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APPROXIMATION OF A MEAN TIME OF THE
SLOT TRANSFER IN THE CAMBRIDGE RING

ABpuL K.A.N. AL-ALo0sY*, ADAM KRZYZAK**, WOJICIECH ZAMOJSKI®

In the paper, a popular version of the LAN called the Cambridge Ring is
considered. Performance parameters of the Ring depend on its organization,
size, number of users as well as on the Ring reliability. A mean time of the
slot transfer, as measure of a performability (performance + reliability) of
the Ring is proposed. The Stochastic Timed Inhibited Petri Net model of
the Ring is used to derive an approximation of the mean time of the slot
transfer.

1. Introduction

The Cambridge Ring which is a popular version of the Local Area Network (LAN),
has been analysed for many years (Hopper et. al., 1986; Tanenbaum, 1989). Re-
cently new developments in VLSI technologies recall the interest of the LAN as a
subject of research (Fulcher and McKerrow, 1990; Hopper ef. al., 1986; King and
Mitrani, 1987; Liu and Rouse, 1984; Zamojski and Al-Aloosy, 1990). It is easier
now to construct more complex rings (up to 255 stations) and it is also possible
to increase the speed of the ring (up to 60 MHz (Fulcher and McKerrow, 1990)).
Reliability parameters of network components such as computers and links have
been improved so much that an occurence of catastrophic failures in a ring may be
considered only as an academic problem. On the other hand malfunctions in the
ring could not be completely eliminated from the ring operation yet. The rings
suffered large time losses for renewal of operations destroyed by malfunctions. Re-
peated transfers of slots with detected malfunctions influence the real performance
parameters which do not match the needs of ring users.

Performance parameters of the ring depend on its organization and size (num-
ber of slots, distance between stations, system response to failures etc.), number
of users and user’s needs for accessing the ring, as well as on the ring reliability.
The measure that combines the performance and reliability is called performability
(Bobbio, 1983; Zamojski and Al-Aloosy, 1990). In this paper we propose a mean
time of a slot transfer as a performability measure of the Cambridge Ring.

* Technical University of Wroclaw, Institute of Engineering Cybernetics, 11/17 Janiszewskiego

Str., 50-372 Wroclaw, Poland k :

** Concordia University, Department of Computer Science, 1455 de Maisonneuve Blvd. West,
Montreal, Quebec H3G 1M8, Canada



238 A.K.A. Al-Aloosy, A. Krzyzak and W. Zamojski

There is a lot of concurrent events (calls for empty slot, slots traffic, task
execution in the stations, failures etc.) which may happen in different places of
the ring at the same time. For these reasons the Petri net theory is proposed
as a tool for modeling of LAN as systems with concurrent events (Al-Jaar and
Desrochers, 1990; Bobbio, 1983; King and Mitrani, 1987; Li and Georganas, 1990;
Zamojski, 1987; Zamojski and Al-Aloosy, 1990). The Stochastic Timed Inhibited
Petri Net model of the Cambridge Ring given in (Zamojski and Al-Aloosy, 1990)
is the basis for approximation of the mean time of a slot transfer in the Cambridge
Ring. Special attention is paid to malfunctions (catastrophic failures are neglected)
and repeated slot transfers caused by these malfunctions.

2. Cambridge Ring and its Petri Net Model

The idea of the Cambridge Ring is based on the principle of a circulating empty
slot (Hopper et. al., 1986; Tanenbaum, 1989). The ring links N stations (they
are called nodes too) and a monitor station (Figure 1) which provides maintenance
functions (slot generation, error detection etc.). '
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Fig. 1. The Cambridge Ring structure.

The slot contains 38 bits in a standard configuration. There is a field for
transferred information (2 bytes), fields for source and destination addresses, and
fields for other control—checking information.

A hardware protocol is given for data transmition. A station demanding trans-
mition checks passing slots until it detects an empty one. The slot is then filled
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with two bytes of data, the sender and destination addresses. A receiving station
also monitors the circulating slots. When the filled slot arrives to its destination,
the station copies data into its registers and marks the response bits of the slot.
The sending station waits for the returning slot and when it returns, the station
checks the response of the destination (slot accepted or not, destination busy, etc.).
The slot is then released (it is skipped to the next station) and the station waits
for another empty slot transmit again.

