Appl. Math. and Comp. Sci., 1992, vol.2, No.2, 217-235

TEMPORAL LOGIC AS A TOOL FOR
PROGRAM CORRECTNESS ANALYSIS

Rapostaw KLIMEK®

The paper deals with temporal logic and analysis of correctness properties of
programs. A classification of program properties is presented. Verification by
temporal logic is shown on the examples of synchronization in the producer—
consumer problem and a sample parallel system of robots. The analysis of
the system concerns three types of safety property.

1. Introduction

Formal analysis of software and proof of its correctness is & very important issue
in software engineering. This is a difficult problem and it requires a very precise
approach (Dijkstra, 1981). There are many facts which result from each program
instruction. Each instruction can influence many other instructions. If program
testing can yield some results in the case of sequential program, it fails for a concur-
rent program which results from - unforeseeable: time run. The program behavior
is not only the input/output relation but also the whole execution sequence, i.e. a
program state does not depend only on a program itself but also on other coopera-
ting and competing programs which run in the same time. These time dependencies
are very difficult to account for in the accepted model of the program execution.

In ordinary logic valuation of proposition does not depend on time. We can
even mention the first-order approach to time (Galton, 1987). A sequence of
states connected with a passage of time is considered in a typical model of program
execution. In succeeding states variables can have different values. Therefore,
formalism used for program analysis should lead to show the dynamic character of
a program. Temporal logic, which is classified among model logicals, expands its
time domain. The formulae may take on different logic values at connective time
points.

The aim of this paper is to present and show temporal logic as a tool for
description and verification of software, in particular concurrent software. The
following sections of this paper deal with temporal logic and the division of pro-
gram correctness properties. Temporal logic is discussed in the way it was made in
(Galton, 1987). Safety property are described more carefully since it is often taken
into account when designing a program. Two examples are presented in order to

* Academy of Mining and Metallurgy, Institut of Automatic Control, 30-059 Krakéw,
Al. Mickiewicza 30, Pcland

218 R. Klimek

show potentialities of temporal logic. The first one is a traditional solution to the
question of synchronizing the procedur—consumer problem. It may constitute a cer-
tain comparison of temporal logic potentialities with e.g. Habermann’s axiomatic
theory that can also be used for proving the correctness of concurrent algorithms
(Habermann, 1972; Iszkowski and Maniecki, 1982). The second example is a pa-
rallel real-time system of robots. First, a primary control program of robots is
put forward and then formal verification is made. Verification concerns the three
examples of the safety properiy which are described earlier. In the last section
conclusions have been put forward. In appendix, proofs of some temporal logic
laws are presented.

2. Temporal Logic

In ordinary logic valuation of a proposition does not depend on time (the passage
of time) at all. We always try to reason absolute truth. In this sense we can say
that propositions have static character. However, in temporal logic the truth and
falsity may depend on a point of time in which a proposition is considered. This is
why a proposition has to be considered in a context of other time points (states),
l.e. in the whole sequence of them. We assume that set of time points is infinite,
discrete and linearly ordered with a smallest element.

Temporal logic introduces new operators in comparison with ordinary logic.
There are operators well known in model logic, i.e. O necessity operator and as well
as O possibility operator, so new ones. The list of these operators with a sample
use and informal definition is presented below. All definitions deal with a reference
point which can be:

0OA - A holds at all time points (always),
OA - A holds at least at one time point (sometime),
OA - A holds at the time point immediately after the reference point (nezt),
AUB - A holds at all following time points up to a time point at which B holds
(until).
As shown above the first three operators are unary and the last one is binary.

A language L1 of propositional temporal logic is given by an alphabet of
symbols and the definition of a set of strings over this alphabet, called formulae.
The definition mentioned below is an extension of a similar one for a language
of ordinary logic which could also be shown, i.e. language of the temporal logic
includes the language of ordinary logic.

Alphabet

o a denumerable set V of atomic formulae,
e the symbols: true, false, -, A, V, =, &, 0, 0,0, U, (,).

