaerator

The deaerator subsystem is composed of a deaerator (an open feedwater heater) and
its storage tank. Deaerators serve four major tasks: i) removal of noncondensable
gases to prevent corrosion and scaling of boiler surfaces due to gases dissolved in
the feedwater, ii) heating of feedwater, iii) provide feedwater storage, and iv) are
located to provide a substantial net positive suction head on the boiler feed pumps,
preventing pump cavitation. ;

The feedwater is heated by spraying into a steam space. Most of the gases are
relased at this point due to the higher solubility of gases in steam than in water.
The remaining deaeration takes place in the stack of trays or baffles. Steam with
a high concentraction of dissolved gases is vented into the atmosphere (since the
amount of vented steam is small, this effect is neglected). The heated and deaerated
feedwater is then collected in storage tank below the deaerating section. ‘The
storage tank generally maintains sufficient storage to allow the plant to withstand
an interruption of the condensate. It also serves to provide surge protection for the
boiler feed pumps. The water level in the storage tank is maintained at a desired
set point through a control valve placed on the condensate flow section upstream
from the deaerator.
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The major phenomena simulated are: phase equilibrium, feedwater heating and
deaeration, and elevation head. The mathematical model consists of conservation
of mass, conservation of thermal energy, mechanical energy balance, fluid properties
(steam table), and geometrical relations. The basic assumptions in model develop-
ment are: phase equilibrium between liquid and vapor phases, equal pressure in
the deaerating section and the storage tank, and negligible non—condensable gas
effects.

~ For a fixed control volume, the mass conservation relation can be written as

dpa

P = @an — i) Vim (@

where p,; is the bulk density over entire vessel (Iby,/ft3), wq,, is the mass flow
rate of feedwater and steam entering deaerator (Ib,,/hr), wg,,, is the mass flow
rate of fluid leaving deaerator (1b,,/hr), Vimym = 3600V;, and V; is the total volume
of deaerating and storage tanks (ft3).

For no heat transfer and negligible kinetic energy effects, the energy balance
gives

du d
d—td = (wd.-,.hdm — Wdyuihdyus = I@w—f—) [(PaVim) (5)
where ’ud is the bulk specific internal energy (Btu.,/Iby), hq
feedwater and steam entering deaerator (Btup, /lb,,), and hg
fluid leaving deaerator (Btu,,/lb,,).

Through the use of hq = ua+7p;* Pa, equations (4) and (5) are transformed to

the following form for the bulk specific enthalpy, hg4, and the deaerator pressure,
Pd)

is the enthalpy of
is the enthalpy of

in

out

dh '
T = Rt v (@ai — wan) + Wi hai, = waphan)/
Vim(pa +vanp)] (6)
de dhd .
5 = " g+ (W = wdeu)/(Vimay) | (7)
Opa 9pd .
h = = _- — -~
where ahp ah/ap, Ah ahd Pa:const’ ap 8Pd hd:const’ and P

the conversion factor equivalent to 0.1851 (Btu -in®)/(lbs - ft3).
The water level in the deaerator is determined by a mass accounting in the

deaerating and the storage sections,

_ (pa — pg) ‘
L=D (s = pg) (/v2) ®
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where L is liquid level (inches), D is diameter of storage tank (inches), V, is
volume of storage tank (ft3), p; is density of saturated liquid (lb/ft*), and
pg is density of saturated vapor (Ibn,/ft3).

1.4. Controller

The deaerator level controller is a three—-mode proportional-integral controller with
anti-reset windup. A limit to the integral demand is provided to prevent the
integral action from continuing to intergrate past a certain point so that the integral
action is active as soon as the control error reverses.

The error signal for the three-mode deaerator level controller that is direct
acting (the output increases with an increase in setpoint) is defined as

£ = kl(Ls —_ Lm) + szJdout - k3UJc (9)
—— demand — — supply —

where ¢ is the control error signal, L, is the deaerator level setpoint (inches),
L,, isthe deaerator level measured (inches), w. isthe mass flow rate of condensate
water (Iby, /hr), wq,,, isthe mass flow rate of water leaving deaerator (Ib,, /hr),
and ki, k2, and k3 are constant parameters.

The proportional and integral actions on the error signal are expressed as

Op = k,,e (10)

% = ks {€ + ko[min(0,—O7r, 0) + max(O,—Or, 0} (11)
where Op is proportional output (fraction), k, is proportional gain, O is
integrator output (fraction), k; is integrator gain (seconds™!), k, is gain on
anti-reset windup, O is unbounded controller output, Oy is higher limit on
controller output, and O, is lower limit on controller output. The unbounded
controller output is the sum of the proportional and integral actions (the actual
output is the bounded Or).