Such a protocol ensures that a station does not monopolize a slot, so that all
the stations get the same transmission possibility. Moreover, a station demanding
data transmition should wait a finite time before it can send a slot.

There are N4 active stations and Np passive (N = N4 + Np). A passive
station may work only asTepeator; its function is to regenerate passed signals (bits).
The active station may be used as a source, or a destination or a repeator; that is
it may realize all protocol functions and regenerate transferred bits too. There are
malfunctions in the ring, detected by parity checking operation in each node. This
checking operation is executed on each passing slot (full as well as empty). When
a fault is detected in a slot, then the transfer is repeated after one full round route
of the slot (details of these operations will be omitted here). When the repeated
transfer is not finished successfully, then the ring will repeat it once more after
15 full round routes of the slot. The last unsuccessful transfer means that a failure
exists in the ring. Note that time is lost in the ring to remove the faulty slot and
to repeat its transfer.

The Cambridge Ring must realize the determined sequences of operations in
accordance with the protocol sketched above. Some of these operations are realized
randomly with probabilities depending on special conditions in the ring (for exam-
ple: a reaction to request for an empty slot or a detected malfunction). Naturally
a set and a sequence of realized operations depend on the node status (source or
destination,active or passive repeater).

Let Fi(k) denote the i—th function realized in the k—th node and ng) isa
set of primitive operations (o}’f), j=1,...,n(") of this node. The function F..(k)
may be defined as a n—tupple on the set Ofk)

k k) (k k
Fi( )= <°(1i)’°gi)a---»°£;(1).' 1)
and, as the consequence of the latter ,there is a subset of primitive operations ng)

which must be executed for the purpose of the i—th function realization.

A route of a slot transfer may be divided into two parts (Figure 2);

i) source—destination; a full slot is transferred,

i) destination-source; an ACK signal is transferred and an empty slot is skipped
to the next node.
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Fig. 2. The functional model of the Cambridge Ring,
N 4~ active node, Np— passive node, Ns— source node,
Np— destination node, Nas— monitor.

Let Nsp denote a subset of nodes used during the first part of the roufe and
Nps during the second. In this way the function of the slot transfer, Fsp is

Fsr = (Fsp, Fps) (2
where Fsp and Fps are functions realized during the first and second part of

the route, respectively.

It is assumed that the index of the source station is 1, the index of destination
station is D, and indices of consecutive stations increase to N in the direction of
the slot motion. We have then

1 2 D
Fsp = <F.‘(>'D)11F§131""’ 7 ®3)
and
D D+1 N 1
Fps = <F1(Js)2aF1()sz ), e 1()s)2’F1().522> (4)

where Fs(,.lD)1 is a function realized in the source node while waiting for an empty

slot and sending a full one, F.gll)))1 is a function realized in the destination node

while receiving the full slot, F_gg)z is a function realized in the destination node
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while sending the ACK signals, Fgg, is a function realized in the source node
while receiving the ACK signal and skipping the empty slot.
Each primitive operation o ( ) is realized during time (,k ) and the function

F}( ) is realized during time T;( ), which is a sum of all primitive operation times
needed for realization of this function and

T(k) EPr{o(k) 'r(-k) (5)

where Pr{ } is a probability that the j—th operation of the k—th node is
used during the i—th function realization.

The Stochastic Timed Inhibited Petri Nets (STIPN) are a very useful tool for
modeling the behavior of the ring and its nodes (Al-Jaar and Desrochers, 1990;
Bobbio, 1983; King and Mitrani, 1987; Li and Georganas, 1990; Zamojski, 1987).
Consequently this model may be applied as a base for estimation of the function
realization. Within the Petri net theory transitions model events (operations) and
places describe the conditions needed for the realization of these events (more
exactly: the condition realizations are modeled by the presence of tokens in input
places of the transition).

The STIPN model of the Cambridge ring is proposed by Zamojski and
Al-Aloosy (1990). The general integrated Petri Net model of the ring is given
and it is shown how to decompose this model to the operations level. A token may
use only one possible path from an input of the source node to an output of the
destination node. This path creates a submodel of a function realization. The sum
of the firing times of all transitions along this path is equal to the time realization
of a considered operation.

It will be shown, how to estimate the realization time of function Fj: receiving
the data in the desiination node.

