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OPTIMAL SENSORS LOCATION
FOR PARAMETER IDENTIFICATION
OF DISTRIBUTED SYSTEMS*

DARIUsz UCINSKI**

A computational method is proposed for optimal sensors location in para-
meter identification of two-dimensional parabolic distributed systems with
noise—contaminated outputs. After a short survey, the concepts of optimality
are discussed, followed by a derivation of the Fisher information matrix for
systems with spatially varying parameters to be identified. The determinant
of the information matrix and the semsitivity criterion are taken as measu-
res of identification accuracy. Numerical examples illustrate the proposed
approach.

1. Introduction

The development of parameter identification methods that are more effective and
reliable has drawn researchers’ attention for almost thirty years now, especially
in distributed parameter systems (DPS), i.e. systems that are characterized ma-
thematically by partial differential equations (PDE’s) (see Kubrusly, 1977; Polis,
1982; Polis and Goodson, 1976; for survey papers). In spite of the fact that distri-
buted models involve using very sophisticated mathematical methods, they make
possible to describe the process more accurately and to implement more effective
control strategies. Examples of applications areas abound. They include structural
analysis and design where vibrations and dynamic behaviour are central, acoustics
problems and design in the basic process industries, where heat and mass transfer
and chemical reactions are important. They also concern geophysical analysis, inc-
luding underground water and oil exploration, air and water pollution propagation
and nuclear energetics (see Preprints of 5th IFAC Symp., 1989).

Although it is well known that estimation accuracy of DPS parameters depends
significantly on the choice of experimental conditions, there have been very few
contributions to the optimum experimental design for that systems. The problem
is to choose the experimental conditions subject to constraints such that the expec-
ted accuracy is maximized in some sense. It should be noticed that the problem
considered is essentially different from the optimal measurement problem for state
estimation (see Kubrusly and Malebranche, 1985) since in the first one the state
depends non-linearly on unknown parameters.
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Since it is generally impossible to measure the system state over the entire
spatial domain, the problem of where to locate measurement devices becomes an
important one if we want to reduce the cost of instrumentation and increase the
efficiency of the identifiers.

There are three possible strategies of taking measurements:

e location of a given number of sensors (Kubrusly and Malebranche, 1988},

e using movable sensors (Carotenuto et al., 1987),

e scanning, i.e. using only some sensors of all the stationary located ones at the
moments when the measurements can be taken (Nakano and Sagara, 1988; .
Korbicz, 1991).

The above mentioned techniques involve the following problems, respectively:

e how to choose the minimal number of the sensors and their location,

e how to choose their optimal trajectories and velocities,

e how to choose optimal location of the sensors at given moments.

These topics have been widely studied by many authors for state estimation.
However, only a few papers have appeared specifically on the optimal sensors lo-
cation problem for DPS identification.

The existing methods can be divided into three main groups:

e methods leading to state estimation,

e methods leading to optimum experimental design,

e methods leading to random fields analysis.

This classification is shown in Figure 1.

Optimal sensors location methods
for DPS identification

Methods leading Methods leading Methods leading
to state to experimental to random fields
estimation design analysis

Fig. 1. Classification of the existing methods for sensors location.

The methods belonging to the first group seem to be flexible enough since their
use involves relatively few constraints and the optimal sepsors location problem
for state estimation has already been explored widely (Korbicz and Zgurowski,
1991; El Jai and Pritchard, 1988; Kubrusly and Malebranche, 1985). However,
the essential problem is that after augmentation of the state space for estimating
parameters jointly with the state our task becomes very non-linear. Because of
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that a sequence of linearizations at suitable trajectories is performed in (Male-
branche, 1988) and a special suboptimal filtering algorithm is used in (Korbicz
and Zgurowski, 1991). After transforming the parameter identification problem
into the state estimation, one of the algorithms presented by Kubrusly and Ma-
lebranche (1985) can be applied. Nevertheless, practical implementation of many
of them is restricted because the matrix Riccati equations for the filter error co-
variance matrix should be solved. Therefore, an upper bound for the filter cova-
riance is used by Malebranche (1988) and the suboptimal filtering is implemented
in (Korbicz and Zgurowski, 1991). In those works the sensors location problem is
considered as an optimization one so that the trace of the covariance error matrix
is minimized with respect to the dynamic constraints in the form of the Kalman
filter equations.