Or =0p +0r (12)

2. State and/or Parameter Estimators Design

Most of the work considering the problem of FDI from the point of analytical redun-
dancy propose to use the Kalman filter in the stochastic case, and the Luenberger
observer in the deterministic case (Willsky et al., 1974; Wilsky and Jones, 1976:
Kerr, 1982; Yoshimura et al., 1979; Tylee, 1982; Watanabe and Himmelblau, 1983;
Laparo et al., 1991). Here, we base the design of our detectors on two concepts:
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structural decomposition and adaptive Kalman filtering. That is, the plant struc-
ture is decomposed into units for which individual filters are designed. In general,
the design of local filters can range from one incorporating most likely fault modes
to one incorporating all possible ones.

Due to mixed dynamic modes (slow and fast) common in most applications,
the modified extended Kalman filter (Fathi et al., 1991) is used for designing the
detection filters. These analytical algorithms are housed at the low levels of ab-
straction of a hierarchical knowledge structure. In the following, first the modified
extended Kalman filter algorithm and then a statistical test for checking the filter
behavior are presented.

2.1. Nonlinear Filtering for Systems With Coupled
Static and Dynamic Models

In the following, the Kalman filter approach will be presented with a brief descrip-
tion on its use for fault detection problems. No attempt is made to derive the
Kalman filter equations. Several excellent texts (Anderson and Moore, 1979; So-
renson, 1985) provide such derivations. Some special problems of the Kalman filter
applications have been treated by Fathi et al, (1991), and Korbicz and Zgurovsky
(1991).

Different nonlinear techniques for solving the problem of state estimation are
available (Anderson and Moore, 1979; Sorenson, 1985) and a short survey of the
recursive state estimation techniques is given by Misawa and Hendrick (1988).
Among these techniques, the Extended Kalman Filter (EKF) method is widely
used by most investigators to solve practical problems (Sorenson, 1985; Loparo et
al., 1986; Tsuge et al., 1991). Therefore this suboptimal filter is used in the design
of state and parameter estimators. ‘

From the process model presented in the previous section, it is clear that the
model equations are nonlinear and consist of both static and dynamic equations.
Thus, it 1s important to consider the application of the EKF algorithm to the
joint parameter and state estimation for systems with coupled static and dynamic
models.

Let the model of a general stochastic system with unknown parameter vector
@ be described mathematically by the following equations (Fathi et al., 1991)

za(ktl) = £k, za(k), z,(k), B(k), u(k)) + wa(k) (13)
0 = f,(k+1,zq(k+1),z,(k+1), O(k+1), u(k+1))Haw, (k+1) (14)
y(k+l) = h(kH, zg(k+1), 2, (k+1), 0(k+1), u(k+1)) + v(k+1) (15)

where equations (13) and (14) describe the dynamic and static models, respectively,
and equation (15) is the measurement model, wu(k) is known input, w(k) is
additive measurement noise, w(k) is additive process noise, z4{k) is system state
with slow dynamics, z,(k) is system state with fast dynamics, y(k) is output
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vector (observable signals), and 8(k) = [ ¢T(k) di(k) ]; ¢ and dy are
physical coefficients and unmeasured disturbances, respectively. Sub-indices d
and s denote variables and parameters associated with slow and fast dynamics,
respectively.

Furthermore, it is assumed that the system noises wg(k) and w,(k + 1), the
measurement noise v(k), and the initial conditions z} and z° are random
variables with known statistics

Elwi(k)] =0 Elv(k)] =0 Elz}] = &
Elwi(kyw! ()] = Q;(k)r1,  Elp(k)o” (1)] = R(k)8, (16)
E[s)(62})"] = P:(0]0)

where T denotes the transpose operator, 6z is the Kronecker delta function,

62) = «? — Z}, P(0|0) and Q(k) are symmetric non-negative definite matrices,

R(k) is a symmetric positive definite matrix, and ¢ = d,s. In addition, it is
assumed that w;(k), v(k), and = are uncorrelated.

To cope with time—varying parameters, we postulate that the true parameter
vector 8 varies according to

O(k+1) = 8(k) + wy(k) (17)
where wy(k) is the parameter noise with zero mean and Q, covariance matrix.

