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DYNAMIC SLICING OF DISTRIBUTED PROGRAMS

Bogpan KoreL*, RoOGER FERGUSON*

A static slice S of a sequential program @ is an executable part of Q that
computes the same function as Q does in a subset of variables at some selected
point of interest. As originally introduced, it involves all potential termina-
ting program executions. In debugging, however, we typically deal with a
particular incorrect execution and are interested in locating the cause of in-
correctness of that execution. Therefore, we are interested in a slice, referred
to as a dynamic slice, that preserves the program’s behavior for a specific
input. The concept of dynamic slicing has been initially introduced for se-
quential programs. In this paper we extend the concept of dynamic slicing
to distributed programs. A distributed program introduces new challenges
(e.g., nonreproducible behaviors, nondeterministic selection of communica-
tion events, etc.) that are not captured by the original definition of dynamic
slicing. Consequently, the concept of dynamic slicing needs to be extended
in order to make it a useful tool for debugging distributed programs.

1. Introduction

A slice S of a sequential program @ is an executable part of Q that computes
the same function as @ does in a subset V of variables at some selected point of
interest p (Weiser, 1984; Horowitz et al., 1990). The program slice S consists of
all statements in @ that potentially affect variables in V at p. Slicing has been
shown useful in program debugging by narrowing the size of the suspected part
of incorrect code. As originally introduced, it involves all potential terminating
program executions, including those which are infeasible, that is, those for which
there is no input data that causes their actual execution. In debugging, however,
we typically deal with a particular incorrect execution and are interested in locating
the cause of incorrectness (programming fault) of that execution. Therefore, we
are interested in a slice that preserves the program’s behavior for a specific input,
rather than that for a set of all inputs for which the program terminates. To
emphasize its dependence on a particular program execution, it is referred to as
dynamic; in contrast, the original slice, defined on the program flow graph, will be
referred to as static (Weiser, 1984; Horowitz et al., 1990).

The concept of dynamic slicing was originally introduced for sequential pro-
grams in (Korel and Laski, 1988). The algorithms to find dynamic slices have bevn
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presented in (Korel and Laski, 1990b; Agrawal and Horgan, 1990). Our experience
with dynamic slicing for sequential programs has shown that it can significantly
reduce the size of the program as compared to static slicing. This can lead to
more efficient fault localization because the searching space for a fault can be re-
duced. We believe, therefore, that dynamic slicing is better suited for the purpose
of debugging (in particular, fault localization) than static slicing.

In this paper, we extend the concept of dynamic slicing to distributed pro-
grams; in particular, for Ada-like programs. Distributed programs introduce seve-
ral problems which do not exist in sequential programs. Consequently, the concept
of dynamic slicing must be extended in order to make it a useful tool for debugging
of distributed programs. One of the major problems in distributed software is the
reproducible program execution. Distributed programs often make nondetermini-
stic selections of communications events, e.g., the select statement in Ada. Thus
repeated executions of a distributed program with the same input data may result
in the execution of different program paths. The results of the program may not
be reproducible by simply reexecuting the program. In order to reproduce the exe-
cution of a distributed program, not only program input data but also appropriate
choices for the nondeterministic selections must be provided. Tai et al. have in-
vestigated the reproducible—testing problem for Ada tasking programs (Tai, 1985;
Tai et al., 1991). They have suggested a method to explicitly control the execution
sequence by introducing a run—time scheduler (much like the monitor tasks used
in distributed debugging) that ensures that the execution order of the communi-
cation statements matches that of a predefined or recorded event sequences, i.e., a
distributed program is initially executed on some input, and event sequences are
recorded during execution of this program. Before any communication event is al-
lowed to occur by the run—time scheduler, the event must be the next one specified
in the event sequence. If the next event in the event sequence is not called for,
then the program (task) is suspended by the scheduler to allow the proper event
to occur. In this manner, the sequence of events is enforced during distributed
program execution.