According to the STIPN model given in (Zamojski and Al-Aloosy, 1990), the
submodel of this operation is shown in Figure 3. There are two main function
paths: ‘

i) upper-loading operation of the correct slot (without malfunctions),
i) lower—creation of the maintenance packet (because a parity failure has been
detected).
The token (i.e. slot) selects the lower path with the probability of a parity mal-
function in the slot (Pr{M}) or the upper path with probability 1— Pr{M}.

Since the transitions model the operations then, the set of primitive operations
is given by

0; ={oj1; j=1,2,..,11} (6)



242 A.K.A. Al-Aloosy, A. Krzyiak and W. Zamojski

t3 ts 112 t17 t1s t30 ta;

P, Py

PARITY

Py

Fig. 3. The Petri Net submodel of the operation Receiving data in the destination
(from: Zamojski and Al-Aloosy, 1990).

and function F) is realized as the tupple

(611, 021,031, 041, 051, 061, 071) M
or

(011, 081, 091, 0101, 0111, 071) (8)

In this way the realization time of function F) is

Z Pr{o®}r® = t; 4 Pr{M}(ts +ts + ta +ts + te)
j=1

+ (1 Pr{M})(ts +ts + t1o + tu) + tr (9)

v

where t,...,t1; are firing duration times.

The Petri net submodels of functions realized in the source node, in the inter-
mediate nodes (active and passive), and in the destination node may be analyzed
in the same way. The times of functions realizations are estimated on the basis of
these submodels.

As a few functions are realized in each node, then it is convenient to charac-
terize the speed of a node by its mean transfer time

Q)
1) = Z Pr{F®T® -~ (10)
i=1 »
where tg,’f ) is the mean transfer time of the k—th node, F,.(k) is the i—th function

realized in the k—th node, ’I;-(k) is the time of the realization of the i—th function
in the k—th node (5), I®) is a number of functions realized in the k—th node.
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3. Mean Time of Slot Transfer of Cambridge Ring

Performance parameters of the ring depend on its organization and size, the num-

ber of users, volume of transported information, etc. and also on the ring reliability.

The measure which combines the performance (conditions of a fault—free system

performance) and reliability (probability of success) is called performability. The

performability is defined as the probability that the system operates at an assi-
gned accomplishment level with respect to faults, fault recovery, reconfiguration,
degradation etc. The following performance indices may be used as performability
mesuares of a system: response time, mean time of a task realization, mean number
of realized tasks, etc. In this paper the mean time of a slot transfer (MTST) in the

Cambridge Ring is defined as the performability measure of the ring. The MTST

depends on the size of the ring (number of stations and distances between them,

number of slots), condition of the ring operation (number of active and passive
stations, users requests for accesses to ring resources), reliability of the ring (ratio
of failures and malfunctions and ring reactions to them).

The Mean Time of Slot Transfer (MTST) is evaluated as a sum of the following

main factors: .

1. Mean Real Transfer time (MRT) of the full slot (together with the ACK signal
receipt) in the real ring (some paths of the STIPN model are realized randomly
with a given probability of malfunctions (10), and ring reactions on detected
malfunctions are considered),

2. Mean Waiting Time (MWT) for an empty slot in the real ring (the waiting
time depends on the number of active stations and their needs for access to the
ring,and the number of the malfunctions, because the repeated transfers must
be considered);

MTST = MRT + MWT (11)

4. Estimation of MTST

4.1. Assumptions

There are N stations and some of them are in the active state (N,) while the
others are passive (Np);

N =N4+Np , (12)
The ring is regular, that is: :
i) each station is 1nodeled as the Stochastic Timed Inhibited Petri Net,
ii) the transfer times between stations are equal to one another
Vk : Naor = Ny, Npip = Np, tgf):t'_r (13)

where tg’ ) denotes the transfer time from the k—th station to the (k+1)—th
which is evaluated by (10),
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iii) the active and passive stations delay all signals by 3 bits. The speed of the
signal propagation in the ring is 2.3 x 103 mps and the bandwidth of the link
is 10 Mbits. So the number of bits stored in the ring is estimated as

BR=N3+-A-;-3£ (14)

where L is distance between the two consecutive stations,
iv) malfunctions of transfered bits are independent events with exponential distri-

butions (with parameter k). The malﬁmctlons of the slot create the Poisson
process with rate Ay = 38k,,,

v) the Cambridge Ring protocol states that after the first detected malfunction
the ring waits through one free ring cycle and then tries to repeat the transfer
operation. If it is not completed successfully the ring waits through 15 nng
cycles and again attempts the same. The next fault is mgnaled as the ring
breakdown (a failure).

