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APPROXIMATE CONTROLLABILITY
OF SECOND ORDER
DYNAMICAL SYSTEMS

JERZY KLAMKA*

In the paper linear, infinite-dimensional second-order dynamical
systems defined in a separable Hilbert spaces are considered. Using the
spectral theory for linear, unbounded operators, necessary and sufficient
conditions for various types of approximate controllability are formulated
and proved. As an illustrative example approximate controllability of fle-
xible mechanical dynamical system described by linear partial differential
equations is investigated. Some additional remarks and comments on appro-
ximate controllability for different types of second—order abstract dynamical
systems are also given. Approximate controllability conditions presented in
this paper extend to the case of second-order dynamical systems the results
given in some previous papers.

1. Introduction

In recent years modern control theory of linear dynamical system has been the
subject of considerable interest of many research scientists. It has been motivated
on the one hand by the wide range of applications of linear models in various areas
of science and engineering and, on the other hand, by the difficult and stimulating
theoretical problems posed by such systems.

This paper is intended to provide information about one of the fundamental
concept in mathematical control theory which is controllability. Roughly speaking,
controllability generally means, that it is possible to transform the dynamical sy-
stem from an arbitrary initial state to an arbitrary final state using the set of so
called admissible controls.

The present paper is devoted to a study of so called approximate controllability
of linear second-order infinite-dimensional dynamical systems. We shall consider
approximate controllability in an arbitrary time interval [0,7] with unconstrained
controls, and approximate controllability with nonnegative controls. Transforming
second—-order abstract differential equation into the set of linear first-order equa-
tions, we shall formulate and prove necessary -and sufficient conditions for various
types of approximate controllability. These conditions will be derived by using the
methods of functional analysis, especially the theory of linear unbounded normal
operators in separable Hilbert spaces. As illustrative example we shall consider
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the mechanical flexible dynamical system described by linear partial differential
equation.

The results presented in this paper extend to the case of second—order infinite—
dimensional dynamical systems, controllability conditions given in the book
(Klamka, 1991a) and in the papers (Klamka, 1991b; Sakawa, 1975; 1983; 1985)
and (Triggiani, 1975; 1976; 1978). The similar dynamical systems have been recen-
tly investigated also in the papers (Chen and Russell, 1982; Chen and Triggiani,
1989; 1990a; 1990b; Datko, 1988; Hishikira, 1989; Huang, 1988), where the condi-
tions for existence of solutions are presented and proved using the spectral theory
of linear operator.

2. System Description

Let us consider dynamical control system described by the following abstract
second-order differential equation in Hilbert space X

#(t) + 2rAY 25 (1) +Aa:(t) —Jf bju;(t) = Bu(t), t>0 (1)

where z(t) € X is the separable Hilbert space with inner product < -,- >,,
uj(t) : [0,00) — R, for j = 1,2,...,m are Holder continuous control function,
u(t) = [u1(t), ua(t), ..., u;(t), ..., um(t)]T, T denotes the transposition, b; € X,
for j=1,2,...m, B= [bl,bz, cobjybp], B R™ — X is the linear bounded
operator, and 0 <r<1 isthe dampmg coeflicient.

A: X D D(A) — X is the linear, generally unbounded operator which has the
following properties:

i) A is self-adjoint and positiye—deﬁnite operator with dense domain D(A) in
X. Moreover, it is assumed that operator A has only pure discrete point
spectrum consisting entirely with isolated real positive eigenvalues

0<s9<s9<...<8;<... and lim;_, 85 = +00

Each of eigenvalues is of finite multiplicity n; < oo, ¢ = 1,2,... equal to
the dimensionality of the corresponding eigenmanifold . Hence, the resolvent
R(s, A) of the operator A is a compact operator as an operator on X for
all s in the resolvent set ¢(A).

i) There exists a corresponding complete orthonormal set {z;},z;x € X
1 =1,2,.., k =1,2,..,n; of eigenvectors of the operator A. Hence,
for every z € X we have the following unique expansion

i=oco k=n;

E < Z,Tik >X Tik
i=1 k=1

l
™
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iii)

vi)

Operator A has the spectral representation

i k=n;

Zs Z < ZT,Tix >X Tik for .’L‘ED(A)
=1 k=1

o,

where s;, 1 = 1,2,... are eigenvalues of the operator A.