In order to use dynamic slicing to debug distributed programs, it is required
that event traces be recorded during distributed program execution by, for exam-
ple, a distributed debugger. Suppose during program execution an incorrect value
of variable v has been observed at a certain point of execution of task ¢ of a di-
stributed program. In order to derive the dynamic slice for this incorrect variable,
we use dynamic influence analysis which determines those events in the program’s
execution that affected the incorrect value of variable . v. From this analysis, a
partial program text, i.e., dynamic slice, is derived. In this paper we will show
that taking into account a particular execution of a distributed program might
significantly reduce the size of the slice. Moreover, the slice can be further reduced
by the run time handling of arrays, pointers (Korel and Laski, 1988; Korel, 1990a;
Chan and Chen, 1987), and tasks. The main advantage of dynamic slicing is that,
when used for debugging, it provides finer localization information by reducing the
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search space for the fault in the program; this can make it easier for programumers
to locate the causes of incorrectness.

Dynamic slicing is described for distributed programs written in Ada, although
the results have applicability to any programs that use rendezvous-like synchroni-
zation. Because of the complexity of the synchronization constructs in Ada, we will
not consider the entire Ada language. In this paper we consider only a subset of
Ada which does not include selective wait’s with else parts, conditional and timed
entry calls, delay statements, dynamic creation of tasks, and abort statements.

The organization of this paper is as follows. In the next section, basic concepts
and notations are introduced. Section 3 introduces the basic concept of dynamic
slicing for distributed programs. Dynamic influence concepts are presented in Sec-
tion 4. The sequential and distributed algorithms for finding dynamic slices are
presented in Section 5. Finally, in the Conclusions, further research is outlined.

2. Basic Concepts

In this paper a graph model of distributed programs is used. In particular, each
Ada program task defines a flow graph; each statement in the task is represented by
anode in the flow graph; each transfer of control is represented by a direct edge. We
distinguish two types of nodes in Ada programs: synchronization nodes and non-
synchronization nodes. Synchronization nodes represent entry call statements and
accept statements. All other nodes that do not constitute synchronization nodes
are called non-synchronization nodes, i.e., assignment statements, input/output
statements, the predicate part of if-then—else, or loop statements (referred to as
a test node), etc. An internal edge corresponds to a possible transfer of control
between non-synchronization nodes inside a task; an internal edge associated with
a test node will be called a branch. A synchronization edge between synchronization
nodes of different tasks represents the Ada rendezvous. In particular, there exists
a synchronization edge between a node (on the caller task) for the event of calling
the rendezvous, and a node (on the callee task) for the event of accepting the call.
In addition, there is a synchronization edge between a node (on the callee) for the
event of exiting from the rendezvous block, and a node (on the caller) for the event
of returning from the rendezvous call.

Let T = {t1,t2,...,tm} denote a set of all tasks in Ada program Q. A flow
graph of task t € T' is a directed graph G; = (Ny, Ay, st) where:

i) N; is a set of nodes,

ii) A¢ € Ny x N; is a binary relation on Ny, referred to as a set of edges, and
iii) s; is a unique entry node, s; € N;.
An edge (ng,n;) € A, corresponds to a possible transfer of control from node n;
to node n;. For instance, (2,3), (2,4), and (5,6) are edges in the task R1 of the
program of Figure 1. An edge (ng,n;) is called a branch if n; is a test node.

A path L; in aflow graph of task t is a sequence L; =< ng,,ng,, .. oMk, > of
nodes, such that n;, = s;, andforall j, 1<j<g, (nx;, nk,,,) € Ar. For exam-
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ple, Ls =<1,2,3,4,17,18,19,20,9,10,11,12,5,6,7,8,9,10,11,12,13,14,15,16 >
is a path of task S in program of Figure 1.

Notationally, a path L; will be represented as an abstract list (Jones, 1980)
whose elements can be accessed by position (sometimes referred to as an execution
position) in it, that is, L[j] will denote the j—th element (node) of L, e.g., for
Ls given above Lg[4] = 4, Ls[6] = 18, Ls[8] = 20, etc. To distinguish between
multiple occurrences of the same node in the path we will sometimes refer to a
node together with its position in a path, rather than to the node itself, e.g., node
4 at position 4, node 20 at position 8 in Lg.