Temporal logic as a tool for... 219

Inductive definitions of formulae:

i) Every atomic formula is a formula.
ii)f A and B are formulae, then -A, (AAB), (AV B), (A = B),
(A<= B), DA, ©A, OA and AUB are formulae.

The given set of symbols is greater than necessary. The set: -, =, O, U,
(,) is sufficient since the remaining operators and constants can be introduced as
abbreviations of them.

The priority order of the operators is as follows:

-, 0, ©,0 have higher priority than all binary operators;

U has higher priority than A, V, =, <=;
A,V have higher priority than =, <=;
= has higher priority than <=.

The semantics of language Lr is based on the idea of temporal structure
K which consists of an infinite sequence {bo, b1, b2, ...} of mappings (Boolean
valuations):

b; :V—+{f,t}

where £ and t represent, falsity and truth, respectively, b; is called state and
by is the initial state. It means that a state is a time point and every state is a
valuation in the ordinary sense.

Now, we can define temporal logic operators strictly using temporal structure
(a subscript for K means that b; is a reference state):

K;(DA) =t iff Kj(A)=t forevery j2>i;

K;(CA) =t if Kj(A)=t forsome j 2 i;

Ki(OA) =t if Kip(A)=t;

Ki(AuB)=t iff K;j(B)=t forsome j>i and
Ky(A)=t forevery k, i<k <j.

Before we present a list of some basic axioms and laws of temporal logic, let us
consider the combinations of two model operators. The formula OOA (infinitely
_often A) can be interpreted as there is an infinite number of future time points
at which A holds, or otherwise, if A ever becomes false, it is guaranteed to
become true again at some later time point. The formula ©ODA (eventually
henceforth A) can be interpreted as follows: there is some time point after which
A remains true forever.

220 R. Klimek

Duality laws

(T1) O0-A4 < 04
(T2) O-A < -0A
(T3) O-A = -04

T1 and T2 say that operators O and <© are dual and lead to express the
relation between the necessity and the possibility. T3 says that operator O is
self-dual.

Reflexity laws

(T4) OA= A

(T5) A= 0A
These formuae indicate relations between the future and the present.

?Strength” of the operators

(T$6) 0A =04
(T6") DA = OA
(T7) 0A=OA
(T8) AUB = 0A
(T9) OU0A = 00A

These formulae indicate implication relations between the operators.

FE gy

Idempotency laws
(T10) O0A <= 0OA

(T11) COA <= 0A

T10 and T11 mean that, intuitively speaking, the future of the future is equivalent
to the future.

Distributivity laws

(T12) O(AAB) < 0OAAOB
(T13) O(AV B) <= OAVOB
(T14) O(AAB) <= OAAOB
(T15) O(AV B) <= OAVOB
(T16) O(A=> B) <= 0OA= OB

These formulae indicate distributivity relations for temporal logic operators.

Temporal logic as a tool for... 221

Weak distributivity laws

(T17) OAVOB= 0O(AV B)

(T18) 0O(A= B) = (DA = OB)

(T19) O(AAB) = OCAANOB

(T20) (©A = OB) = O(A = B)

(T21) ((AuC)v(BUC)=> (AVvB)UC

(T22) (AU(BAQ)) = ((AUB)A(AUCQ))
These formulae indicate one direction distributivity relations.

Recursion equivalences
(T23) DA<= AAODA
(T24) QA<= AVOOA

(T25) AUB <= BV(AAO(AUB))
These formulae describe the recursion representation for temporal logic operators.

The complete list of axioms and laws of temporal logic can be found in many works
(Hailpern, 1982; Kroger, 1987; Manna and Pnueli, 1981).

Variability of the temporal logic propositions on the time axis is not the only
admissible interpretation, though this is probably the most natural one. Another
interesting and more general interpretation (Manna and Pnueli, 1981) is possible
when we consider the variability of some disjoint models. We may also use the
comparison that the models are different worlds of similar structure but different
contents. However, all these worlds compose the universe.