To tackle the joint state and parameter estimation problem, the augmented
state vector z, is defined as

k) B [25() =T (k) 67 (8)] | | (18)

To solve the joint state and parameter estimation problem for the augmented

system described by equations (13)-(15) and (17), the nonlinear Kalman filter

approach (Bryson and Ho, 1975; Anderson and Moore, 1979) can be applied. Based
on the measurement sequence Y (k) = {y(0),y(1),...,y(k)}, the modified EKF
algorithm is given by the sequential use of the following recursive algorithm (Fathi
et al., 1991)
Za(k+11k) = fok, Za(klk), 2, (k|k), 6(k[R), u(k)) (19)
z,(k+1|k) = Sol;'{f,(k +1,Z4(k + 1}k), Z,(k + 1|k),
O(k + 1|k), u(k + 1)) = 0} (20)

6(k + 1|k) = 8(k|k) (21)

vk+1) = ylk+1)—h(k+1,2(k + 1{k)) (22)
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P(k+1]k) = Ay (k)P (k|k) AT (k) + Q; (k) (23)
V(k+1) = Hu(k+ 1)P(k + 1|k)HE (k+ 1)+ R(k + 1) (24)
Kk+1) = Plk+1lk+ D)HL(k+ DR Y (k+1) (25)

4+ 1k+1) = Z2(k+ 1[k) + K(k + Dk + 1) (26)

P(k+1lk+1) = P(k+1|k)—P(k+1]k)HT (k+1)V "1 (k+1) x
Hy(k+ 1)P(k + 1]k) (27)

with initial conditions, Z(0/0) = 2o and P(0]0) = Py. Sol;  denotes the
solution of the static equations for the vector Z,, '

_ Oh(z(k), k)

H(k) Oz

(28)
2=2(k+1]k)

P(k + 1k) = E{[z(k + 1) = 2(k + 1|k)][z(k + 1) — Z(k + 14k)]T} is the error
covariance prior to measurements at time k + 1,

Pk + 1k + 1) = E{[z(k+1) = Z(k + 1|k + D][Z(k + 1) — Z(k + 1|k + 1)]T}
is the error covariance matrix after measurements at time
k+1,

and K(k+ 1) denotes the Kalman gain.

One should notice that equations (19)-(27) describing the nonlinear algorithm
of Kalman filter are coupled as matrices Af(k) and Hy(k) are functions of
Z(klk) and Z(k + 1[k) and should be computed on-line.

The submatrices A;; of the matrix Aj(k) = {EAijf} for 7,57 =1,2,3

are given by

_ %, _ 914 _ 9%,
A = B, Ay = B, Az = 30
BNOARE R AN AR T
Az = (0:1:;) dzg Oxg Az = (89:3 Oxg Oz, (29)
— __1 — o~ —
_ (9], of, 0fq | Of,
A””"(azs) (Bzd 26 + aa)
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A3 =0 A3 =0 Azz=1

The submatrices Q;; of the matrix Qf(k) = {EQUE} for 2,7 = 1,2,3 are

defined by the following expressions
9 AN
Q11 = Qu(k) Q12 = —Qq(k) (8;) (6_:{::) Qi3=0
0 of,\ ' of
Qs =— (8:,) f Qa3 =~ (6_2—) s Qo(k) (30)
AN 7 ] TAN
@n=(3L: ) [Q,<k>+(§§;) Qulk )(31 ) (% 2 >Qo(’c)( )7] (5{3—)

— T , .= « ~T
0 0
Q3 =0 Q3; = —Qy(k) ( ;;’) (8—;:‘:') Q33 = Qy(k)

where

of, _ of,
0z 0z

0fs _ 9fa
2=2(k+1]k) 0z 0z

z:?(klk)

and (-)~T denotes the transposed inverse of (-).

In general, the structure of the modified EKF algorithm (19)—(27) is the same
as the one for nonlinear dynamic models (Anderson and More, 1979). However,
in details, the main differences are in computing the system matrix, Ay, and the
generalized covariance matrix of the system noise, @, according to (29) and (30),
respectively. Notice that these matrices should be recalculated at each time step
k through the use of the prior estimate Z(k + 1|k) and the estimate Z(k|k).

3. A Statistical Test for Checking the Validity of Model

A variety of statistical tests can be performed on the innovations or residuals to
determine the validity of the model used in the filter design (Wilsky et al., 1974;
Wilsky, 1976; Chien and Adams, 1976). To test the adequacy of the filter model,
the modified Sequential Probability Ratio Test (SPRT) with feedback (Chien and
Adams, 1976) has been implemented in our combined analytical model-based and
knowledge-based real-time diagnosis system. Below, a brief description of this
method will be presented.

