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ORDER OPTIMAL REAL-TIME OBSERVERS FOR
COMPLETELY OBSERVABLE CONTROL SYSTEMS

ARKADII KRYAZHIMSKIT*

For a complety observable control system governed by a nonlinear ordinary
differential equation, we consider dynamical (real-time) observation opera-
tors stable with respect to small input perturbations. We treat them as re-
gularizing operators on an appropriate set of well-posedness. Two soluticns
order optimal with respect to the perturbation accuracy are described. The
tool is based on the idea of guided models from the theory of closed-loop
differential games, and the lower bounds for the unimprovable observation
accuracy.

1. Introduction

The observation theory for control systems described by linear ordinary differential
equations involves many ultimate results. The foundation of the theory was syste-
matically presented by Krasovskii (1968). The general structure of time—depending
sets of all (unobserved) state coordinates compatible with current observations was
described by Kurzhanskii (1977). The problem of designing an approximation to
an unperturbed observation result stable with respect to small input perturbations
was considered by Gusev and Kurzhanskii (1987). For some particular classes of
nonlinear completely observable systems, the above problem was solved in (Osipov
and Kryazhimskii, 1981; Kryazhimskii, 1985). The solution operators proposed in
these papers are finite-step and satisfy the rather sharp Volterra condition whose
practical aspect is feasibility in real time. This approach was extended in (Krya-
zhimskii and Osipov, 1990) to nonlinear systems that are in general not completely
observable. However, the system’s being not completely observable implies usually
that there does not exist an approximation bound uniformly small with respect to
all admissible inputs.

In this paper we deal with uniform approximation bounds for a completely
observable system affine in control. Following Kryazhimskii (1985) where the ob-
served state vector z(t) was supposed to satisfy the simplest evolution equation
z(t) = v(t) (v(t) is a control), we extend the results to the general case. The
solution operators are based on the method of guided models (Krasovskii and Sub-

botin, 1988). For the analysis, the tool of lower approximation bounds (Ivanov
et al., 1978) is used.
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2. Problem Formulation

Consider a control system
y(t) = filt, y(1), 2(t) + fa(t, y(2), 2(2))v(t) 6y
2(t) = g1(t,y(1), 2(8)) + g2(t, y(t), 2(t))v(2) )

on a bounded time interval I = [to,d]. Here, y(t) € R", 2(t) € R™ are
observed state vectors and v(t) € Q@ C IR! is a control vector. The vector
functions fi(-) and gi(-), and the matrix functions fo(-) and ga(:) are
continuous. Any measurable function v(-): I — @ is called a control. A motion
from an initial state (yo,20) generated by a control wv(t) is a Caratheodory
solution (y(-),2(-)) to (1), (2) on I such that y(¢s) = yo, 2(to) = 2. Fix a
compactum Xo C JR" xIR™ and denote X the set of all motions from initial
states belonging to X, generated by all controls. Suppose that X is nonempty.
Further, |-| stands both for the Euclidean vector norm and the matrix norm
corresponding to the latter, and ||-|| denotes the standard functional sup-norm.

The problem in question consists in designing an approximation to the unob-
served component y(-) of a motion (y(-),2(-)) € X on the basis of a (per-
turbed) input & = (yo,20+,((-)) here (yo»,20+) is a perturbed initial state
(¥0,20) = (y(to), 2(t0)), |yor — w0l < syh, |20~ — 20| < s;h, and ¢(-) : I — R™
is a perturbed observed component z(-) of the motion, ||¢(-) —z(-)|]| < h. A
triple ¢ satisfying the above conditions will be called an input h—accurate for
(y(-),2(-)); sy and ‘s, are fixed. The set of all such inputs will be denoted by
E(h|y(-), 2(-))- For the set of all inputs (i.e. the triples ¢ not necessarily satisfying
the above conditions), introduce the notation Z. Let W be the set of all bounded
functions from I into IR". Any mapping D : & — w(:|D,£) from Z into W
will be called an observation operator. An observation operator D is called to
be dynamical, if for each two inputs & = (y1,21,(1())) and & = (y2,22,(a())
such that y; = ya2, 2z = 25 and (3(7) = (a(r) for all T € [tg,¢], it holds
w(t|D, &1) = w(t|D, &) for all 7 € [to,t] (the Volterra property). The uniform
accuracy of an observation D (for an input accuracy h) is given by

v(h, D) = sup {||w(:|D,€) — y()Il : § € E(hly(-), 2(-)), (¥(-),2(-)) € X}

and the unimprovable observation accuracy vo(h) is defined to be the infimum of
v(h, D) over all observation operators D. A family (D), h > 0, of observation
operators will be said to be uniformly stable, if v(h,Dy) — 0 as h — 0; it
will be called to be order optimal, if there exsist ¢ > 0 and hg > 0 such that
v(h,Dy) < cvp(h) for all h < hy.