Many researches on temporal logic and its usage have been conducted in a
great number of research institutes. For instance, suggestions have been made to
modify the operators so that the time interval of formulae fulfillment may be taken
into account (Hailpern, 1982). Temporal logic is used for the theory of fixed points
equations (Clarke et. al., 1985; Farifias-del-Cerro, 1985), it also serves to create
systems of automatic reasoning (Dijkstra, 1981; Farifias—del-Cerro, 1985), or it
may be used for logic programming (Farifias—del-Cerro, 1985).

3. Correctness Properties of Program
Let us consider a typical concurrent program

P = Py||...||Pm

with input variables Z = (z1,...,zx) and local (shared) variables ¥ = (¥1,...,¥n)-
Let b(Z) be the precondition of the program that restricts the set of the input

222 R. Klimek

data. The formula at ! enables us to define the label of the actually executed
instruction. The formula holds when any process executes instruction of label I.
Finally, the formula E W means that W holds for every suffix of states of any
computing (a sequence of states from the initial to the terminal one).

Correctness properties of a program are traditionally divided into safety, li-
veness and precedence properties (Iszkowski and Maniecki, 1982; Lamport, 1977;
Owicki and Lamport, 1982). This classification is connected with some temporal
logic operators, correspondingly 0O, ¢, U.

Safety property can be informally defined as nothing bad will ever happen
(Kroger, 1987). The bad event could be the buffer overflow, deadlock, etc. The
property is expressible by the formula:

E o-w

where W states an undesirable property of a program. The formula holds conti-
nously through the execution of the program and this is why it is sometimes called
invariance property. Using the proper rule of temporal logic the property is also
expressible by the equivalent formula:

E -~ow

The program precondition can be included in the following way:

E bZ) = 0-W

Liveness property can be informally said that when some condition holds,
something good happens as a result (Manna and Pnueli, 1981). The good event
could be the access to a critical section, responsiveness (in a real-time system),
etc. The property is expressible by the formula:

E W, = oW,

The formula states that when W; holds then W, will have to hold in one of
the following states. The fact that the formula holds for all computations can be
written down:

E D(Wl = OWQ)
Precedence property links together succeeding satisfaction of two condi-

tions, for example the absence of unsolicited response. The property is expressed
by the formula:

IE Wiuw,

The formula means that in the future W, will hold and until this time Wi holds
in all states.

Temporal logic as a tool for... . 223

iii)

Let us return to the safety property to give some examples of it.

Partial correctness

Partial correctness of a program means that if the first condition holds and
the program terminates, then the second condition will hold too. The first
condition is called precondition of the program and restricts the input data
for which the program is supposed to be correct. The second condition is
called postcondition of the program and is connected with the correctness of
the output data. Formally we can write:

E b@Z) = O(at I, = R(Z,%))

where 1, is the set of terminal labels of the program and R(Z,7) is an output
relation connected with postcondition and holds between the input and output
data.

Clean behavior

Clean behavior is such a requirement that there cannot be any error such as,
for example, an attempt to put data into the full buffer. We can write:

E 5z) =0 \(at 1= W)
i

where | is a label for which W, states the condition of the clean behavior.
The right side of the implication is the conjunction taken over potentially
dangerous labels in the program.

Mutual exclusion

Mutual exclusion is such a requirement that it is never the case that more
than one process can execute a critical section. The critical section is treated
as a kind of indivisible macro—operation. We can write:

E b(Z) = O-~(at C1 Aat C3)
where C; C L; for i = 1,2 states a critical section in component processes
(L; is a set of program labels).
Deadlock freedom

Deadlock freedom is such a requirement that it is never the case that any
process waits for an event that will never happen. We can write:

E bz) = 0(7\ at I' = \'7 E.-)

=1 i=1

where E; is a formula that states possibility of the skip to the next state for
the label I different from the terminal label and called a waiting label to
note the state in which holds:

at I A-E;

224 R. Klimek

4. Deadlock in Producer—Consumer Problem

To begin with, let us consider the well known producer—consumer problem version
with a limited buffer. We want to show that the deadlock cannot appear in the
standard solution of synchronization question of this problem. Let us present the
matter precisely.