By a distributed program path of program @ we mean P = ((L:,, Ry,),
(L4,,Re,),s ooy (Lt , Re,.)), where L, is a path in the flow graph of task ¢;, and
R:, =< (A1,C1,By), ...,(A&,Ck, B;) > is a sequence of rendezvouses (similar to
R—sequence introduced by Tai in (Tai, 1985) associated with task ¢;, where each
A; indicates the start of a rendezvous (accept statement identifier) in task ¢;,
and C; and B; denote the caller of this rendezvous, i.e., entry call identifier
and its task identifier, respectively. The sequences of rendezvouses are used by
the run—time scheduler to ensure the reproducible program execution. Before any
rendezvous is allowed to occur by the run—time scheduler, the rendezvous must be
the next one specified in the rendezvous sequence. If the next rendezvous in the
rendezvous sequence is not called for, then the program (task) is suspended by the
scheduler to allow the proper rendezvous to occur. In this manner, the sequence of
rendezvous is enforced during distributed program execution.

Task W1is Task W2 is Task W3is

n, p: natural; n, p: natural; n,p: natural;

begin begin begin

1  input (n,p); 1  input (n,p); 1  input (n,p);

2  if (p=1) then "2 if(p=1) then 2 if (p=1) then

3 S.put_hi(n); 3 S.put_hi(n); 3 S.put_hi(n);

else else else

4 S.put_low(n); 4 S.put_low(n); 4 S.put_low(n); -
end if; end if; end if;

end W1 end W2 end W3

Task R1 is Task R2 is Task R3 is

¥, p: natural; y, p: natural; ¥, p: natural;

begin begin begin

1 input (p); 1 input (p); 1 input (p);

2  if(p=1) then 2 if (p=1) then 2 if(p=1) then

3 S.get_hi(y); 3 S.get_hi(y); 3 S.get_hi(y);

else else else

4 S.get_low(y); 4 S.get_low(y); 4 S.get_low(y);
end if; end if; end if;

5  compute(y); 5  compute(y); 5  compute(y);

6  output(y) 6  output(y) ' 6 output(y)

end R1 end R2 end R3
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Task S is
buf_low, buf_hi: array [1 .. 200] of natural;

head_low, head_hi, tail_low, tail_hi: natural;
begin

W N =

o ~J o w

10
11
12

13
14
15
16

17
18
19
20

head_low := 1;
tail_low := 1;
tail_hi := 1;
head_hi := 1;
loop
select
accept get_low (z: out natural);
z := buf_low][tail_low];
tail_low := tail_low +1;
end get_low;
or
accept put_low(z : in natural);
buf._low[head _low] := z;
head_low := head _low + 1;
end put_low;
or
accept get_hi (z: out natural);
z :=buf_hi[tail _hi];
tail_hi := tail_hi +1;
end get_hi;
or
accept put_hi(z : in natural);
buf_hi[head - hi]:= z;
head_hi := head_hi + 1;
end put_hi;
end select
endloop;
end S

Fig. 1. A sample distributed Ada-like program.

Example 1. Suppose that the program of Figure 1 is executed on the following
program input:

Task W1: n=4,p=2
Task W2: n=2,p=1

Task W3: n=8,p=2

and the following distributed program path P; is traversed:
P1 = ((LWI, E)1 (LW2a E)) (LW3) E)) (LRZ; E)s (LR3’ E)1 (LS’RS))

where,
Lwi=<1,2,4>
Lwy,=<1,2,3>
Lws =<1,2,4>
Lp: =<1,2,4,5,6 >

Task R2: p=2
Task R3: p=1
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Lps =< 1,2,3,5,6 >
L5—<12341718192091011125678910111213141516>
Rs =< (17,3,W2),(9,4,W3), (5,4, R2),(9,4,W1),(13,3,R3) >

E is an empty rendezvous sequence.

The above distributed program path is presented in graphical form in Figure 2.
In this path, task S accepts, in the first step, entry call 3 from Task W2, then entry
call 4 from task W3, entry call 4 from R2, entry call 4from W1, and finally entry
call 3 from task R3.