Generally, it is noted that the time is lost in the ring while removmg the faulty
slot and repeating its transfer:

a) Tp1— the lost time for sﬁccessfully repeated first transfer

Ty, =2 MCT+ Ty (15)
b) Tr.— the lost time for successfully repeated second transfer

T = 15MCT + Ty (16)

where MCT is the ring circlulating time, Tjs is the time lost to remove
the faulty slot and to create the maintenance packet. It is assumed that
T 2kEMCT; k=3-4,

vi) there are M slots in the ring. The gap is smaller than the slot and is neglected
in further considerations,

vii) a user needs an access to the ring resources with probability P,4. It is assumed
that for each user P4 is the same and is given by an exponential distribution
with ratio A.

4.2. Mean Real Transfer Time

The Mean Real Transfer (MRT) time of the full slot in the ring with N = N4+Np
stations is estimated as

MRT = MCT Mpo + MMl(MCT+TM) + MM1'2(15 MCT + TM) (17) :

where MCT is the ring circle time evalueted for the full reliable ring i.e. without
malfunctions during the system operation; MCT ~ Nitr and tr is given by (10),
Mo is probability of the successful transfer of the full slot, Mjs, is probability
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of malfunctions during the first transfer of the full slot, Mpys 2 is probability of
malfunctions during the repeated transfer of the full slot.

The probability of the successful transfer of the full slot (38 bits) is approxi-
mated on the basis of assumption 4 as

MMO = e—z\MMCT — e—ask...MCT (18)
the full slot transfer is equal
Mpgy =1 — e ?MMCT (19)

Because the malfunctions are independent events then the probability that a mal-
function occurs during the first and the second slot transfer is equal

Mass,z = (Magy)? = (1 — e 2mMOT)? (20)

We substitute (18), (19) and (20) into (17) and obtain the formula for the Mean
Real Transfer time:

MRT = MCT {e~*#MCT 4 [1 — e~ 2mMCT] (1 4 k)
+ [L+ e wMOT) (15 4+ k) (21)

where k =3 —4 (assumption 5).

4.3. Mean Waiting Time

The waiting time for an empty slot depends on its position in the ring at the
moment when the source requests a transfer. The most optimistic case is that the
slot is emptied in a station just before the source. The worst case is when the slot
is emptied in the source and must be skipped to the next station, and each active
node in a sequence fills the slot and waits for the ACK signal. Of course possible
malfunctions will increase the waiting time.

Each active node needs an empty slot with probability P4 (assumption 7)
and the transfer time to the next station is

Py (tRT +t'1')+ (1—PA)tT (22)
where tgrr vis real transfer time of the full slot.

There are M slots in the ring and N stations. Each slot serves Nps = N/M
stations. Each active station needs an empty slot with probability
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Pa=1—¢ ‘ (23)

where t* is a time of thinking and waiting.

When the slot is just emptied in the waiting station (I = 1), it must be
skipped to the consecutive node and the station waits for the next slot, then:

=1 tr
=2 PA(MRT+tr)+ (1= Pultr =T
1=3 PA(MRT+tT)+(1—PA)tT +Ty=T3

l PA(MRT +tr)+ (1= Pa)tr +Ti-1 + Ti—2+ ...+ T2 =Th
or '
Ti=PAMRT +tr +Ti-1 +Ti, + ...+ T3.

The slot journey time fromnode I =j to I=1 is
T; = (j —1)(PaMRT + t1) (24) v
Because the slot may be at each node with a probability Pr{j}, then the
Mean Waiting Time for an empty slot is
Num
MWT =) Pr{j}T; + tr (25)
j=2

The ring is regular, then Pr{j} = M/N and

M
MWT = T [(Ny —1)(PAMET + tr) + tr]

= % [(Nar — 1)PAMRT + Nagtr] (26)

where P, is given by (23), MRT is given by (21).