Operator A is the infinitesimal generator of the analytic semigroup S(t) :
X — X, t >0, of bounded linear operators. This semigroup is explicitly
given by the following formula

i=00 k=n;
Sit)z = 2 exp(s;t) Z < ZT,Tip >X Tik, for t>0 and z € X
i=1 k=1

For the operator A fractional power A/? can be defined as follows

i=00 k=n;

A2y = Z N Z < z,Ti; >x T, for z € D('Al/z) cX
i=1 k=1

In a quite similar way we can define the arbitrary fractional power A% «a €
(0,1) of the operator A.

It should be stressed, that generally even for differentiating operator A, the
operator A2 may have quite different nature. It depends malnly of on
form of the operator A and imposed boundary conditions.

Since the spectrum of the operator A is bounded away from zero, then
as a consequence D(Al/z) D D(A). Therefore operator A2 s linear,
self-adjoint and positive—definite with dense domain in the space X. Simi-
larly, A=' and A~!/2 are both linear, nonnegatlve bounded, self-adjoint
operators on X.

All the fundamental properties of the operators A and A!/? listed above will
be extensively used in the next sections of the paper. Several other behaviors of
these operators can be found for example in the papers (Chen and Russell, 1982;
Chen and Triggiani,1989; 1990a; 1990b) and (Kunimatsu and Ito, 1988).

Let the initial conditions for the equation (1) be given

z(0) € X and #(0)eX (2)

It is well known (see e.g. Chen and Russell, 1982; Datko, 1988; Huang, 1988;
Hishikira, 1989; Chen and Triggiani, 1989; 1990a; 1990b), that the equation (1)

with

the initial conditions (2) has for each ¢; > 0 an unique, so called mild

solution z(t) : {0,¢1] — X, which satisfies the following conditions
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z(t) € CP ([0,t1], X )
z(t) € D(A) and #(t) € D(A) for t € (0,t1]

The abstract differential equation (1) is a mathematical model of many distribu-
ted parameter dynamical systems described by various type of partial differential
equations. The damping term in the equation reflects the dissipation of energy
which is empirically observed in nature. The equations of the type (1) describe
the vibrations in mechanically flexible systems which have applications to attitude
control of flexible spacecraft, active tendon control of structures and a control of
manipulator with flexible a.rm'(-Sakawa and Matsushita, 1975; Sakawa, 1984; 1985).

In the literature there are many different mathematical models of dynamical
systems with inherent damping. For example in the papers (Chen and Triggiani,
1989; 1990a; 1990Db) is considered abstract differential equation of the form

E(t)+2rA%e(t) + Az(t) = 0 3)

for damping coefficient 7 > 0 and fractional power « € (0,1). The case « =1
is studied in the papers (Sakawa, 1984; 1985), while the case a =0 is mentioned
in the papers (Chen and Triggiani, 1989) and (Huang, 1988). In (Kunimatsu and
Ito, 1988) the abstract differential equation with linear combination of the terms
AY? and A is investigated. Moreover, in the paper (Triggiani,1975) the special
case r =0 is detailed studied for more general class of the operator A.

It should be also stressed that in the papers (Datko, 1988; Hishikira, 1989;
Lasiecka and Triggiani, 1991; Nambu, 1984; 1985; Narukawa, 1982; 1984) smula.r
second-order abstract dlfferentlal equations are formulated and studied in detail.

In the sequel, for comparisons we shall consider instead of the second—order
equation (1) also the first-order differential equation

&(t) + Az(t) = Bu(t) | (4)

Dynamical systems of the form (4) have been analysed in many publication (see
e.g. Son, 1990; Triggiani, 1975; 1976; 1978).

3. First Order Equation

The main purpose of this section is to transform the second-order abstract dif-
ferential equation (1) to first—order one by using the procedure proposed in the
papers (Sakawa and Matsushita, 1975) and (Chen, 1982; Sakawa, 1984; Huang,
1988; Chen and Triggiani, 1990b). _

First of all let us convert the equation (1) into equivalent first—order differential
equation in Hilbert space H = X x X

§(t) = A y(t) + Bu(t) (5)
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where

1
y=[52]€H=XxX and y'=z, y’=1¢
B= 0 :R™"—H
= gl:

-~ 0 I ~ .
Ar= [ ~A —2rAl? ] D(4,) = D(A) x D(AY?)