3.1. Modified SPRT with Feedback

The SPRT developed by Wald (1947) and then modified by Chien and Adams
(1976) is one of the simplest test for the whiteness of the innovation sequences
defined as
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v(k+1) =y(k+ 1)~ h(k+ 1,2(k+ 1]k)) (3

The innovation sequence can be considered as an output for the Kalman filter. If
the filter reflects the actual system behavior properly, the innovations sequence is an
independent Gaussian random sequence with zero mean and covariance V(k+1)
(see equation (24)).

According to the modified SPRT, for each component vitk+1),7=1,2,...,. M,
of the innovation sequence, the following hypotheses are defined:

Ho:  null hypothesis, vj(k+ 1) is an independent Gaussian random sequence
with zero mean and variance Vj;(k + 1),

Hy: alternative hypothesis, v;(k+1) is an independent random sequence with
mean a;j(k 4 1) and variance Vj;(k + 1),

where Vj;(k 4+ 1) denotes the (j,j)th component of the covariance matrix
V(k+1) given in (24), and

a;(k+1) = ay/V;;(k + 1) ‘ (32)

where a is a positive constant.

The test statistic of Wald’s SPRT is defined as the logarithm of the joint like-
lihood ratio (LLR) function A;(k + 1)

p(”j(l)v VJ'(2)’ "HVJ'(k + l)lHl)
p(vi(1),vj(2), ..., v (k + 1)| Ho)

Ai(k+1)=1In (33)

where p( | ) denotes the conditioned probability. As the innovation sequence
vi(k+1), j=1,2,..,M is an independent Gaussian random sequence, the LLR
can be evaluated as '

ML) =D a0 [0 - 5050] /509 9

i=1
or generated recursively as follows

/\j(k+l)=/\j(k)+a'[;j(k+1)—%a] | » (35)

with initial condition 1;(0) = 0, where 7;(k+1) = v;(k+1)//V;;(k + 1) denotes
normalized quantity with mean a and variance 1. As the method of Wald’s test
suffers from an extra time delay in detecting the system degradation, the modified
LLR of Chien and Adams (1976) is evaluated as

Cf k+1) i A(k+1) >0
Af(k“)‘{ G ,\jgk+1)<0 (36)
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Then, the decision rule is defined as
if /\J-+(k +1)>),, choose H;
if /\J~+(k +1) <0, choose Hy (37)
if 0< /\j‘(k) < A,, take another observation

where A; denotes the upper threshold and can be computed from the following
equation

As
T:a_z(e - —1) (38)
for a given mean time between false alarms 7. For the same mean time between
false alarms, the upper threshold A, in the modified SPRT is related to the lower
and upper thresholds A and B in Wald’s SPRT system by
5
A, _ e’ —1

€ —As—l——<B+Ai—:'e—A) (39)
where A and B can be computed from the specified error probabilities for false
alarms (a) and missed alarms ()

A:ln(lfa>, B:l%%) ' | (40)

The appeal of the application of sequential analysis and information feedback
lies in the fact that an on-line recursive technique is more attractive than other
approaches.

4. Design of Local Estimators and
Application to Fault Detection

In this section, the failure detection of the deaerator control subsystem of a coal-

fired power plant is considered based on the analytical redundancy approach. To

design local filters, the system shown in Figure 2 is decomposed into: condensate

pump, control valve/condensate line, extraction pipe, deaerator, and controller.
The list of faults considered for the deareator control subsystem are

e sensors failures
1) ‘deaerator level sensor failure, L
ii) condensate flow sensor failure, w,
ill) deaerator output flow sensor failure, wa,,,
e gain faults in the controller
i) gain fault of the proportional part, kp'

ii) gain fault of the integral part, -k



100 Z. Fathi, J. Korbicz and W.F. Ramirez

e transportation line faults
i) valve/condensate line flow conductance, Ceq
i) steam flow rate, w,

To detect the mentioned above faults, the Kalman filter approach will be used.
It is resonable to point out that these faults constitute only a portion of the faults
considered in our knowledge-based system. The remaining faults are detected using
compiled knowledge about the process, and this problem is omitted in this paper.
Here we only focus on the detection problems of the above faults.

