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AN INVERSE PROBLEM OF
A DIFFERENTIAL
EQUATION IN A BANACH SPACE

VYCHESLAV I. MAKSIMOV*

A problem of dynamical reconstruction of the unknown right hand side for
a linear differential equation in a Banach space is considered. A numerical
solution method based on certain constructions of the theory of positional
(closed-loop) control and modelling is suggested.

1. Introduction

In recent years, the problem of stable real-time numerical reconstruction of unk-
nown parameters of dynamical systems subject to incomplete or averaged informa-
tion appears in various scientific and technical researches. The goal of the present
paper is to give a method to solve the above problem for a concrete dynamical
system.

2. Problem Formulation

An abstract differential wave equation of the form
&(t) + Az(t) = Bu(t) + f(t), teT=[0,v], : (1)
z(0) =z €V, z2(0)=2zpp€ H

is considered. Here A : D(A) — V* is a self adjoint positively definite linear
operator whose domain D(A) is dense in a Hilbert space (H,|-|), f(:) € L2(T; H)
is a given function, u(t) € U 1is a control, (U,|-|v) is a real Banach space,
B:U — H is a linear continuous operator, V = D(A/?) is a separable Hilbert
space with the scalar product

o0

(vlavil)v = E’\j(vli(pj)H(vz,(Pj)H Vvl)“? € V:

i=1

which is continuously and densely imbedded in H(D(A) C V C H) . We assume
that A has a complete sequence of orthonormal eigenelements (:)5Z;, (3;)52;
is a corresponding sequence of real eigenvalues A;
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0<A <A<, and lim )\ =00

J—o00

For every f(-) € Lo(T; H), u(-) € Lo(T;U), zo € V, 210 € H, the weak
solution of (1) is a function z(-):T — V with the following properties:

1) z(-) € C(T;V), for allt € T there exists the strong derivative #(t), and
&(t) € C(T; H),

ll) limt—>o+ |13(t) - xolv = 0, limt_.0+ ].’lt(t) - :010[” = 0,

iii) #(-), understood in the sense of distributions, can be identified with a func-
tion in Ly(T;V*), as follows

< #(t) +Zz(t),v >y v= (Bu(t) + f(t),v),

YVoeV and teT

The linear mapping A : V — V* is defined by

<Av,w >, = (AY%,AY?w), Yo, we V

It is known (Krabs, 1985) that weak solution z(:) = z(-; 20, 10, u(-)) of (1) is
given by

z(t) = S(t)zo + T(t)z10 + ./o T(t — 7)(Bu(r) + f(r))dr
for all t € T, and the strong derivative &(-) is given by
() = ~AT(@)z0 + S(®)mo + [ S(t=)(Bu(r) + f(r))dr

for all ¢ € T. Here, S(t) is the cosine operator (Krabs, 1985), generated by
A, T(t) is the operator associated with the sine operator

T(t)z = /0 t S(r)zdr

For the properties of the operators S(t) and T(t) and the weak solutions see
(Fattorini, 1969) and (Lasiecka and Triggiani, 1981; 1983).

Let Y be a Banach space, C': H— Y be a linear continuous operator. The
problem can be explained as follows. An unknown control us() € Ly(T;U) ge-
nerating an unknown realization, i.e. the weak solution z,(-) = z(-; 2o, 210, ui(+))
of (1) acts on the system (1). The time interval T is put into parts by intervals
[7i,7Tit1), Tign =" +6, §>0, i€ [0 : mg]. At time instants 7; the ele-
ments Cz.(r;) are measured approximately, i.e. elements & = &(r) € Y being
approximations to Cz(7;) are measured
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ICa.(r) - &, < (2)
An approximation algorithm of the u,.(-) is to be found.

3. Problem Solution

Below, a solution algorithm for the problem based on the approach to the inverse
problems of dynamics developed by Kryazhimski and Osipov (1983, 1987), Osipov
(1987), Osipov et. al. (1991) is proposed. For the case where Y = H, C =1 (the
identity operator), i.e. the elements z.(7;) are measured, the various algorithms
approximating u.(-) for systems of the form (1) (based on the above approach)
were considered by Osipov and Maksimov (1992), Korotki and Osipov (1991) and
Maksimov (1991).