There is a problem of an approximation of the thinking and waiting time —t*,
which may change from the smallest value tr to the biggest (Nap—1)(MRT +tr).
This time depends on the slot position and the mean value of t* is

Et* = %(NM — 1)MRT @7)

and

Pa1- e[—k%(NM—l)MRT] (28)
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4.4, Mean Time of the Slot Transfer

The MTST (11) may be approximated as the sum of terms given in (21) and (26).
The approximates of the Mean Time of the Slot Transfer in the regular Cambridge
ring with different numbers of stations are shown in Figure 4 and Figure 5.
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Slot Transfer versus the probability
of malfunctions in the Cambridge
Ring (the transfer time: 0.005 s).

Slot Transfer versus the probability
of malfunctions in the Cambridge
Ring (the transfer time: 0.001 s).

The reliability of each station is 1. Malfunctions occur in the ring with ratios given
from the interval [10~%,1]. The distances between stations are equal to 100m and
the transfer time tr is equal 0.001s (Figure 4) and 0.005s (Figure 5). Number
of stations in the ring is changing from 20 to 250 nodes.

The mean time of the full slot transfer versus ratios of malfunctions is shown
on the figures. We note that the MTST grows rapidly for k,, bigger than 10~2,
and there is a saturation state for an overload ring.
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5. Conclusions

The functional-reliability analysis of the Cambridge Ring is given above. A set
of the faults of the rings is limited only to malfunctions and this assumption, as
it was mentioned ring under consideration is in the Introduction, corresponds to
rapid reduction of ratio of failures in computer systems of today. It is assumed
that a malfunction produces faults among bits of a transferring slot. A parity
checking operation ought to find this fault immediately in the following node and
the whole transferring operation of this slot must be repeated together with the
waiting operation for an empty slot.

Therefore, the mean time of slot transfer is considered as a performability
measure of the ring. Organization and size of the ring (number of nodes and
distance between them, bandwidth, number of slots), number of users and their
needs for sending information and reliability (malfunctions) are considered. The
fundamental conclusion of the analysis is: the Mean Time of Slot Transfer does
not depend on realistic value of the malfunction ratio. Naturally, if malfunctions
are very frequent then the MTST rapidly grows up — see figure 4 and 5.

The Petri net model of the Cambridge Ring is proposed. The model may be
useful for a carefully analysis of the ring operation in real reliability conditions and
for precise calcu_lations of time relations between functions realized by the ring.

Acknowledgement

This work was supported by the Research Project Polish MEN, DNS-T/15/072/
90-2: Functional-reliability analysis of Local Area Network.

References

Al-Jaar R.Y. and Desrochers A.A. (1990): Performance evaluation of automa-
ted manufacturing systems using generalized stochastic Petri nets— IEEE Trans.on
Robotics and Automation, v.6; No.6, pp.621-639.

Bobbio A. (1983): A Petri net approach to the reliability and performability analysis of
complez systems.— Int. Conf. Micro- Electronics and Teleinformatics, Milano Fair
Ground

Fulcher J. and McKerrow P. (1990): Monitoring tool for the Cambridge Ring LAN.~
Computer Communications, v.13, No.10, pp.619-625.

Hopper A., Temple S. and Williamson R.. (1986): Local Area Network Design~
London: Addison-Wesley Publishing Company.

King P.J.B. and Mitrani 1. (1987): Modeling a slotted ring local area network.—- IEEE
Trans. on Computers, v.C-36, No.5, pp.554-561.

Li M. and Georgahas N.D. (1990): Coloured generalized stochastic Petri nets for
integrated systems protocol performance modeling— Computer Communications,
v.13, No.7, pp.414-424.



Approximation of a mean time of the slot... 249

Liu M.T. and Rouse D.M. (1984): 4 study of ring network— In: Ring Technology
Local Area Networks, (Eds. I.N. Dallas and E.B. Spratt), Berlin: Elsevier Science
Publishers B.V. (North-Holland), IFIP, pp.1-39. _ ..

Tanenbaum A.S. (1989): Computer Networks.— New J&sey: Prentice Hall.

Zamojski W. (1987): A reliability~functional computer system model based on Petri
nets.— IASED Symp. Reliability and Quality Control, Zurich: Acta Press, Anaheim,
Calgary.

Zamojski W. and Al-Aloosy A.K.A. (1990): A Petri net approach to the
performability estimation of a ring transport system.— Prep. nr 49/90, Inst. Engi-
neering Cybernetics, Technical University of Wroclaw, Poland.

Received April 28, 1992
Revised August 30, 1992