In many applications of Kalman filter technique for fault detection, the state
and/or parameter estimators have been designed for the entire system (Chao and
Paolella, 1990). In this work, the system is decomposed into units for which indivi-
dual filters are formulated. In the following, the design problem of local estimators
and their simulation results will be presented. These filter modules which are em-

ployed in the knowledge base have been implemented in the software environment
of MODEL (Model Software).

4.1. The Condensate Line Failure

A typical fault of the condensate line is caused by the partial pipe plugging which
can be detected by the on-line identification of the valve/pipe conductance C,,.
To solve this problem, let us assume that the mass flow rate of water leaving pump
wp and the unknown parameter Ce, create the state vector

z=[wp Ceg]” , (41)

Furthermore, it is assumed that the mass flow rate of water entering valve, w,, is
the output measurement, with zero mean noise w,. Then the process model can
be expressed as

1/2

wp = Ceq [Ppo(Pp — Py) + PL, AH, /144] (42)
Ceq(k + 1) = Ceq(k) + we(k) (43)
Wp = Wp + Uy (44)

where w, is the parameter model noise, v, is the measurement noise, and Ppu
is assumed to be constant. The process model (42)-(44) is described by both the
static equation (42) and the dynamic equation (43).

To design the modified EKF (19)—(27) for the system described by (42)-(44),
the static, dynamic, and observation functions take the following form

fi(:) =0, Fo(-) = Ceg(k), h(:) = wp

£i(-) = Ceg[Ppy (Pp — Py) + P2, AH, /14412 — (45)
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The derivates of f,(-) with respect to w, and C,, are given as

o=l o= (B Py A aH /1]
Thus, the matrix Ay is a (2x2) matrix,
Ap = [ 8 'l ] (46)
where
ayz = — (8?’)—1 6_?, = o1,
Owp 0C.y 0C.q

. Furthermore, the matrix Q; isa (2x2) matrix and its elements are

NGAS of, . OF 7, of, . o7,
qu_(a"’p> [Qa 8Cqu aCeq]( p) Qs+acquoaCeq

__(9F,\ 7 oF, o, . ‘
q12 = — (8w,,) ac., Qo = ac., Qs (47)
of, o1, - of of, _
—Qe (6069) <6wp> = Qo5 3C.. ga2 = Qo

Note that in this case @y and @Q, are scalars and denote variances of parameter
and static model noises, respectively. From the measurement equation (44), we
also have that Hj, = [1 0].

For the valve model (42)—(44), the results are presented in Figures 3-5. The
steady state solution for the valve model is Z= [@, C.,]T = [3.65-10° 2.93-10]T.
The measurement noise.standard deviation &, and the system parameter noise
variance 62 are: 6, =7.3-10%, 62 =10"*

Figure 3 represents the behavior of the estimated mass flow rate &, and
equivalent conductance 6’59 when the initial condition for the estimation model
(wp=3.65-10%, C.q=2.00-10*) was considerably different than the “true” steady-
state value. The estimates of the flow rate and the conductance approach the true
values rather quickly (approximatly after 5-6 sampling times).

In Figures 4 and 5, the deaerator level set point was changed from 120 to 118
inches. The system responded to this change by restricting the valve’s opening for
a period of time. These two cases differ in measurement noise standard deviations
(6, = 7.3-10* and 1.46-10%). The abrupt changes of the conductance occurring
at different times are detected well.
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4.2. The Condensate Flow Sensor Failure

In general the condensate flow sensor failure can be detected using the mathemati-
cal model of the deareator or the condensate line. Taking into account the different
complexity of these models, the valve model was chosen. To detect the sensor fa-
ilure, the valve model (42)-(44) has to be transformed to another form. For this
case, the pressure of water leaving pump and entering valve P, is considered as
the new state variable, the mass flow rate w, is the unknown parameter, and the
pressure P, is the measured variable. Under these assumptions the “new” va-
lve model can be easily obtained from (42)-(44) in the form of a two-state model
z =[P, wp]T as

wj (k)

14 -—

=P _5 AH,/144+ P, (48)
wp(k+1) = wp(k) + wy (49)

with the measurement given by
Fp=F +v . (50)

where w, is the parameter model noise and v, is the measurement noise.