The unbounded linear operator Z, is similar to a normal operator. In order
to explain it, let us introduce the nonsingular transformation represented by the
linear invertible operator F : D(AY/2) x D(AY?) — H which is densely defined in
the space H : D(AY/2)x D(AY/2) = H

1 I I
F= \/_—2- [ eJV AY2  _o—iv AL/2 ] (6)

where 1) = arctan (\/1;_-7) = arctan(r/p), p = 1/v/1—r%. Since by assumption
0<r<1, then 9 € (x/2,7). The inverse transformation F~' exists and it is a
bounded linear operator F~!: H — H given the following formula

1 j(¥—m/2) —-jm[2 4-1/2
ol [ pe I pe A ] 7

pej(—¢+1r/2)1' pejw/ZA—1/2

Letting

= [2])-ro=r[ 5] e

we transform the equation (5) into equivalent differential equation

z(t) = Arz(t) + Byu(t) (9)
where
A, =F A F+ [ 6‘” ?4_ ] (10)

(11)

pe—jw/ZA-l/ZB
B, = pejvr/ZA—l/ZB

and Af, A7 are linear unbounded normal operators given by the following
equalities ,

Aj— — ej’/’Al/z, AT = e~i¥ AL/2 o (12)
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Let us collect the fundamental spectral properties of the operator A,

i) Spectrum o(A,) of the operator A, consists entirely of the isolated
eigenvalues AF,A7, i =1,2,.., where (Chen and Russell, 1982; Sakawa,
1985; Huang, 1988; Kunimatsu and Ito, 1988; Chen and Triggiani, 1990b)

A =65, Tand A\ =e V5, for i=1,2,... (13)

ii) Taking into account the definitions of the operators A} and A we obtain
the following equalities

: + .. .
Ar [ xék ] — [ Aroxsk ] — ,\j’ [ r(:)k ] for ¢ = 1,2,..., k= 1,2’._"7” (14)

0 0 _{ 0 . ‘
A, [ i ] = [ A=z ] =; [ i ] for i=1,2,..., k=12, ... n; (15)

Therefore (2,07 € H and [0,zi]T € H, for k = 1,2,...n; are
eigenvectors of the operator A, corresponding to the eigenvalues A and
A7, i=1,2, ..., respectively.

iii) The set of eigenvectors of the operator A,, {lzix, 017, [0,z::]7 i=1,2,..,
k=1,2,..,n;} is a complete orthonormal system in Hilbert space H =
X xX.

iv) The operator A, is the infinitesimal generator of an analytic semigroup
Sy(t): H— H, for t > 0, represented by the formula

S.()z = S,(t) [ i; ] = iio (eXP(tz\f)ki‘ <zl zg >x [ mék ]) +

i=1 k=1

1=00 k=n;
— y 0
+ z (exp(t/\i ) Z <22 T >x [ o ]) , for z€ H (16)

i=1 k=1

All above statements are a natural generalization to the infinite-dimensional
separable Hilbert spaces of finite-dimensional facts from the space R™.

It should be pointed out, that although n; < co for all i = 1,2... this does
not ensure in general that sup; n; < co (see e.g. Triggiani, 1975; 1976). If n; = 1
forall i=1,2,... (i.e. operator A has only single eigenvalues s;, i=1,2,...)
then we simply write {z;, i=1,2,...} instead of {z;;, i=1,2,..}.

In this paper operator A, is considered in the Hilbert space H = X x X.
It is possible to do similar consideration for the case, when the operator A, is
defined in the so called energy space E = D(A'/?)x X (Chen and Russell, 1982;
Chen and Triggiani, 1989; 1990a; 1990b). In order to do that, it is enough to take
the transformation w! = A'/2;! and w? = z2. Hence, the eigenvalues of the

?
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operator A, will be the same as before, but the corresponding eigenfunctions will
be a little different (see e.g. Chen and Russell, 1982; for details). Since in the
sequel we shall consider only approximate controllability of dynamical system (1),
hence it is more suitable and more natural to consider the operator A, in the
Hilbert space H, as in the paper (Kunimatsu and Ito, 1988).

The more detailed analysis of various properties of the operator A, is presented
in many papers, even for more general case than those given by the equalities (10)
and (11), (see e.g. Chen and Russell, 1982; Huang, 1988; Kunimatsu and Ito, 1988;
Hishikira, 1989; Chen and Triggiani, 1989; 1990a; 1990b; Lasiecka and Triggiani,
1991). In the publications (Chen and Triggiani, 1989; 1990a; 1990b) the operator
A, with the term A*, o = (0,1) instead of A2 is carefully investigated. .
Especially, analyticity and uniform stability of corresponding semigroups of linear
bounded operators are considered in detail. Similar considerations are also given
in the paper (Huang, 1988) where is stated, that o = 1 and « = 1/2 are
the break for the stability and analytic property of the corresponding semigroup,
respectively.