The second class of the methods is closely related to classical optimum experi-
mental design. System description in the form of deterministic PDE’s with noisy
observations is assumed. The optimal sensors location criteria are essentially the
same: maximization of a scalar measure of the Fisher information matrix associa-
ted with the parameters to be identified. It is worth noting that the inverse of
this information matrix is a solution of the Riccati equation, related to the state .
estimation problem, for the case of no input noise. In (Quereshi, 1980) two simple
examples were given. In order to avoid computational difficulties sinusoidal exci-
tations were assumed and the position of a single sensor optimized. The optimal
design depends on unknown parameters observed in the above examples that is
typical for experimental design in dynamic systems. This requires the necessity of
certain ¢ priori knowledge, such as nominal parameter values which can be obtai-
ned by a preliminary experiment or by physical analysis. In (Rafajlowicz, 1981) the
information matrix was associated to the system eigenvalues rather than to the sy-
stem parameters. Conditions for optimality of the experiment design were derived
after some simplifications (among others the infinite observation time and restric-
ted form of the inputs were assumed). Under the optimal experimental conditions
one can observe sensors clusterization, i.e. sensors are assembled at some points
of the spatial domain. This is because of the assumption that the measurement
noises are produced independently by sensors placed very close to each other and
the sensors dimensions are neglible. In other works (Rafajlowicz, 1984; Rafajlowicz
and Myszka, 1986) much attention is focused on the problems of optimum input
signal choice for DPS identification and in (Rafajlowicz, 1986b) an approach to the
optimum choice of moving sensors trajectories is proposed.

The third group of the methods is very interesting for applications. This ap-
proach is based on random fields theory. Since DPS are described by PDE’s, direct
use of that theory is impossible. The work (Kazimierczyk, 1989) is typical for that
group. Initial description for some mechanical system subjected to the action of
a random load is reduced to two characteristics of a random field (the mean and
the covariance function). Those characteristics contain unknown parameters of the
initial description. The very important fact is that the qualitatively proper results
of the design require the more terms in the Fourier series approximation of the re-
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sponse of the system the more sensors positions are being optimized. For optimum
sensors placement in random fields analysis the theory of optimum experimental
design turns out to be very effective (Brimkulov et al., 1986).

The use of the above mentioned methods is restricted because they involve both
computational (the methods belonging to the first group) and realizing difficulties
(the methods of the other groups). Apart from that the simulated results presented
in the optimal sensors location literature have generally been developed for DPS
with one-dimensional spatial domain and constant coefficients. Some generaliza-
tions are still expected in this connection.

In this paper, the relationship between the experimental conditions and the
achievable accuracy in parameter estimation for parabolic systems is studied. The
numerical solution is proposed based upon an optimization of the criterion that
uses the Fisher information matrix. That approach enables us to consider two—
dimensional systems with spatially-varying parameters and to study problems
when no analytical solution exists.

2. Problem Statement

Distributed parameter systems are described in most cases by linear or non— linear
partial differential equations. Assume that the system under consideration can be
described by the following equation

0X(t,z) 0X 80X 68X 8*X )
—5 = f (t,z,X, 52 Bz azf  ny 3z§ U, (1)

z€Q, te(0,t]

where f is a known vector function continuously differentiable with respect to
2 and t and twice continuously differentiable with respect to the remaining
parameters, z = [21,...,23]7 - the spatial coordinate vector, X(t,z) - the state
vector, U(t,z) - the input vector, @ - the unknown system parameter vector,
Q0 - the open spatial domain with smooth boundary 89, Q = QU 8.

The initial and boundary conditions for (1) are given, respectively, by

X(0,2) = Xo(2), z€EN (2)
and
X ‘
g(t,z,X,a—z)—O, z € 00 - (3)

where g is some known function.