The structure of the model (48)—(50) is the same as model (42)—(44). In other
words, it is given by coupled static and dynamic equations. It is worth to note
that the implementation of the modified EKF for the model (48)—(50) gives us the
actual behavior of the flow rate @,(k). Thus, upon comparing the output from the
filter &p(k) with the output from the actual flow sensor w,(k), we can determine
the sensor failure. : ‘

To design the modified EKF for the model (48)-(50), we need to write the
nonlinear functions describing this process as

fa()=0," Fo(-) = wp(k), h()=F,
£.()= gg(;) ~5,,AH,/144+ P, - P, O 6Y

The derivates of f, () with respect to P, and wy, take the form

8, = 1 By L2

It is clear that A; is a (2x2) matrix and has the same structure as (46), with
element ajs given by

I (a?, T of, _ o,
12 0P, Owp - Ow,
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In turn, the elements of the matrix Q, are given by

of 5]
qa1=Q,+ a—iQo 6:; q22 = Qo
of 6”,
q12 = 65: Qs ga1 = Qs Bip

It is obvious that in this case @y and @, are also scalars and the matrix Hy, is
H; =[10]

The effectiveness of the Kalman filter in estimating the pressure P, and the
flow rate w, is shown in Figures 6 and 7. Figure 6 shows the estimation results for
an initial condition (P, = 386.7, w, = 4.3-10°) that is considerably different than
the “true” value. Note that the “true” steady-state solution for the valve model
(48)-(50) is Z = [P, wp]? = [386.7 3.65-10%). In Figure 7, a disturbance was
introduced by changing the deaerator level set point from 120 to 118 inches. Upon
comparing the estimated flow rate with the correct response shown in Figure 4, it
is observed that the response of the estimated flow rate is slower than the actual
behavior. In both cases, the measurement noise standard deviation ¢4, and the
system parameter noise variance 62 are: &, = 7.72, 62 =10"%

Finally, one should notice that the condensate flow sensor failure is determined
by comparing the filter and sensor outputs.

4.3. The Extraction Pipe Failure

A typical source of fault is low or high steam mass flow rate from the extraction
pipe to the deaerator. Thus, information about actual values of the mass flow
rate leaving pipe w, is important in solving this detection problem. Upon using
equation (3) and assuming that the mass flow rate w, is the unknown parameter,
the desired mathematical model is given by

2

P, = ——t— +7, AH,./144 + P, (52)
CPse

welk+1) = we(k) + wy, (53)
with the measurement equation
P, =P, + v, (54)

where w, Is the parameter model noise and v, is the measurement noise.
It 1s easily seen that the model (52)—(54) has the same structure as the va-
Ive models. Likewise as in subsections 4.1 and 4.2, the modified EKF is used in

_designing the filter.

From equations (52)-(54), the nonlinear functions are written as



104 Z. Fathi, J. Korbicz and W.F. Rarmirez

fa()=0 Fo() = we(k) h(:) = P

fa('):—% +ﬁseAHse/144+Ps"‘Pe (55)

The derivates of f,(-) with respect to P, and w, take the form

afs _ a-fs — We
5p, = ! bw. ~ Tl (56)

In this case, Ay isa (2x2) matrix that has the same structure as (46) with
element a;; given as

o,
125 5.
Furthermore, the elements of Q s are
- —T
_ of, . 0f, _
11 =Qs + B, Qe B, 922 = Qo
_ 97, _ . 971,
B2 =50 Qs 921 = Qo 3,

The estimation results for this module are shown in Figure 8. In this case, the
filter is started from a value (w, = 7.5 - 10°) that is substantially lower than the
actual flow rate (w, = 8.5 - 10°). As it is seen, the “true” value of the steam mass
flow rate is estimated rather quickly and accurately. For this case, the measurement

noise standard deviation 6, and the parameter noise variance 62 are: 6, = 2.0,
62 =104,

4.4. The Gain Faults in the Controller

For the controller, two modules for estimating the proportional gain, k,, and the
integral gain, kj, are considered using the Kalman filter approach. Note that for

models consisting of only dynamic equations, the modified EKF reduces to the
nonlinear Kalman filter algorithm.