Synchronization of the problem has to include mutual exclusion of producer
processes and consumer processes which operate in the critical section (buffer of
communicates). Next, it is necessary to guarantee that the processes cannot put
elements into the full buffer and take elements from the empty buffer. All these
postulates can be realized in the way shown in Figure 1 by two semaphore opera-
tions P and V and by a proper structural instruction (Iszkowski and Maniecki,
1982).

var
Buffer: shared array {1 .. max] of ElemBuf;
empty, full: semaphore: = max, 0;

procedure Producer; procedure Consumer;
begin begin
repeat repeat
P(empty); P(full);
region Buffer do region Buffer do
begin begin
end; end;
V (full) V(empty)
until false; until false;
end {Producer}; end {Consumer};

Process (1..M) Producer;
Process (1..N) Consumer;

Fig. 1. Typical solution of the synchronization question
in the producer—consumer problem.

Theorem. Synchronization of the producer-consumer problem as shown in Fi-
gure 1 is free of a deadlock.

Proof. Suppose that the deadlock is possible. It would appear if producer processes
waited for semaphore signal from consumers and consumer processes waited for
semaphore signals from producers but in both these cases signals would never
come. Let us consider the situation when the producers wait for signals from the
consumers. The proof for the reverse situation is analogical (symmetrical). First,
let us note that if the critical section is not occupied, then we can write:

Temporal logic as a tool for... 225

. max= empty + full (1)

Let us express the fact that producers are suspended and they will remain
suspended:

Ki(~Cempty > 0) =t <+
Ki(O—empty > 0) =t <+ 2
K;(Cempty = 0) =t
If the semaphore signals from consumers are not coming, it means that it is satisfied:
Ki(Ofull=0) =t =
Ki(Omax—empty =0) =t <= (3)
K;(Oempty = max) = t. ‘
Expressions (2) and (3) cannot be satisfied simultaneously thus the processes of
producers and processes of consumers cannot be suspended simultaneously, either.
It means that the deadlock is not possible.]
5. Sample of Robots System

Now, let us consider a sample of a real-time system presented in Figure 2. This
is a system of cooperating robots and assembly—transport belts. The connections
among all the elements are also shown in Figure 2. This sample is an extension of
a similar one from (Szmuc, 1989).

Rq
[rt]-[RE rReH Ms
|
M, Rs M; Rs My -I- M,
Ri1
M, Ry M, Rg Mg My
1 | I
R\ - *|RT Rio Ms
Rg

5

Fig. 2. The system of cooperating robots.

226 R. Klimek

Robots Rf,..,R! (RL,..,Rp) realize assembly operation of articles which
are in containers of belt M; (M;). Robot Ry (Ry) carries an element over belt
Ms (M4). Robot Ry (Rs) takes one element from belt Mj (M4) and checks its
quality. When it is up to a standard it is carried over belt My (Mg), otherwise it is
carried over belt My (M) to improve its quality. The improvement is realized by
robot R7; (Rs). When the operation is terminated, the element is placed on belt
M3 (M4) once again but now it is done by robot R, (R10). When the element
from belt M3 (M) is not up to a standard for the second time, it is carried over
belt M7 (Ms). Afterwards, robot R;; takes elements from belts M7 and M;
one by one and checks their quality. If any element is not up to a standard, then
it is carried over belt M;o and the operation is repeated. If elements taken are
good quality then the robot assembles them and places them on belt M. Belt
M (M3) moves one step when one cycle of robots R!,..., R, (R}, ..,RJ) is
completed. Belts Mj, Ms, M; (M4, Mg, Mg) and My, My, move one step
when one element is placed on them.