The accurate problem formulation is as follows: find a uniformly stable family
(Dn) of dynamical observation operators. We will also be interested in providing
explicit upper bounds for v(h, D) and proving (Dy)’s order optimality.
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3. Assumptions

For a vector or a matrix function 5-) on IxIR™xIR™, introduce the growth
condition: |b(t,y,2)] < K(1 + |y| + |2|); the Lipschitz condition for 5(-) will be
considered with respect to the norm (t,y,2) — |t| + |yl + |2| on the space of
the arguments. We assume the functions fi(-), f2(-),91(-) and ga(-) satisfy the
growth condition and to be Lipschitz on every bounded set.

Let 2 = {(4(to),2(to), 2()) : (W(),2()) € X} and Z : (y(),2()) —
(y(to), 2(%0),2(:)) : X — Z. The system (1), (2) is called to be completely ob-
servable, if the operator Z is invertible. If it is so we will consider the reconstruc-

tion operator Y : (yo,z20,2(")) — y(-) : Z = W where y(-) is determined by

(y(),2(-)) = Z~Y(yo, 20, 2()). Following the terminology of the theory of ill-posed
problems, we will say that the observation problem is well-posed (X is the set of
well-posedness), if the system (1), (2) is completely observable and the operator Y
is uniformly continuous on Z , with respect to the metrics on W and Z induced,
respectively, by the norms ||-|| and ||« : (o, 20, 2(:)) — |yo|+|20|+|[2(")|]. Accor-
ding to Ivanov et al. (1978), well posedness is a necessary and sufficient condition
for existence of a uniformly stable family (Dp) of observation operators; in parti-
cular, Dj can be provided by the method of quasi-solutions: w(:|Dy,€) = Yn,,
where 7, € Z is such that |n, — ¢|, < inf{|p — €| : 7 € £} + h. However, the
question whether well-posedness implies existence of a uniformly stable family of
dynamical observation operators, is nontrivial.

It is assumed the following condition ensuring well-posedness: rank g1(t,y, z)
is equal to the dimension 1 of a control vector. Indeed, let g;’ (t,y,z) be the
matrix pseudoinverse to g¢,(¢,y,2), and . ‘

fr(t’ Y, Z) = fl(t) Y, Z) - fz(t; Y, z)92+ (t) Y, Z)gl(ta Y, Z)
f;(ta Y, Z) = f?(t) Y, Z)g;-(t) Y, Z)

One can easily prove that f{(-) and f#(:) satisfy the conditions imposed above
on fi(-) and fo(-). Therefore, for any (yo,z20,2(-)) € Z, there exists the unique
Caratheodory solution to the Couchy problem '

(@) = fi(ty(1), 2(8) + F5(, y(t), 2(2)) ()
y(to) = yo (3)

on I. That, due to the definition of ff(-) and f5(-), implies immediately
that (y(-),z(-)) € & if and only if y(-) is the solution of (3) for yo = y(to).
Consequently, the system (1), (2) is completely observable. The uniform continuity
of the operator Y can be proved by using the above properties of f{(-) and f5(-).

4. Uniformly Stable Families

The conditions imposed on the right hand sides of the equations (1), (2) imply that
the set X is uniformly bounded. Thus, we can fix a compactum @Q* C IR™ such
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that 2(t) € @* and t € I for any (y(-),2(-)) € X. Without loss of generality,
put it to be a parallelepiped: @Q* = {u € R™ : 7 < ulF) < qt, 1<k <m}
here u(F) stands for the k—th coordinate of a vector u. Introduce the following
observation operator D® determined by a positive parametr §. Let (t:)X, be the
6—net on I, ie tip1—t; =8 for 0<i<N-~—1, ty = o, and ty —ty_1 < 6.
Define the w(-) = w(-|D’,¢) where & = (yo«, z0+,{(-)) by