4.4.1. The Integrator Gain Fault

This problem can be considered as a typical fault diagnosis problem for
a system with parametric failure. In this case, the desired state vector is defined as
z = [Og,kg], where ky is treated as an unknown parameter to be estimated
based on the measured controller output Op degraded by noise. On using the
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model equations given in subsection 1.4, the desired discrete-time controller model
is described by

O1(k +1) = Or(k) + Atkr(E){e(k) + kq[min(On — Or,0)
+ max(0; — Or,0)]} (57)

kr(k+1) = kr(k) + we(k) (58)
with measurement equation

Or (k) = Or(k) + kpe(k) + vo(k) (59)
where At denotes the sampling time, and

e(k) = ki(Ls — Lm(k)) + kowa,,, (k) — kaw.(k) (60)

Ln(k), wq,,,(k) and w.(k) are the measured signals. Furthermore, wi(k) and
v,(k) are noises with known statistics. ‘

To solve the state estimation problem for the controller model (57)-(60), the
EKF is used. In accordance with the general description, the elements of the
nonlinear function f; = [f1 f2]T are given by

fi(-) = Or(k) + At kr(k){e(k) + ka[min(On — Or,0)
+ max(0; — Or,0)]} (61)

f2() = ki(k) (62)

and in addition
h(-) = Or(k) + kp(k)e (k) (63)

By definition, the matrix Ay has the form

Oh OA]
Aj = 80; Okr (64)
0 1

where its elements are

ofi d . .

(—9-67 = 1+ At k}'(k) ka BOI [I’l’llIl(Oh — OI - kPE(L),O)
+ max(0; — Oy — kye(k),0)]

of

g3, = Otde(k) + ka [min(Oy — Or,0) + max(0: - Or, 0)]}
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and the matrix Hj is equal to Hy =1 0].

To test this submodule, a test case was generated. First, it was assumed that
a parameter kr fault occurs at sampling time k = 34 by a rise of value from
0.05 to 0.1. Note that it is impossible to estimate the uknown parameter k;
using only the measurement data obtained in the steady-state operation of the
system and therefore an additional disturbance should be introduced. In our case,
the deaerator level setpoint was changed at k = 53 from 120 to 115 inches.
Figure 9 represents the measured controller output and the estimated values. The
measurement noise standard deviation and the system parameter noise variance
are 8, = 0.02, 62 = 10~%, respectively. The estimation accuracy, or in other
words, the detection accuracy of the abrupt change of the integrator gain is quite
good.

4.4.2. The Proportional Gain Fault

The proportional gain fault can also be considered as an estimation problem for
a dynamic system with an unknown parameter. In this case, the dynamic system
defined by equations (10)-(12) can be written in the following discrete form for the
unknown proportional gain &,

O[(k + 1) = Oj(k) + At k[{s(k) + ka[mill(oh — O, 0)
+max(Or — O, 0)]} : (65)

kp(k +1) = ky(k) + wi(k) (66)
with the measured variable
O7(k) = Or + kpe(k) + vo(k) (67)

To estimate the state vector z = [Or,kp]7, we should design a nonlinear filter.
The elements of the nonlinear function f; = [f; f2]7 are

h() = Or(k) + At kr{e(k) + ka[min(Oh - kp(k')E(k') - 0r1,0)
+ max{0; — k,(k)e(k) — Oy, 0)]} (68)

fa() = kp(k) (69)

and the measurement function h(-) is given by (63). Then, the elements of the
matrix A; (equation (64)) are defined by

0fi(1) _ 0 )
20, = 14+ At ky k“a_o, [min(Op, — O1 — ky(k)e(k), 0)

+ max(0; — O — k, (k)e(k), 0)] | (70)
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dfi(+)
ok,

= Atkrk [mm(Oh Or — kp(k)e(k), 0)
+ max(Oz - OI — kp(k)e(k),0)] (71)

Furthermore, the matrix Hj is equal to Hp = [1 e(k)].

As in the case of the integrator gain fault detection, a test case was generated.
. Figure 10 represents the behavior of the estimates and the measured controller
output Or. After the introduction of additional disturbance in the system by
the level setpoint change (from 121 to 119 inches), the nonlinear filter can detect
efficiently the proportional gain fault (a change from 0.1 to 0.05).

4.5, The Level Sensor Failure

The deareator model (6)—(7) is used to solve the level sensor failure in the storage

tank. The Kalman filter is designed using the discrete—time deareator model given
by

ha(k +1) = ha(k) + Athg,,, (k) (72)

Py(k +1) = Py(k) ~ Atanpha,,, (k) + At(wa,, — Wa,u)/(Vimop) (73)
with the measurement equation

Pa(k) = Pa(k) + vy (k) (74)
where

Rigo, (k) = [(—ha(k) + 705 ") (Wain — @dgus) + Wi hdin —

dout hdout]/[‘/tm(pd(k) + 705’!?)]

and wp(k) is the measurement noise with known statistics.