5.1. Primary Control Program of Robots

When designing control procedures of robots we use the set of some fixed and
elementary operations. Operations from outside this set are not important for the
correctness of the program since they deal with nothing but technology. This is
the reason why the technology operations can be omitted. The set of elementary
operations is:

init (r) — initiate the work of robot r;

finish (r) — finish the work of robot r;

move (m) - move belt m; i
get (m) — get an element from belt m;

put (m) — put an element on belt m;

improve (m) — improve quality of an element on belt m;

attempt (m) true if an element from belt m was attempted to
improve its quality, otherwise attempt(m) = false;
true if an element from belt m is up to a standard,

otherwise correct(m) = false;

il

correct (m)

assemble (my,m;) - assemble elements from belts m; and ms.

There are control procedures of robots in Figure 3. In the case of robots
Rl,.,R! and Rj there is only one procedure as it is assumed that there is a
controller of these robots. The procedures for robots R}, .. R? with R4 and
Rs, Rg, Rjo are not shown since they are analogous to those listed. The only
difference for them are individual indexes.

Control procedures from Figure 3 compose the concurrent program, which we
can be writen: '

Program = Robots1-3 || Robot5 || Robot7 || Robot9 || Robot11

Temporal logic as a tool for...

227

g .
ai -
ag:

ag @
[s 78
asg
Qg .
Qe !

procedure Robotsl-3
begin

‘move (M);

init (R});

finish (R});

init (R});

finish (R!);

init (Rs);

put (Ms);

finish (Rs);
end {Robotsl-3};

procedure Robot7
begin
init (R7);
improve (Mj);
finish (R7);

procedure Robotb

begin
Bo: init (Rs);
B : get (Ms);
Ba: if correct (M3)
Bs: then put (M7)
Ba: else if attempt (M3)
Bs : then put (M)
Be : else put (Ms);
B : finish (Rs);

end {Robot5};

procedure Robot9

begin
No : init (Re);
m: get (Ms);
N {any instruction};

73 put (Ms)
Ne : finish (R»);

end {Robot7}; end {Robot9};
procedure Robotll
begin
Ho : init (Ry1);
p1: get (M7);
while not correct (M7) do
begin
B2 : put (Mio);
Hs : get (Mr)
end;
Ba: get (Ms);
while not correct (Mz) do
begin
ps put (Mio);
He : get (Ms)
end;
B assemble (M7, Mg);
Ms: put (Ms);.
e - finish (Rn);
end {Robot11};

Fig. 3. Control procedures of robots.

228 R. Klimek

5.2. Verification of Correctness — Safety Property

When verifying the sample system we concentrate on the safety property and exa-
mine its three types. First, let us define the following functions:

len (m) — current number of elements on belt m;
max (m) — maximum admissible number of elements on belt m;

Mutual exclusion. Mutual exclusion is necessary in the case of all these resources
(belts) to which more than one process try to get the access (operations: get, put,
improve). For these cases (critical sections) we can write:

I. M3 and Robotsl-3, Robot5, Robot9
Dﬂ(a.t ag A at ﬂl)
O-(at as A at 53)
O-(at By A at 73)

all these expressions have to be satisfied together and thus conjunction can be taken
over them:

E O-(atasAatB) A O-(at az Aat 53) A O-(at §; Aat n3) <
< O(-(atagAat) A -(atagAatns) A —(at By Aatng)) <= (4)
< O-((atasAatB1) V. (atasAatns) V (at By Aat1s))

IL. M5 and Robot5, Robot7, Robot9

O-(at Bs A at 6;)
O-(at Bs A at m1)
O-(at 8; A at)
and together:
E D-((atBsAaté) V (atBsAatm) V (at b Aatn)) (5)

III. M; and Robot5, Robot1l. Let us consider two other cases:

a)
O-(at fa A at 1)

O-(at B3 A at ps)

and together:

E O-((at B3 Aat #) V (at B3 Aat p3)) (6a)

Temporal logic as a tool for... 229

b)
O-(at G5 A at py)

D-(at G5 A at pg)
and together:
E O-((at Bs A at p1) V (at S5 A at ug)) (6b)