The paper (Kunimatsu and Ito, 1988) contains the detailed analysis of the
spectral properties of the operator A, in the case when instead of the operator
A2 we have linear combination of the operators A and A!/2. In this case
the form of the spectrum o(A,) is more complicated as before. Some additional
considerations about the spectral properties of the operator A, can be found also
in the papers (Sakawa, 1983; 1984; 1985).

4. Basic Definitions

For infinite-dimensional dynamical systems of the form (1) we may define many
different notions of controllability. In the sequel we shall concentrate on so called
approximate controllability.

In order to do it, first of all let us introduce the concept of so called attainable
set for the dynamical system (1). The attainable set for the dynamical system (1)
defined at time ¢t > 0 and from zero initial conditions is given by the following
formula

K, = {[ : ] €H=XxX:z=z(0u), &=:i0u), ueU} (17)

where z(t,0,u) is the unique mild solution of the abstract differential equation
(1) with zero initial conditions and admissible controls u € U, U is the set of
admissible controls.

Similarly the attainable set for dynamical system (1) is defined as follows

Ko = | Ki (18)
1>0

Taking into account the notions of the attainable sets given by formulae ‘(17) and
(18) we may define the concepts of approximate controllability for the dynamical
system (1).
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Definition 1. Dynamical system (1) is said to be approximately controllable in
the time interval [0,77] in the set of admissible controls U if

Kr=H=XxX (19)

Definition 2. Dynamical system (1) is said to be approximately controllable in
the set of admissible controls U if

Kow=H=XxX (20)

In some cases approximate controllability in the time interval [0,T] is equi-
valent to approximate controllability (see Triggiani, 1975; 1976; 1987; for details),
but generally approximate controllability in [0,T] is essentially stronger notion
than approximate controllability. However, it should be stressed, that in the case
when the appropriate semigroup of operators is analytic, then these two notitions
of controllability are equivalent (Triggiani, 1978).

5. Approximate Controllability

In this section we shall formulate and prove necessary and sufficient conditions
for approximate controllability. We shall also consider the case, when the control

functions are constrained and take their values from the nonnegative convex cone.

For the abbreviation let us introduce the following notation

<b,zi>x, <by >x, ey <bp,zi >x

B; = <b1,:c,~2 >x, < by, z49 >x, vy Kb, zi0 >x (21)
.......................... ey e
< bl)xiﬂ; >x, < bZa Tin; >X1 ey < bm)xin.' >x

where B; are (n; x m)-dimensional constant matrices for i = 1, 2,....

Using the general results concerning approximate controllability which are given
in the papers (Triggiani, 1975; 1976; 1978) we can formulate necessary and sufficient
conditions for approximate controllability of dynamical system (1). First, we shall
consider the case, when there is no any contraints on the controls.

Theorem 1. Dynamical system (1) is approzimately controllable in an arbitrary
time interval [0,T] if and only if the dynamical system (4) is approzimately
controllable.

Proof. First of all, let us observe, that since operator A is the infinitesimal ge-
nerator of analytic semigroup S(t), then approximate controllability of dynamical
system (4) is equivalent to approximate controllability in an arbitrary time inte-
rval [0,T], (Triggiani, 1976). Similarly since the operator A, is the infinitestimal
generator of analytic semigroup S;(t), (Chen and Triggiani, 1989; 1990b), then the
same statement is true for dynamical system (9). Next, let us observe, that the
nonsigular transformations of the dynamical system (1) into dynamical system (9)
are invertible and densely defined, then approximate controllability of dynamical

3
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system (1) is equivalent to approximate controllability of dynamical system (9).
The same statement is of course true for approximate controllability in an arbi-
trary time interval [0,T]. Therefore instead the dynamical sytem (1) we may
consider equivalently approximate controllability in an arbitrary time interval of
the dynamical system (9). ‘