We assume that measurements of the state X(t,z) are made continuously
in time at N fixed points {2/ }le C Qad € Q and the observation system is
non-inertial. Then the observation equations are algebraic and given by
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Yi (t) = h’j (t’X(t, zj)) + E(tv zj): te [Oitf] (4)

ji=1,..,N
Here §,4 is the part of © where the measurements can be made, h; —some scalar
function that describes the j—th sensor and €(¢,2’) denotes the measurement
noise (usually it is assumed that the noise is gaussian, spatial uncorrelated and

white). The observation scheme is shown in Figure 2.

(t) Q

Ya(t)
measurement - { | ]
SENSors (t)

Fig. 2. The measurement Pprocess.

We formulate the parameter identification problem as follows: given the model
(1) and the outcomes of the measurements Y at the points {2/} j=1 and the
input U, it is necessary to estimate the parameter vector @ which minimizes the
least-squares performance criterion, i.e. to find @ such that

O = arg Jnin. z / IY5(8) — hy(t, X (t, 2 ; ©))||2dt (5)

where k\(t, z;0) denotes the solution of the equation (1) for the given parameter
© and ||-|| - the euclidean norm. When the measurements are taken under noisy
condition we are faced with new problems, namely where to locate the sensors and
what input signals should be used in order to achieve the best accuracy of the
estimates of unknown parameters in some sense.

There are two widely used estimation accuracy criteria for solving the above—
mentioned problems:

i) maximizing or minimizing some scalar measure based on so called the average
Fisher information matrix that is defined as follows (Quereshi et al., 1980)

— tf(')thJTahtX ZNT 1
M (", ... 2 Z/ 2] e XEZD 5

(¢, X (t,27)) 0X (t, 2
3 ah](t,ax(t z7)) ;@z )dt (©)
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where Y = diag { var ¢(t,27),j = 1,..,N}; in most cases the determinant
det M is maximized (the D-optimality criterion) or the trace of the invegse
trace M " is minimized (the A-optimality criterion); this approach has come
down from optimum experimental design for lumped parameter systems (LPS);

ii) minimizing the mean square error (Korbicz and Zgurowski, 1991; Malebran-
che, 1988)

N iy e ]
CIESEIET DY /0 1Y (6)—h; (6, X(t, 2505 . )P (7)

In the further considerations we are going to restrict our attention to the problem
of sensors location only by assuming that the input signal is already given.

We could also refer to other equivalent forms of DPS descriptions to be met
in literature. Thus, in research papers that are more theoretical in character,
advanced functional analysis is used (theory of strongly continouous semigroups of
linear operators) (Banks and Kunisch, 1989; Curtain and Pritchard, 1978; Kubrusly
and Malebranche, 1985; Omatu and Seinfeld, 1989). In some applications it is
convenient to take advantage of the notion of Green function (Rafajlowicz, 1983;
1984; 1986b). On the other hand its use is restricted to relatively simple systems.

3. Optimal Sensors Location for Processes Described by
Parabolic PDE’s

Let us study first a simple example of a single sensor placement by using the
optimum experimental design methods.

Example 1. Consider the scalar, one-dimensional heat conduction system gover-
ned by

0X(t,z)  9*X(t,2)

’at =4 522 z € (071)’ te (O’t.f] (8)
B.C. X(t,0)=X(t,1)=0 t € (0,t]
IC. X(0,2) =sinwz z€[0,1]

where g > 0. In this case the point measurement is available such that ‘
Y(t) = X(t,2") +e(t, 2') (9)

where ¢ denotes the measurement noise (assumed gaussian, spatial uncorrelated
and white). The noise is assumed stationary with variance o2. The diffusivity u
is assumed to be unknown. It is necessary to calculate the optimal sensor ‘position
for estimating pu.

This system has a unique solution continuous in 2 expressed by X(t,2) =

sin 7z - exp(—pn?t). The average information matrix (here it is a scalar) takes the
following form
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— 1 ¥ /ax\? Y A 912
M(z)—;ZE/O (797;) dt = m;./o [—7r tsin 7z exp(—pmr’t)] "dt =

. N .
sin? 7z [ﬁﬁ/ t2 exp(——?;nrzt)dt] =const -sin’7z, const >0
! ]

Hence, det M(z) attains its maximum at z = 0.5 and this is the optimal sensor
location.