Expressions (4), (5), (6a) and (6b) describe the requirement of mutual exclusion
that is necessary for the correct execution of the program. Exclusion can be realized
by the semaphore operations or simply by a proper structural instruction. The
mutual exclusion for belt Mz and instructions which operate on this belt are
shown in Figure 4.

var
M3: shared BufTyp;

ag : region M3 do put (Mj3);
B : region M3 do get (M3);
n3 : region M3 do put (Ms);
Fig. 4. Mutual exclusion for one of the belts.
Corollary 6.1. Synchronization realized as shown in Figure 4 ensures mutual
exclusion.
Proof. The proof follows directly from the definition of semaphore operations P

and V. [|

Clean behavior. Some belts are served by some processes and in fact they cre-
ate the producer—consumer problem version with a limited buffer. Therefore, two
requirements of clean behavior should be analyzed. (Another requirement of clean
behavior so that two processes cannot operate on the same element of a belt in the
same time is ensured and follows from the requirement of mutual exclusion).

I. Requirement not to take an element from an empty belt.
The requirement is expressible by:
E O ((at B, =len(M3)>0) A
A(at m =>len(Ms) >0) A
A(at gy = len(M7) >0) A @
A(at pg = len(M7) >0) A
A(at pg = len(Mg) >0) A

A(at ug = len(Mz) > 0))

230 ~ R. Klimek

IL. Requirement not to put an element down on a full belt.
The requirement is expressible by:

E O ((at o5 => len(Ms) < max(Ms))
A(at B3 = len(M7) < max(Mz))
A(at B = len(M7) < max(My))
A(at Bs = len(Ms) < max(Ms))
A(at 13 => len(M;3) < max(Ms))
A(at p2 = len(Myo) < max(Mig))
A(at pg => len(My) < max(Mp))
A(at p10 = len(Myo) < max(Myg)))

(8

> > > > > > >

These requirements for clean behavior expressed by formulae (7) and (8) can also be
implemented by semaphore operations. However, these operations should precede
the operations which are the result of mutual exclusion. The process should be
suspended, if need be, because of an empty or full belt and then because of the
critical section which is not free. The clean behavior for belt Mz was shown in
Figure 5.

var
Mj: shared BufTyp;
empty, full: semaphore := max, 0;

P(empty); P(full);
as : region Ms do put (Ms); P1: region M3 do get (Ms);
V(full); V(empty);
P(empty);
73 : region M; do put (Ms);
V(full);

Fig. 5. Clean behavior for one of the belts.

Corollary 6.2. Synchronization realized as shown in Figure 5 ensures clean be-
havior.

Proof. Let us note once again that if the critical section is not occupied, then we
can write:

max = empty + full (9)

Case 1. Suppose that it is possible to take an element from an empty belt. In this
case, when operation V is executed and the process has left the critical section,
the proper semaphore variable will be incremented and it will be satisfied:

Temporal logic as a tool for... 231

K;(Cempty > max) = ¢ =
Ki(O(max ~full) > max) =t. <=
Ki(Ofull < 0) = ¢

The last inequality is not satisfied since the semaphore variable cannot have a
negative value.

Case 2. Suppose now that it is possible to put an element down on a full belt.
We write:

K;(Ofull > max) = ¢ =
K;(O(max —empty) > max) =t <+
K;(Cempty < 0) =t

This inequality is also not satisfied because of the reason mentioned in Case 1.

Thus, there is no possibility of both underflow and overflow of the belt. []

Deadlock freedom. As it was already said, in case of some belts we have the
producer—consumer problem. Usually, this problem cannot result in a deadlock
(see section 4). However, there is a possibility of a deadlock in the system under
consideration. It is connected with a service of belts M3 and Ms by robots Rj
and R7. Suppose that robot Rg has taken an element and belts Mz and Ms
are full. Robot Ry takes another element from belt Mj and ascertains that it is
not up to a standard. In the same time process Robotsl-3 puts another element
down on belt Ms and the belt becomes full once again. Robot R also ascertains
that the element taken has not been improved on belt Ms. The deadlock arises
just now. Robot Rs is trying to put the element down on belt Ms but it is
impossible as the belt is full. Robot Ry does not take any element from belt My
because it is trying to put an element down on belt Ms but it is impossible as
robot Rs is not taking any elements.