For the dynamic deaerator model (72)-(74), the nonlinear Kalman filter algo-
rithm is applied. The level in the storage tank can then be calculated using the
estimates hy and Pd from the Kalman filter algorithm. Having the state estima-
tes, we can calculate estimates of the bulk density over the entire vessel pg, the
density of saturated liquid py, and the density of saturated vapor p; as follows

pa = fa(ha,Pa), By =fo(P2), By = f1(Pa) (75)

where f4(-), f,(-) and f;(-) are known steam table functions. Then, the level
estimate L can be computed as (see equation (8))

o (alk) = B ()Y,
R A X ()72

(76)
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For the deareator model (72)-(74), the elements of the nonlinear function f; =
[fi foT are

fi(-) = ha(k) + Athg,, (k) (77)
fa(-) = Pa(k) = Atanpha,, (k) + At(wa,, — wa,,,)/(Vimap) (78)

and the measurement function is h(-) = Py(k). Now the elements of the matrix
Aj; are defined as

(210 Oha,,, 8fi()) _ ,,0ha,

ohy LT A G, 5P~ 2 op,

0f() _ K3 _ '

Bhe = "Atgp,(amha) (79)
210)

i, J _
op, — 1~ 2gp, (anpha,,,) + At [(wd;" = Wdou)Vim 5% 1]

and Hj, =[0 1].

The performance of this filter was found to be poor. A linear time-invariant
approximation of the model was used to study the observability properties of the
state—space model. The enthalpy was found to have very poor observability beha-
vior. This was revealed through examining both the observability matrix and the
observability gramian. The alternative is to use an autoregressive moving average

model for the level sensor (Yung and Clarke, 1989).

4.6. The Output Flow Sensor Failure

For the output flow sensor failure, the deareator model (72)-(74) is modified to
include the unknown parameter wg,,, as a new state variable. In this case, the
deareator model is given by

ha(k +1) = ha(k) + Athg,,, (k) (80)

Pi(k +1)

Py(k)— Atanpha,,, (k) + At(wa;, = waou )/ (Vimap) (81)
Wiy (K +1) = wa,,, (k) + wu (k) (82)
and the measurement equations are
Py(k) = Pa(k) + vp(k) (83)

L(k) = L(k) + vr,(k) (84)
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The model (80)-(84) is nonlinear and therefore the nonlinear Kalman filter was
designed to estimate the enthalpy hg, the pressure Py, and the output flow wy
The elements of the matrix A; are

[ 0f1(-) Of() 9AH() ]
8hq OP; Owg

outl’

out

A= | 30 0R0) 9% (85)
Ohg OP, Owgq

out

L o 0 1

The derivatives of f; and f; with respect to hy and P; are the same as those
given in (79). The remaining elements are

afl() ahdcor

deout - At awdoui

010) _ _p1 0 (anphan,) - At)(Vimay) (86)
dew: out

The designed nonlinear Kalman filter for the deareator model (80)-(84) was
tested under different initial conditions. Figure 11 shows the estimates of enthalpy,
pressure and flow, and the measured pressure when the initial condition of the
output flow (i.e., the sensor value; wg,,, = 2.0 - 10°) is lower than the true value
(wd,, = 4.5 10°%). Figure 12 represents the estimation results when the initial
condition of the output flow (wg,,, = 6.0-10°) is substantially higher than the true
value. The measurement noise standard deviations for the pressure and level and
the system parameter noise variance are: 6,, = 0.28, §,, = 0.29, and 62 = 1073,
In both cases, the accuracy of the estimated flow is good. As stated previously, the
sensor failure is detected by comparing the sensor and filter values.

5. Conclusions

We have described an approach of sensor and parameter fault detection for the
deareator control subsystem of a power plant. Our main objectives in this paper
were to design state estimating filters for sensor and parameter fault detection
using the nonlinear Kalman algorithm and the modified EKF. It should be men-
tioned that the modified Kalman filter for the coupled steady-state and dynamic
equations has been proposed by our group (Fathi et al., 1991). In this estimation
algorithm, the error covariance matrix prior to current measurements is updated
using filtered estimates rather than the predicted quantities. This has an impact
on the convergence properties of the algorithm when-it is used for parameter esti-
mation. The numerical experiments implemented using the decomposed deaerator
contrel subsystem illustrated the effectiveness of the algorithm for fault detection
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in power plants. Further research is needed to test the system using real data after
the inclusion of low—pressure feedwater heaters between the level controller and
the deaerator. Functional redundancy techniques can have major impact on actual
power plant operation.
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