w(to) = pry(yox|Xo) (4)
w(t) = w(t:), ti<t<tip (5)
w(ti+r) = wts) + [, wts), C(t:)) + f3 (i, w(ts), {(8:))u(t:)] 6 (6)
u®(t:) = (¢f — g [1 +sign(p®(t;) — C‘(k)(ti))] /2, 1<k<m (7)
P(to) = pr:(z0+| Xo) (8)
p(tig1) = p(t:) + u(ti)8 (9)

the right hand sides (4) and (8) are projections of ., and z, on the sets
Xoy = {y:(y,2) € Xo} and Xo, = {z: (y,2) € Xo}. It is easely seen that the
observation operator D’ is dynamical. According to the terminology of the theory
of closed-loop game control (Krasovskii and Subbotin, 1988), equations (5) and (9)
provide a discrete-time guided model, and (7) describes a closed—loop controel law
for the model; the particular form of (7) is a modified eztremal shift control law.

Theorem 1. Let ¢ >0, §(h) < ch, and D = D™ (h > 0). Then

(i) for every h, > 0 there ezists @ K > 0 such that v(h,Dp) < Kh
for all h < hy,

(i) the family (Dp) of dynamical observation operators is uniformly stable.

Statement (ii) follows directly from (i). The proof of (i) has two parts. First,
the estimation ||p(-) — z()|| < ¢1h is shown; here ¢; is a constant, and p(-) is
the function (7), (8) extended to I by p(t) = p(t;), t; <t < t;41. This is the
basis to prove the bound [|w(-) - y(-)|| < Kk (h < k) that, due to the arbitrarity
of a motion (y(-),z(:)) € X and an input ¢ h—accurate for y(-), 2(+)), yelds (i).

Remark. In Theorem 1, a constant K is expressed for any h, > 0 explicitly
via a growth and a Lipschitz constants of f}(-) and f¥(.).

Considering D° as a finite-step real-time numerical algorithm, note that it
‘depends on the parameters q;: and g, (see (7)) of the set @*; the latter must
consequently be found apriori. Let us give a modified operator A’ that does not
use the set @Q* and does not imply any kind of aprior: analysis of the set X.
Define the w(:) = w(-|A% &) by (4) through (9) with replacing ¢f and g, in
(7) respectively, by qti and . ; determined as follows: Q)}:,i ={uelR™: g ; <
u®) < q;:i, 1 <k < m} isthe minimal m—dimensional parallelepiped containing
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the aD'—neighborhOOd of the set {gl(ti7w(ti)7 C(tl)) + gZ(tivw(ti): C(ti))v ‘v e Q})
here aq is a fixed parameter.

Theorem 2. Theorem 1 remains true after replacing D*®) py AR),

5. Order Optimality

Introduce the modulo of continuity of the reconstruction operator Y
Q(h) = sup {||[Ym — Ynall : m = (301,201, 21(-)), M2 = (o2, 202, 22(*)) € Z,
' o1 — yo2| < syh, |z01 = 202] < 8, b, [J2a(-) = 22( )| < B}

The order optimality analysis is based on the following lower bound for the unim-
provable observation accuracy v(h) (Ivanov et al., 1978).

Lemma. v,(h) > Q(2h)/2.

Now we give a condition implying an explicit lower bound for (k). It is
called that the equation (1) is nondegenerate, if there exist a (y(-),z()) € X, a

tel,and v1,vs € Q such that fo(t, y(t), z2(t))v1 # f2(t, y(2), 2(t))vs.

Lemma. If the equation (1) is nondegenerate, then there exist ¢ >0 and hg > 0
such that Q(h) > coh for all h > hg.

Remark. Constants c¢; and hg can be written out explicitly. Taking into
account Theorems 1 and 2, and Lemmas, the following theorem can be formulated.

Theorem 3. Let the equation (1) be nondegenerate and the conditions of Theo-
rem 1 or Theorem 2 be fulfilled. Then the family (Dy) ts order optimal.

6. Conclusions

For a dynamical system affine in controls, the problem to construct a uniformly sta-
ble family of dynamical observation operators is considered. Along with standard
growth and Lipschitz conditions for the right hand side of the motion equations,
two extra ones concerned with special types of nondegenerancy of the equations (2)
and (1) for the observed and unobserved state coordinates are formulated. In case
the equation (2) is nondegenerate, two desired families of operators are provided.
If in addition the equation (1) is nondegenerate, the families are order optimal.
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