The requirement for deadlock freedom in this case is expressible by:
E D((at B¢ A at n2) = (len(Ms) < max(Ms) V len(M3) < max(Ms))) (10)

As we can see, the program in the form as shown in Figure 3 is not correct since it
is open to the deadlock.

In order to remove the possibility of the deadlock one should modify procedure
Robot5. When the element which has been taken from belt Mjs is not up to a
standard it is checked not only whether the element has already been attempted to
be improved but also whether it is possible to put it down on belt Ms. The new
version of the procedure Robot5 which is now called Robot5’ is shown in Figure 6.

232 R. Klimek

procedure Robot5’

begin
Bo : init (Rs);
B : get (Ms);
Ba: if correct (Mj)
Bs: then put (M)
Ba: else if attempt (M3) or (len(Ms) = max(Ms))
Bs: then put (Mz7)
Bs : else put (Ms);
B.: finish (Rs);

end {Robot5'};
Fig. 6. Deadlock freedom in the sample system.

Corollary 6.3. The program from Figure 3 including the modification from
Figure 6 is free of deadlock.

Proof. If the deadlock is possible it will be shown by the expression which is
the inverse of (10), namely:

Ki(~0O((at Bs A at 17)=> (len(M5) <max(Ms) V len(M3) < max(Ms)))) <
Ki(O-((at Bs A at 52) = (len(M5) < max(Ms) V len(Mz) <max(Mj)))) <
K;(O((at Bs A at n2) A (len(M;) = max(Ms) Alen(M3) = max(Ms)))) <
K;(O(at Bs A at n3) Alen(Ms) = max(Ms) A len(M3) = max(Ms)))

(11)

From procedure Rbbot5’ it appears that if len(Ms) = max(Ms;) is satisfied
the next executed instruction is the instruction labeled ;. Instruction Bs is not
executed and expression (11) is not satisfied. Thus the deadlock is not possible. m

Modification of procedure Robot5 excludes the possibility of the deadlock but
it creates the situation in where elements which are not up to a standard may
be immediately carried over belt M7 without an attempt to improve its quality.
Afterwards, having been checked by robot R;;, elements are carried over belt Mg
and thereby discarded. (From the point of view of technology in order to reduce
the probability of that situation the relative speed of work of robot R; should be
selected in such a way that belt My will be full as rarely as possible).

6. Conclusions

Program correctness properties and its classification have been discussed in the
paper. First, a traditional solution to the synchronization question of the producer-
consumer problem has been verified. Next, a sample parallel system of robots has
been presented. Verification of the system has concerned three types of the safety

property. Temporal logic has been used for the description of properties and for
verifications.

Temporal logic as a tool for... 233

Temporal logic makes program verification easier. It is a convenient notation
for expressing the dynamic character of a program in a natural way. Even though
it is not suitable for expressing the iteration in program (Wolper, 1983) it still
seems that temporal logic is a powerful tool for analysis and proving correctness
of concurrent programs. That has been shown in this paper on the example of
verifications. Future studies shall discuss a problem of reduction of processes to-
gether with formulae which describe these processes. The formulae are expressed
in temporal logic and the reduction occurs during a program verification. Selected
tools and methods should be easily applied in a system for automatic reasoning for
temporal logic, which will be the next step in the research.

Acknowledgement

I wish to thank prof. Tomasz Szmuc for his comments and reading a draft of the
paper.

References

Clarke E.M., Browne M.C., Emerson E.A. and Sistla A.P. (1985): Using
Temporal Logic for Automatic Verification of Finite State Systems—In: Apt K. R.
(ed.): Logics and Models of Concurrent Systems. - Berlin: Springer—Verlag,
pp.3-25. :

Dijkstra E.W. (1981): Introduction: Why correctness must be a mathematical
concern.— In: Boyer R.S., Moore J.S. (eds.): The Correctness Problem in Com-
puter Science; International Lecture Series in Computer Scienc. - London,
New York: Academic Press, pp.1-8.