Let the following conditions be fulfilled:
1) Y =U, U is a real Hilbert space,

il) zo and z,0 are known, f(-) € C(T;H),
iil) the function ¢t — £(t) = Cz,(t) € CX(T;U), Czo = £(0), Czyo=£(0),

iv) the operator CB is invertible in U, and (CB)™! : U — U is a linear
continuous operator,

v) CA: H — U is a linear continuous operator (CA is the closure of the
operator CA),

vi) the sine operator T'(t) is a function of type w
[T(t)x| < K exp(wt)lz| VzeH,

vii) [ YKt T)|Bdrdt < 1

Here K(t,7) = —(CB)"'CAT(t—7)B,if t > r, K(t,7) = 0, in the opposite case.
Condition (5) is fulfilled if U = H = Lo(2), B =1, @ C R* is a bounded
open set with the smooth boundary, A : Ly(Q) — Ly(Q), Az = —Az (A isthe
Laplace operator), D(A) = HY}(Q)NH(Q)
(Cz)(n) = / M(n,v)z(v)dv for n€Q and Vz€H
Q

functions M(n,v) and A,M(n,v) are measured in the sense of Lebesque on
QxQ,

v— M(nv)€E H&(Q)ﬂHz(Q) for neQ

[ iMupdvin<+oo, [ 18,M(,0)lfdvdn < +oc
Oxl QxN
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Besides,

(C_A:L')(n):/A,,M(n,V)z(V)dV for n€Q and VzeH
o :

To calculate approximately u.(-), we apply the method of closed-loop control
with a model (Krasovskl, 1985; Kryazhimski and Osipov, 1983; 1987). Let us
describe the algorithm, i.e. the sequence of actions forming an approximation to
u,(-). First, a family A, = = {1}, Te0=0, 7 ms =0, Teiqy1 =T ; + 6(¢), of

partition of the interval 7' with diameters & (e ) 6(A

) 6(5)——»0 €6~ (e) =0

as ¢ — 0, and an auxiliary system M (a model) functioning synchronically with
the real system (1) are chosen. The model M is given by the system

w(t) = v°(t)
wy(t) + Awy(t) = f(t)
s (t) — T 1) = CF(1)

W3(t) + Aws(t) = Bve(2)
)"1CAws(t)

w§)(t) = (CB

wa(t) + Awg(t) = 0

w(0) =0
w1(0) = zo, w1(0) = z10
wy(0) =0
w3(0) = ws(0) =0
wgl)(O) =0
for te€T, and

ws(t) + Aws(t) = 0

wa(Te,) = waTe;)  tha(Tei) =0

ws(Te,i) =0 ws(7e,i) = wa(7e )

for t € 6c; = [7ei, Te it1)

with the control v¢(-). Before the initial time of the process, a value ¢ and the

partition- A = A,

are fixed. The work of the algorithm starting at time ¢,

is decomposed into ms — 1 steps. At the i—th step carried out during the time
interval 6 ;, the control v¢(t) = vf, t € bei :

I(CB)=16-2(e)[{(& —

§im1) — (wa7e i) — wa(7e i-1))}—

vf = CA[LT {wa(r) +ws(r)}drllusi/lsilu, if |sily # 0

0, in the opposite case

si = (CB) ' {&i_1 — &

&= f(Te,E)

— wa(Te,i-1)} — w(Te,im1) — wgl)(fz,iq)
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1s calculated. After that, we transform the state p.; = {w(7 ), wi(7;),

wi(Te,i), wa7e i), wa(mi), wa(7e,qi), wz(,l)(‘re,,-)} of the model into p,;y1. The
procedure stops at time J. Due to the properties of a weak solution of system (1),
the phase trajectory of the model is determined correctly.

The following Lemma is true.

Lemma. The bounds
o (lzorivy < ko
e(t) <k{6(A)+e6 1A} VteT

hold uniformly with respect to all € € (0,1], partitions {A.} with diameter §(A;),
and measurement results & = £(7. ), satisfying (2).

Here, k, ko are constants written out explicitly
1 T
o =1 [ (o) =) + [ K(rmotayantarfy,
0 0o

9(t) = (CB)™H{¢(t) — CAz(t; z0, 210, £(-)) — CS(t)}
Let the weak norm |- |, be introduced on the set

S(ko) = {v(-) € L2(T5U) : |lv(MlLo(rivy < Ko}

(it can be done by the Theorem of Bishop (Warga, 1972)).
Then the following Theorem is formulated.

Theorem. Let € — 0, then ||u.()||z,(r;v) < ko and

10°() = welLo@ vy — 0

The proof of the Theorem is based on the results given by Orlovski (1991) and
on the Lemma as well as on the fact that u.(-) is the unique in Ly(T;U) solution
of the Volterra equation

u(t) = g(t) + /0‘ K(t, T)U(T)‘dT, teT

4. Conclusion

The paper presents an algorithm for reconstruction of unknown controls action on
a dynamical system described by a differential equation in a Banach space. The
algorithm is stable with respect to informational noises and computational errors,
and allows to calculate an input with an arbitrary accuracy, basing on averaged
measurements of variable states.
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