Task S
1
l A Rendezvous occurred
Task W2 f '
input(n, p); 1 3
1 i
p =
: i Il
S.put_hi(n); 3 —4m7m8———— 117 Task W3
18 1 input(n, p);
1 i
19 2 p=1
1 1
210 4  S.put_low(n);
input(p); 1 10
1 1
p=1 2 11
1 1
S.get_low(y); i 112
compute(y); i \ i
output(y); 6 f
7
1
8
1
9 Task W1
1
Task R3 110 i input(n, p);
input(p); 1 11 2 p=1
1 1 1
p=1 2 112 4 - S.put_low(n);
1
S.get_hi(y); i —_— 113
compute(y); i 114
output(y); 6 \ 115
16

Fig. 2. A sample distributed program path for program of Figure 1.

-
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3. Dynamic Slice for Distributed Programs

Intuitively, a dynamic slice is an executable part of the program whose behavior
is identical to that of the original program with respect to a variable (or a set of
variables) at some execution position ¢ in task w. Such a view of interest is
captured by the following: '

Definition 1. A dynamic slicing criterion of distributed program @ is a quintu-
ple C = (=,P,w,q,v), where P is a distributed program path which has been
traversed during execution of program @ on input #,q is a position in path L,
of task w, and v is a variable in task w.

The following is a sample dynamic slicing criterion for the program of Figure
1 which has been executed on the program input z from Example 1: Cj =
(z, P1, R3,5,y), where P; is a distributed program path shown in Example 1, y
is a variable in task R3, and ¢ =5 is a position of node 6in Lg3z =< 1,2,3,5,6 >.
From this slicing criterion we are interested in that part of the distributed program
which has affected the value of variable y at position 5 (before execution of node
6) in task R3.

Observe that our slicing criterion is defined with respect to a given distributed
path traversed on a specific input «, rather than with respect to the set of all
possible distributed paths. In addition, for the sake of presentation, we define the
dynamic slicing criterion for one variable as opposed to a set of variables (Weiser,
1984).

To formally define the dynamic slice for a distributed program we need some
definitions of list operations. Let L =< ng,,ng,,..,nx, > be a list and ¢
be a position in L. By Len(L) we denote the length of L, i.e., the number
of elements of L. By Front(L,q) we denote a sublist < ng,,nk,,...,ng, >,
containing the first ¢ elements of L. By Del(L,r), where r is a predicate, we
mean a sublist (subpath) obtained from L by deleting from it all elements L[3]
that satisfy r. In other words, Del(L,r) is the result of an exhaustive application
of the delete operation to elements L[i] that satisfy r(L[3]).

Definition 2. Let C = (=, P, w, ¢,v) be a slicing criterion on distributed program
Q@ and P a distributed path of @ which has been traversed on input =. A
dynamic slice of distributed program Q on C is any executable program Q' that
is obtained from Q by deleting zero or more statements from it and when executed
on input = with rendezvous sequences R; ,R;,,...,R; , which are enforced by
the run—time scheduler during execution of @Q’, produces a distributed path P’
for which there exists an execution position ¢’ in path L!, of task w such that:

1) The value of v before the execution of instruction Ly[g] in @ equals the
value of v before the execution of instruction L/ [¢'] in Q’,

2) Lulg] = Lyle),
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3) for each task t € T
if t=w,
then Front(L,,,¢) = Del(Front(Ly, q), Ly[k] € N, and 1<k <g)
else Lj = Del(Ly,L[k] € N{ and 1<k < Len(Ly)),

where, each R; is derived from R; by removing all rendezvous for which the call
node and corresponding accept node do not exist in the dynamic slice Q’. More
formally:

R{ = Del(Ry, v(t, R:[k]) and 1 <k < Len(R))

where,
function r(t, (A, B,C)): boolean;
return(A ¢ N; and B ¢ N¢)
end;