Since the operators A} and A, are both normal operators, then taking
into account the equality (10) we can easily conclude that also the operator A,
is normal. Therefore, in order to check approximate controllability of dynamical
system (9) we may use the necessary and sufficient conditions given by Triggiani
(1976). Hence, the dynamical system (9) is approximately controllable in an arbi-
trary time interval if and only if '

rank B =n;, forall i=1,2,... (22)
and

rank B, =n;, forall i=1,2,.. (23)
where

B = pe~i™/%(s;)"12B;, for i=1,2,... (24)

B = ped™?(s;)"Y?B;,  for i=1,2,... - (25)

The above statements immediately follows from the equality (11) and from the fact,
that the operator A is self~adjoint, which implies that also the operator A~1/2
is self-adjoint. Moreover, taking into account the equalities (22)—(25) it is easy to

verify that dynamical system (9) is approximately controllable in an arbitrary time
interval [0,7] if and only if "

rank B; = n;, forall i=1,2,.. (26)

The last statement is an immediate consequence of the observation that for all
i=1,2,.. wehave pe~™/2(5;,)"1/2 £ 0 and similarly, pe!™?(s;)"*/2 # 0.

On the other hand the formula (26) is the necessary and sufficient condition for
approximate controllability of the first~order dynamical system (4), (see Triggiani,
1976; for details).

Therefore we have proved, that approximate controllability in an arbitrary time
interval of second—order dynamical system (1) is equivalent to approximate con-
trollability of first—order dynamical system (4). Hence, our theorem follows.

Corollary 1. If the operator A has only single eigenvalues (n; = 1, for i =
1,2,...), then the dynamical system (1) is approzimately controllable in an arbitrary
time interval [0,T] if and only if

<by,zi >2 4 <by,xi > 4ot <bm,xi >2#0, forall i=1,2,... (27)
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Proof. For the case n; =1, i=1,2,... wehave
B; = [< b,z >y, < by, zi >y yeey < b,z >,] for i=1,2,... (28)

where for simplicity: z; =z, i = 1,2,.... Hence, condition (26) is equivalent to
inequalities (27). Therefore our corollary follows.

Corollary 2. Ifthe operator A has only single eigenvalues and moreover, m = 1
(scalar control), then the dynamical system (1) is approzimately controllable in an
arbitrary time interval [0,T] if and only if

<bi,zi >,#0, forall i=1,2,.. (29)

Proof. Corollary 2 immediately follows from equality (26) and the corollary 1.

Now, we shall concentrate on approximate controllability with constrained con-
trols. We shall asume, that the controls u;(t) >0, for j=1,2,....,m.

Theorem 2. Dynamical system (1) is approzimately controllability with nonegative
controls if and only if it is approzimately controllable in an arbitrary time interval
[0,T] without any constraints on control.

Proof. Since operator A has only complex eigenvalues then from the papers
(Klamka, 1991b) and (Son, 1990) follows that dynamical systems (9) or equiva-
lently (1) are approximately controllable with nonnegative controls if and only if
the condition (25) holds. Therefore by theorem 1 dynamical system (1) is appro-
ximately controllable with nonnegative controls if and only if it is approximately
controllable in an arbitrary time interval [0,7] without any constraints on the
controls. Hence, our theorem follows.

6. Illustrative Example

In this section we shall present example of dynamical system (1) with inherent
damping. We shall consider the flexible slender beam of the lenght L supported
on two ends. Such mechanical structure with internal viscous damping of the
Voigt type can be described by the following linear partial differential equation
(Kunimatsu and Ito, 1988) ‘

wir(L, ) — 2rwige(t, q) + Wegqqe(t, 9) = b(g)u(t) (30)
defined for ¢ € [0,L] and ¢ > 0, with initial conditions

w(0,9) = wo(g), and w(0,9) = wi(g), for g€ [0,L] (31)
and boundary conditions

w(t,0) = w(t,L) = wee(t,0) = wye(t, L) =0, for t>0 | (32)
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In the equation (30), = € (0,1) is a damping coefficient and function b(q) € X =
L%([0,L], R). Moreover, it is assumed that the control wu(t) >0, for ¢ > 0.

The function w(t,q) denotes the displacement from the reference state at time
t > 0 and in the position ¢ € [0,L]. The boundary conditions (32) correspond to
hinged ends of the flexible beam.