One can ask about a greater number of sensors to be located. If there are N
sensors, the performance index is expressed by

— ty N ,
det M(z*,..., 2N th E/ (6X(t z )> dt = const Zsin2 w2

j=1

and attains its maximum iff z! = 22 = ... = z¥ = 0.5, but that means locating all

the sensors at one point!

That phenomenon is more general. If there is only one parameter 0 to be
identified and noisy system state is directly observed, then det M can be expressed
in the following form

N

det M(2*,...,2N) =) _r(z) (10)

j=1

where

6= | ’ (5"6(;’ ’))2 at

If the function r(z) has only one global maximum at the pomt z = zp, then it is
evident that M(z!,...,zV) attains its global maximum iff 2z l=22=..=2N =2,
But this occurence is only apparently strange. It results from the assumption that
measurements made by one sensor have no influence on measurements made by the
other one and that spatial dimensions of the sensors can be neglected.

The following approach is most often used in order to avoid the possibility that
several of the points might be clustered in a small region. Let us assume that there
should be located N sensors. It is useful to prescribe a priori a set of possible
locations 2', i =1,2,..,M, where M > N. Then we seek the best set of N
locations from among the M possible. It is shown in Figure 3.

This formulation in no way restricts the generality of the problem, since M can
in principle be chosen as large as desired (if the system is solved numerically, the
maximum value of M is the number of grid points in the domain ).

It should be noticed that in most cases the optimum experimental conditions
‘depend on the unknown parameters and on the form of the input signal. The
implication is simply that the design should be based on nominal parameters values
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which can be obtained by a preliminary experiment or by physical analysis. The
problems of optimum input signal choice were discussed by Rafajlowicz (1986a).

e . © ZQ\

e — points where the sensor can be located
©® - points where the sensor is located after optimization

Fig. 3. Avoiding clusterization.

4. Computation of Information Matrix

Let us assume that the process under consideration is described by the following
parabolic differential equation

B2 (Ve (t,2) + UG, 2) (11)
B.C. X(t,z)=0, z€0Q, te(0,t]
LC. X(0,z) = Xo(2), z2€QN

Within the framework of the finite element or the finite difference approximation
(see for example, Twizell, 1984) , after dlscretlzmg the whole space domain, solu-

tions to (10) are governed by a system of first—order differential equations in time
of the form

AWX () +BEXWO) = T() | a9
LC. X(0)= X,

where X (t) denotes the nodal approximation solution vector, ﬁ(t) — the nodal
excitation vector, and A(u) and B are the global coefficient matrices. A(y) con-
tains coefficients dépending on the unknown parameters, whereas the coefficients
of B are constant.

Assume that the function p of the spatial coordinates can’ be approximated
by the following expressmn to any desired accuracy by choosing a sufficiently large
number of terms n,
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b= u0) =Y cbulz), c € R (13)

v=1

For given n,, the approximating functions ¢,(z), v =1,..,n, are known and
linearly independent and the coefficients ¢,, v = 1, ...,np are to be identified.
By differentiating both sides of (12) with respect to ¢, we obtain the following
system of the sensitivity equations

AWX, (1) + B%i(t) =D, X (14)

ILC. X,(00=0
where

09X 0A

X, = D
v acy v

p=p(c) 0 |u=pe)

The above equations can be used in order to obtain the sensitivity functions
0X/0c,, v =1,..,np, that are necessary to calculate the information matrix

(see (6)).
5. Measurement Optimization Problem

The general algorithm can be expressed as follows

(i) solve the system (12) in order to obtain X,
(ii) solve the system (14) for v =1,...,n,; ‘
(ii1) choose the best (in some sense) set of locations 2/, j = 1,2,...,N from
among all the points of the spatial grid.