The following clarifies the conditions in the above definition of dynamic slice.
Condition 1 states that the value of variable v at position ¢ in L, should be
equal to the value of v at equivalent position ¢’ in L/,. This equivalent position is
determined by condition 3. In condition 2, it is required that a node at position ¢
in L, will appear in the dynamic slice. This is important for programs with loops.
Our experience with program slices shows that programmers can be easily confused
if that node (statement) is not included in the slice, especially if this node is inside a
loop. Condition 3 requires that the original execution of @ be partially preserved
during execution of a dynamic slice, i.e., distributed path P’ of dynamic slice @’
be equivalent to the original distributed path P from which all nodes not included
in Q' are removed. This, for example, will guarantee that if a loop in @ (in task
t) iterates k—times, then the same loop, if included in Q' (in task t), also iterates
k—times. QObserve that the rendezvous sequences, recorded during execution of
@ on =, are needed to partially reproduce the behavior of the original execution
of Q during execution of dynamic slice Q’. Since some statements (nodes) are
removed from the original program, to form a dynamic slice, it is obvious that
the rendezvouses which relate to the removed synchronization nodes should also
be removed from the rendezvous sequences. These updated sequences are used,
by the run-time scheduler, during execution of the dynamic slice Q' to partially
reproduce behavior of the original execution of @ on program input .

In the next section we introduce the basic concepts of dynamic influence that
are concerned with control and data flow along the executed distributed path.
These concepts are used in the method for finding dynamic slices.

4. Dynamic Influence Concepts

Let L{ =< ng,,ng,,...,nk, > be a path in task ¢ that is traversed on a program
input @. A definition of variable v in L; is a node n;, which assigns a value
to that variable. In Ada-like programs a definition of variable v can be: (1) an
assignment statement, (2) an input statement, (3) accept statement in which v is
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declared as an input parameter, e.g., accept put_hi (z: in natural) in task S of
Figure 1 is a definition of z, and (4) an entry call statement in which v appears
as an actual parameter and corresponding formal parameter of v is declared as
an output parameter, e.g., S.get_hi(y) in task R3 of Figure 1 is a definition of y.

A use of variable v in L; is anode ng, in which this variable is refe-
renced. In particular, a use can be: (1) an assignment statement, (2) an output
statement, (3) an entry call statement in which v appears as an actual parameter
and corresponding formal parameter of v is declared as an input parameter, e.g.,
S.put_hi(n) in Task W2 is a use of n, and (4) a return statement from the rende-
zvous block in which v is declared as an output parameter (in the corresponding
accept statement), e.g., end get_hi in Task S is a use of z.

Let U(nk,) be the set of variables whose values are used in ng, and D(ng,)
be the set of variables whose values are defined in ny,. In what follows we introduce
the concept of influence between two nodes ng , and ny, in Lq.

We say that ni, has data influence on ng; by variable v, p < 1, iff (1)
v € U(ng,), (2) v € D(ng,), and (3) for all j, p < j <i, v & D(ng,)

This influence describes a situation where one node assigns a value to an item
of data and the other node uses that value. For instance, in the traversed subpath
Py of Example 1 (see Figure 3) in Task S node 18 has data influence on node
14 by variable buf_hi[1], assignment statement 14 has data influence on end-get—
statement 16 by z, and accept-put-statement 17 has data influence on assignment
statement 18 by =z.

Notice that in the static approach (i*‘errante et al., 1987; Horowitz et al., 1990)
an entire array is usually treated as a single variable. This is due to the difficulty
of determining the values of the array subscripts. In contrast, dynamic approach
is oriented towards only those array elements that have actually been manipulated
during the execution, e.g., buf_hi[1] at node 14 and 18 in Task S.

The next type of influence is referred to as a control influence. This influence
captures the dependence between test nodes and nodes which can be chosen to
execute or not execute by these test nodes. To define the control influence, we first
introduce the notion of the scope of influence for the if- and while-statements:

a)if Z then By else By end if
X is in the scope of control influence of Z iff X appears in B; or Bj.

b) while Z do B end loop
X is in the scope of control influence of Z iff X appears in B.

The scope of control influence captures the influence between test nodes and
nodes which can be chosen to execute or not execute by these test nodes. Let
L, =< n,,ng,,..,nk, > be a path in task ¢ that is traversed on a program
input «.

q

We say that nj, has control influence on n;, in L, p < r, iff for all
Jhp<j<rng is in the scope of control influence of ng,.
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_ For example, node 2 in Lg3 of Example 1 has control influence on node 3 but
does not have influence on nodes 5 and 6. Note, the concept for control influence
can easily be extended for the Ada select and loop statements in the similar way.