Linear partial differential equation (30) can be represented as a linear abstract
differential equation of the form (1) defined in a separable Hilbert space X =
L%([0,L],R). In order to do that, let us define the linear unbounded operator
A:X DD(A) — X as follows (Kunimatsu, 1988)

Aw = Au(t,q) = ?__1;(1__«1) = Wqqqq(t, q) ‘(33)

The domain D(A) of the operator A is dense in Hilbert space X = L2 ([0, L], R)
and is given explicitly by the following equality

={w € X :we H0,L], w(t,0)=w(t, L) =we(t,0)=wy,(t, L)=0} (34)

where the term H*[0, L] denotes the Sobolev space of order four (Kunimatsu,
1988).

Linear operator A defined by the equalities (33) and (34) is self-adjoint,
positive~definite and has pure discrete point spectrum, consisting entirely with
real positive isolated eigenvalues (Kunimatsu, 1988)

= (7ri/L)4, for i=1,2,... (35)

each of multiplicity n; =1, for ¢ =1,2,....

The corresponding complete orthonormal set of eigenfunctions in the space X =
L?([0,L],R) has the following form (Kunimatsu, 1988)

zi(q) = (2/L)*sin(mig/L), for q € [0, L] ‘ (36)

Therefore combining the results given in corollary 2 and in theorem 2 one can
easily to conclude, that the second-order dynamical system (30) is approxunately
controllable with nonnegative controls if and only if

L
<bzi>,= / b(q)(2/L)"/? sin(niq/L)dq # 0, forall i=1,2, .. (37)
0

Therefore, for example if we take the function b(g) =1, for q €[0,L], then
since < b,z; >,=0, for ¢ =2n, n = 1,2,... the dynamical system (1) is not
approximately controllable with nonnegative controls, and in fact by theorem 2
it is not approximately controllable in any time interval [0,7] with arbitrary
unconstrained controls.
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However, if we take the function b(q) = ¢, for ¢ € [0,L], then since
< bz; >,#0, forall i =1,2,.., the dynamical system (1) is approximately
controllable with nonnegative controls.

Finally, it should be stressed, that in this case the operator A2 g given by
the following formula (Kunimatsu and Ito, 1988)

2
AY2y = Al/zw(t,q) 6 wa(:,q) —weq(t, q) (38)
and the domain D(A!/?) is expressed as follows (Kunimatsu and Ito, 1988)
D(AY?) = {we X : w e B0, L], w(t, 0) = w(t, L) = 0} (39)

where the term H?[0,L] denotes the Sobolev space of order two (Kunimatsu and
Ito, 1988). Since D(A) C D(AY?) C X, then of course the set D(AY?Y is dense
in X.

Similar mechanical dynamical systems which can:be described by mathematical
model (1) may be found, for example, in the papers (Sakawa, 1983; 1984 1985),
where flexible arm of the manipulator is considered ‘in -detail.

7. Concluding Remarks

In this final section let us collect some remarks and comments on controllablhty
conditions given the section 5.

Remark 1. The case r = 0 has been considered in the paper (Trlgglam 1978)
where the relationships between approximate controllability in [0,7] and ap-
proximate controllability of the first and sécond—order abstract dynamical systems
defined in separable Banach spaces have been analyzed. The present paper extends
these results to the case r € (0,1).

Remark 2. The case r = 1 hasnot yet been considered in the literature except the
conditions for uniqueness and existence of solution (see e.g. Chen and Russell, 1982;
Huang, 1988; Chen and Triggiani, 1989; 1990a; 1990b; for details). In this case the
appropriate linear first—order abstract differential equation possesses operator A,
in Jordan canonical form with nontrivial two—dimensional Jordan blocks. Hence,
the approximate controllability conditions are in this case more complicated and
desire more refined technique.

Remark 3. In the case, when we consider operator A%, « € (0,1) instead of
the operator A/2  the similar technique as in the present paper can be used
to derive necessary and sufficient conditions for approximate controllability of the
second-order dynamical systemh (1). However, it should be pointed out, that in
this case operator A,, r € (0,1) generally has real and complex eingenvalues, and
hence the analysis of approximate controllability with nonnegatlve controls is not
so easy as in the case « = 1/2.
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Remark 4. It is possible to extend the presented results for the case of semili-
near second—order dynamical systems, when the nonlinear term is small enough.
Conditions for existence of solution of first—order semilinear abstract differential
equation can be found for example in the papers (Zhou, 1983; 1984).

Remark 5. Other approximate controllability conditions for linear abstract dyna-
mical systems are presented by Lasiecka and Triggiani (1991), Nambu (1984; 1985)
and Narukawa (1982; 1984) using the various methods of functional analysis.
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