Direct minimization of trace M = or maximization of det M can involve
very time—consuming computational efforts if there are more than one parameter
to be identified. Hence, an approximate solution can be achieved indirectly by
maximizing the trace of the information matrix (Nakamori 1980; Ghosh 1989).
This approach leads to increased sensitivity of the outputs with respect to the
unknown parameters. In this sense we call trace M the sensilivily criterion.

The sensors location problem can now be formulated as the following linear 0-1
integer programming problem ‘

M
maximize J = 26, trace _M-,' (15)
4 € {01} i=1

subject to the constraint

M
26; =N
i=1
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where
I B Y N :
M= /0 VeX(t, 2)VIX(t, 2 )dt
and z' denotes a possible sensor location (a grid point), i =1,..., M.

6. Numerical Examples

To illustrate the application of the proposed algorithm, the two—dimensional diffu-
sion process is considered. It is described by the following equation

5X(t,z1,22) _ 0 (ﬂ(ll,zz)aX(t,21’22))+

ot 621 (921
0 8X(t, 21, 2'2)
+ 622 ( (2'1,22) 822 + U(t, 21,22) (16)

(21,22) €Q = (0,2) x (0,2), t€(0,0.5]

with the appropriate boundary and initial conditions.
The observation process is represented by

Yi(t) = X(t, 2], 4) +et, 21, 2), j=1,..,N 17)

where N is the number of sensors. This means that the state is measured directly
at each observation point. Furthermore it is assumed that the measurement errors
are gaussian, spatial uncorrelated and white with respect to time and space.

The state and sensitivity equations were solved by the finite element method.
The sampling interval and coordinate divisions were At = 0.05 and Az = Azy =
0.2, respectively. ‘

The objective is to estimate the diffusion coefficient p(z1,22) based on the
measurements as accurately as possible over the period of observations. In order
to avoid clusterization only the nodes of the spatial grid are-allowed for sensors
location. Using the above mentioned algorithms, two numerical experiments were
performed.

Variant 1. Let us assume the following form for the diffusion coefficient to be
identified

p(z1,22) = 1+ 22) + 229

Thus (see (13)), ¢1(z1,22) = 1, ¢a(z1,22) = 21, #a(21,22) = 22 and ¢ =[122]T.
Let us also assur.e that U(¢,z1,22) =0 and

1.C. X(O,Zl,Z2) = 0, (21,22) € Q
B.C.  X(t,z,z2) =100, (21,22) € 0Q, te€(0,0.5]
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Figures 4 and 5 show the surface plot and the contour map for the sensitivity
criterion trace M for one sensor. It attains its maximum at the point (0.8, 0.8).
This means that sensors should be placed as close to that point as possible. For
example, if there are three sensors, they would be located at the points (0.8, 0.6),
(0.8, 0.8) and (0.6, 0.8). It is noteworthy that the initial and boundary conditions
and the form of the diffusion coefficient assume one axis of symmetry for that
system (it is a line 2z; — 25 = 0 ) and that axis remains the same if we consider the
contour lines for the sensitivity criterion (see Figure 5).

Variant 2. Another simulation experiment was performed for an assumed diffusion
coeflicient

p(z1,29) =1
and

LC.  X(0,z1,2) =50, (21,22) €Q

po Hbam)= { " Ezig . (32’230),(1{)05{0} o Eg gg
and

U(t, z1,22) = 10 exp (z1 - 22)

The input signal plots are presented in Figures 6 and 7. The appropriate results
(for the D—optimality criterion) are shown in Figures 8 and 9. In such a case it is
difficult to guess where the sensor should be placed: closer to the maximum of the
input signal or to the boundary perturbation. The results suggest that the best
choice is to locate the sensor at the point (1.0, 0.4).

7. Concluding Remarks

The relatively simple numerical method to locate sensors for parameter identifica-
tion has been given. It enables us to consider two— or three—dimensional spatial
domains. This approach can also be applied for identification of the unknown
spatially-varying parameters. By using it we are able to solve problems when any
analytical solution does not exist.
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Fig. 6. The surface plot for the input signal (Variant 2).
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Fig. 7. The contour map for the input signal (Variant 2).
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Fig. 8. The determinant of the information matrix for Variant 2.
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Fig. 9. The contour lines for Variant 2.