The influences described above exist only between nodes in the path of one
task. Now we define an influence which can exist only between synchronization
nodes. This influence captures the situation where one synchronization node in
task ¢ sends a data item and another synchronization node in task b receives
this data item. Let L, =< Nk, , Nky,y -, N, > be a path in task ¢t and L; =
< mj,,m;,,...,mj, > be a path in task b.

We say that node n;, in L; has communication influence on node m;j, in
Ly iff

(1) n, is an entry call statement, (2) m;, is an accept statement, 3)
the rendezvous has occurred between ni, and mj,, and (4) there exists an
input parameter in m;;,,

or

(1) ne, is areturn statement from the rendezvous block, (2) m;, isan entry
call statement, (3) the return from the rendezvous has occurred between nk,
and m;,, and (4) there exists an output parameter in m;,.

For example, in the traversed subpath P, of Example 1, node 3 (entry call
statement) in Task W2 has communication influence on node 17 (accept statement)
in Task S (the value of variable n is sent from Task W2 to accept statement of
Task S), and node 16 (return statement from get_ hi) in Task S has communication
influence on node 3 (entry call statement) in Task R3; in this case, the value of
parameter r in Task S is sent to the entry call statement in Task R3.

The influences between nodes in the distributed program path can be represen-
ted graphically as an influence network, where each link between nodes represents
data, control, or communication influence between them. The example of the influ-
ence subnetwork is presented in Figure 3. The influences described above capture
only direct influences between nodes in the distributed program path. The influ-
ence network can be used to determine indirect influences between different nodes
by chains of directed influences. This is captured by the following:

We say that node n;, in L, has influence on node m;, in L; iff there
exists a path in the influence network from node ng, in L; to node m;,
in Lb.

For example, it is easy to see from the dependence subnetwork of Figure 3
that node 2 in task W2 has influence on node 6 in task R3.

5. Finding Dynamic Slices

There can be many different dynamic slices for a given program and a slicing
criterion; there is always at least one such slice, the entire program itself. Naturally,
we are interested in a statement-minimal slice, i.e., one that has the minimum
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Fig. 3. Influence subnetwork for the distributed path P; from Example 1.
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number of statements. The method of dynamic slice derivation presented in this
paper is based on the dynamic influence concepts and leads to conservative slices,
guaranteed to have the slice properties but with potentially too many statements.

Given a slicing criterion C = (, P,w, ¢, v), a dynamic slice @’ contains only
those statements (nodes) of program @ that influence the variable v at ¢ in
task w. The derivation of the slice is done in two steps: first all nodes in path P
that influence variable v at ¢ in task w are marked and then a dynamic slice is
reconstructed from the marked nodes in P. In addition, the updated rendezvous
sequences for the dynamic slice are derived from the original rendezvous sequences
and the marked nodes in P.

The following is a sequential algorithm for marking nodes in path P:

Set all nodes in P as unmarked and not visited

Mark the last definition of v at position ¢ ‘in task w

Mark nodes which have control influence on L [q]

WHILE there exists a marked but not visited node in path P DO
Select not visited but marked node =z
Set node z as visited
Mark all unmarked nodes which have influence on node =z

Mark all unmarked multiple occurrences of node z
ENDWHILE

In this algorithm, after setting all nodes as unmarked and not visited, the
last definition of variable v at position ¢ is found and marked, where the last
definition is defined as follows:

© NS N

We say that n;, is a last definition of variable v at position ¢ in
Lw, p<gq,iff (1) v € D(ng,), and (2) for all j, p<j < g, v ¢ D(ny;).

The last definition of variable v at ¢ in task w is a unique node which has
last assigned a value to v when position ¢ is reached in Lw.

In step 3, all nodes which have control influence on node Lw/[g] are marked.
This is because of Condition 2 of Definition 2, in which it is required that a node at
position ¢ in Lw appear in the dynamic slice. In the next steps of the algorithm
(loop 4-9), not visited but marked node z in P is selected, and ther''all nodes
which have influence on x are marked (based on the influence network). Step
8 requires special explanation: When influence concepts defined above are used
to derive a dynamic slice, they fail to guarantee that Condition 3 in Definition
2 is satisfied (Korel and Laski, 1988). Recall that according to the latter, it is
required that the number of loop iterations be preserved if the loop is present in
a slice. Towards that goal, we mark all occurrences of a node which has been
executed more than once in program . The process of marking nodes in loop 4-9
is repeated until all marked nodes are visited.