Farinas—del-Cerro L. (1985): Resolution Model Logicals.— In: Apt K. R. (ed.): Logics
and Models of Concurrent Systems. — Berlin: Springer—Verlag, pp.27-55.

Galton A. (1987): Temporal Logics and their Applications.— London, San Diego:
Academic Press.

Habermann A.N. (1972): Synchronization of Communicating Processes.— Communi-
cations of the ACM, v.15, No.3, pp.171-176.

Hailpern B.H. (1982): Verifying Concurrent Processes Using Temporal Logic.— Lecture
Notes in Computer Science. — Berlin: Springer—Verlag, v.129.

Henzinger T.A., Manna Z. and Pnueli A. (1991): Temporal proof methodolo-
gies for real-time systems..— Eigtheenth Annual ACM Symp. on Principles of
Programming Languages. — Otlando, Florida, Jan. 21-23: pp.353-366.

Iszkowski W. and Maniecki M. (1982): Cuncurrent Programming.— Warsaw:
Scientific ~Engineering Press.

Kroger F. (1987): Temporal Logics of Programs.— EATCS Monographs on Theoretical
Computer Science, — Berlin, Heidelberg: Springer-Verlag.

Lamport L. (1977): Proving corecteness of multiprocess programs.— IEEE Trans.
Software Engeneering, v.Se-3, pp.125-143.

234 ' R. Klimek

Manna Z. and Pnueli A. (1981): Verification of concurrent programs: temporal
Jramework.— In: Boyer R.S., Moore 1.S. (eds.): The Correctness Problem in Com-
puter Science; International Lecture Series in Computer Science. — London, New
York: Academic Press, pp.215-272.

Owicki S. and Lamport L. (1982): Proving liveness properties of concurrent
programs.— ACM Trans. Programming Languages and Systems, v.4, No.3,
pp-455-495.

Szmuc T. (1989): Poprawnos¢ wspdlbieinych systemdw oprogramowania.— Cracow: Sci.

Bull. of Staszic Academy of Mining and Metallurgy, No.1231, Automatics, Bulletin
46.

Wolper P. (1983): Temporal logic can be more ezpressive— Information and Control,
v.56, No.1-2, pp.72-99.

Received April 9, 1992

Appendix

Proofs of some temporal logic laws (Kroger, 1987).
Proof of T3
Ki(~OA) =t <= Ki(OA)=f
<= Kin(4)=f
<= Kin(-A)=t
<> Ki(O-A)=t.

]
Proof of T9
Ki(OOA)=t = K;(DA)=1t forsome j>i
= Ki(A)=t for every k> j and some j >
= (Ki(A)=t forsome k > j) for every j>1i
= K;j(CQA)=t forevery j>i
= Ki(DOA)=t.
|

Proof of T10
K;(ODA)=t <= K;(DA)=t forevery j>i
<> Ki(A)=t forevery k> j and every j > i
<> (Ki(A)=t for every k>
< KiDA)=t.

Temporal logic as a tool for...

.. 235

Proof of T16

Ki(O(A= B))=t < Kit1(A=>B))=t

——4 K.‘+1(A) =f
< KiOA)=f

< K{(OA=0B)=t.

Proof of T17
Ki(DAvOB)=t = Ki(0OA)=t
= K;(A) ‘= t
=3 K;j(A) =t
= Kj(AvB)=t
= Ki{(O(AVB))=t.

Proof of T23

or Kipa(B)=t
or Ki(OB)=1

or Ki(0OB)=t ,
for every j > i or K;j(B) = t for every j 2 i
or K;(B)=tforevery j2>i

for every j 24

Ki(AAODOA) =t < Ki;(A) =t and K;(©O DA)=t

< Ki(A)=tand Kj(A)=1t

< KjA)=t
<~ K.’(DA) = t.

for every j > i+1

for every j > i