Given marked path P, the dynamic slice @’ 1is found in a straightforward
way. First, remove from the original program @ all statements (nodes) which are
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not marked in P. Note that because of Condition 2 of Definition 2, the statement
corresponding to node Lw][g] in task w is not removed even if this node is not

marked. Second, to ensure syntactical correctness all necessary declarations are to
~ be included.

In order to guarantee the partially reproducible execution of the dymamic
slice with respect to the execution of the original program, the updated ren-
dezvous sequences R; ,Ri,,..,R; must be derived from the original rende-
zvous sequences Ry ,R;,,...,R:, . These updated sequences are used by the
run-time scheduler during execution of the dynamic slice. The updated rende-
zvous sequences are derived in the following way: For each rendezvous sequence
Ry, =< (A1,C1,By), ..., (Ak,Cr, By) > remove all elements (A;,Cj,B;) from
R;; for which Aj; is not marked in L.

Example 2. Consider the distributed program of Figure 1 and its path P; from
Example 1. For the slicing criterion: C; = (=, P, R3,6,y), where « is a program
input presented in Example 1, the following are the marked nodes in path P;:
Lw2:1,2,3

Lg3:1,2,3,5,6

Lg:3,4,17,18,20,13,14,16.

Nodes in Ly, Lws, and Lg, are not marked.

The corresponding dynamic slice is derived from those marked nodes in
P;  and is presented in Figure 4. The updated rendezvous sequence Rg =
< (17,3,W2),(13,3, R3) > is also easily derived from the original rendezvous
sequence Rgs based on the marked nodes in P;; this rendezvous sequence must
be used by the run—time scheduler to partially reproduce behavior of the original
execution of the program of Figure 1 on the same input, leading to exactly the
same value of variable y in task R3 at node 6 (the distributed program path
for the dynamic slice is presented in Figure 5). From this dynamic slice it is easy
to see a significant reduction of the original program (around 30% of the original
program).

Task W2 is Task R3 is

n, p: natural; ¥, p: natural;

begin begin

1  input (n,p); 1 input (p);

2  if (p=1) then 2 if(p=1) then

3 S.put_hi(n); 3 S.get_hi(y);
else else
end if; end if;

end W2 5  compute(y);

6 output(y)
end R3
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Task S is

buf_hi: array [1 .. 200] of natural;
head_hi, tail_hi: natural;

begin

3 tail _hi := 1;

4  head_hi:=1;

loop
select
13 accept get_hi (z: out natural);
14 z :=buf_hi[tail_hi];
16 end get_hi;
or
17 accept put_hi(z : in natural);
18 buf_hi(head _hi}:= z;
20 end put_hi;
end select
endloop;
end S

Fig. 4. A dynamic program slice of Example 2.

Task W2 Task S
input(n,p); 1

A Rendezvous occurred

i 3

rp=1 2 !

i 4

S.put_hi(n); 3 ]
Task R3 11

input(p); 1 18

_ ! 20

p=1 2 |

S N Y
.get_hi(y); 3 |
! 14

compute(y); 5 |
l 15

output(y); 6 |

16

Fig. 5. The distributed program path for the dynamic program slice of Figure 4.

In the sequential algorithm, it is assumed that all recorded traces are sent to
one computer site and the dynamic slice derivation is done on this site. This can
work fine for relatively short traces. However, for very long traces this approach
can be prohibitive. For this reason, we have developed a distributed version of the
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algorithm for finding dynamic slices. Now we present a distributed version of the
algorithm.

The distributed algorithm consists of a set of identical algorithms located on
each computer site in the network. The algorithm, which is presented in Figure 6,
is responsible for the influence analysis and node marking for the task(s) residing
on this site (for the sake of simplicity, we assume that only one task resides on
each site). The distributed analysis starts at the site of task w where the incorrect
value of variable v has been observed (notice that lines 2 and 3 of the algorithm
of Figure 6 are executed at this site). In the distributed algorithm the control and
data influences are handled locally on each computer site in the exactly the same
manner as in the sequential algorithm. The major difference is with communication

1. Set all nodes in L; as unmarked and not visited

/> The following two statements are executed only on the site of task w Vi

2. Mark the last definition of v at position ¢ in task w

3. Mark nodes which have control influence on Lwiq]

4. WHILE not global termination DO

5. WHILE (message queue is not empty) or

6. (there exists a marked but not visited node in path L:) DO

7. Remove a message from the queue

8. Mark a node in L. specified in the message

9. WHILE there exists a marked but not visited node in path L, DO

10. Select not visited but marked node z

11. Set node z as visited

12. Mark all unmarked multiple occurrences of node = in Lt

13. IF z is a communication node

14. THEN

15. IF z is an accept node

16. THEN :

17. " Determine task-id ¢; and call_entry_id from R-sequence
of task t for z

18. Send a message to task t; to mark the corresponding entry
call node in L¢;

19. ELSE /* z is a call_entry to task t; */

20. Send a message to task ¢; to mark the corresponding
end_accept node in L¢;

21. ENDIF

22. ELSE

23. Mark all unmarked nodes in L¢ which have data or control

influence on node z

24. ENDIF

25. ENDWHILE

26. : ENDWHILE .

27. Exchange messages to determine global termination

28. ENDWHILE
Fig. 6. A distributed algorithm for finding dynamic program slices.
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influences. If the current node z is a communication node then (1) a task is
identified with whom the rendezvous has occurred and then (2) a request is sent to
the slicing algorithm of that task in order to mark the corresponding communication
node in this task path. The incoming messages are stored on the message queue
by the special process which is only responsible for acceptmg messages from other
sites. The algorithm removes in line 7 the incoming messages from the message
queue, and marks the nodes specified in those messages. For example, consider
node 3 of Figure 3 in task R3. The algorithm responsible for task R3 will send a
message to the corresponding algorithm of task S to mark the end node of accept
get_hi statement in path of task S. Similarly, for node 17 in task S, the algorithm
of task S will determine, from the rendezvous sequence, the corresponding task (in
our case task W2 and node 3) and will send a message to the algorithm of task W2
to mark node 3 in the path of W2. After the marking process is completed and
the agreement about the global termination is reached, the corresponding slices for
each task are derived from the marked nodes in task paths.

6. Conclusions

In this paper, we have presented the concepts of dynamic slicing for distributed
programs. The idea of dynamic slicing has been first described in (Korel and Laski,
1988) for sequential programs. This paper extends this idea for distributed pro-
grams which introduce several problems which do not exist in sequential programs.
The main advantage of dynamic slicing is that the size of a slice can be significan-
tly reduced by taking into account a particular program execution, rather than all
possible executions of a distributed program. The motivation for dynamic slicing
is its use in program debugging because it provides finer localization information
by reducing the searching space for faults in distributed programs. Consequently,
it is easier for programmers to localize the causes of incorrectness. Ideally, the
dynamic slicing tool should be a part of distributed debugger, e.g., (Bates, 1988;
Cooper, 1987; Elshoff, 1988; Choi et al., 1991), in order to make debugging more
efficient. Information which is recorded by distributed debuggers could be used for
the purpose of slicing.

We now highlight some directions for the future research. One direction is to
incorporate static dependence analysis (e.g., Ferrante et al., 1987; Horowitz et al.,
1990; Korel, 1987) into dynamic slicing in order to reduce the amount of recor-
ded information during execution of distributed programs (this can be of a great
importance for very long program executions). Static analysis could significantly
enhance the derivation of dynamic slices. The second direction of the research is to
use dynamic slicing in the process of test data generation for distributed programs.
In (Korel, 1990a; Korel et al., 1991) a novel approach of automated test data ge-
neration has been proposed. Th1s approach is based on actual program execution
in order to derive required test data. Dynamic slicing should significantly improve
the efficiency of this method by requiring that only a part of a distributed program,
i.e., a dynamic slice, should be executed rather than the whole program.
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