Appl. Math. and Comp. Sci., 1992, vol.2, No.2, 251-276

SELF-PROGRAMMING OF NEURAL NETWORKS
FOR INDEXING AND FUNCTION
APPROXIMATION TASKS

M. B. ZAREMBA®, E. PORADA*

The problem of non-iterative mapping of stimulus—response associations di-
rectly onto an association matrix is addressed in this paper. The procedures
presented are designed for the calculation of connection weights in multilayer,
feedforward neural networks. Two distinct situations from the standpoint of
object separability are analyzed in more detail. The first can be defined in the
context of content addressable memories, where the network performs essen-
tially indexing or classification tasks. The properties of the self-programming
procedure are illustrated using a character recognition network as an exam-
- ple with the intermediate layer of dipoles incorporated into the network ar-
chitecture. The second situation relates to cases where the approximation
capabilities of a single output network are of principal importance.

1. Introduction

Applications requiring real-time image recognition, pattern classification, and
other tasks of a similar nature that may involve a heavy computational burden
make paralle] distributed processing and its implementations on neural networks
important. The networks, which are multilayer structures of a large number of
heavily interconnected simple processors, have recently been the subject of consi-
derable research interest. Although the first papers in the area of artificial neural
networks date back several decades (Hebb, 1949; Rosenblatt, 1959), the discovery
of powerful new learning algorithms (Rumelhart et al., 1986) and the advances
in analog VLSI (Hwang and Kung, 1989) and optical technologies (Kyuma et al.,
1988) have prompted a renewed interest in this exciting field, and have provided a
basis for the rapid development of neural network engineering.

There are several advantages of neuromorphic architectures that are impor-
tant from the practical applications standpoint. Inherently distributed processing
gives neural networks a fault tolerant behavior, generally referred to as graceful
degradation. This means that the system can operate successfully even if some
of its components are damaged. The ability of neural networks to learn provides
an interesting alternative to statistical methods of classification. Furthermore, no
assumptions about the probabilistic model need to be made. Neural net classifiers

* Département d’informatique, Université du Québec & Hull, Hull, Québec, Canada J8X 3X7

252 : M. B. Zaremba and E. Porada

are able to calculate higher—order decision boundaries under realistic constraints,
while not being subject to combinatorial explosion or excessive requirements regar-
ding the storage of learning samples (Barnard and Casasent, 1989; Gorman and
Sejnowski, 1988).

Presently, feedforward perceptron—type neural architectures using the back-
propagation training algorithm are being applied in the vast majority of practical
situations. The backpropagation training scheme provides a powerful, general tool
for the determination of connection weights. Its generality, however, is obtained
at the expense of training speed, occasional poor convergence, and a limit to the
number of training inputs. In a large class of problems the backpropagation tra-
ining algorithm is unacceptable. Other training techniques for optimizing crite-
rion functions have been proposed that involve an alternative to the steepest de-
scent method used in backpropagation. These include the variable metric (Dennis
et al., 1983), the conjugate gradient (Fitch et al., 1991), and the stochastic method
(Barnard, 1992). The Cerebellar Model Arithmetic Computer (CMAC) with a
built-in associative mapping that assures local generalization (Miller et al., 1990)
allows for orders of magnitude faster learning than the backpropagation algorithm.

A new Boolean-like training algorithm to be used on a four-layer perceptron—
type feedforward neural network for the generation of binary—to—binary mappings is
presented by Gray and Michel (1992). The applicability of this algorithm extends to
some problems that are of interest to us in this paper. This paper also focuses on the
assignment of weights to the network connections in an algorithmic way, with non-
iterative presentation of training inputs. The self-programming method discussed
here can be used, however, in a much broader class of applications, ranging from
simple binary indexing problems to the approximation of parametric functions.

The indexing problem, i.e. access to a memory location containing an object
index by a description of the object, or by its presentation to the neural memory,
rather than by addressing, plays a crucial role in object recognition. The memory,
upon presentation of an object, generates the address (or index) of the object by
associating the desired response to the stimulus via a matrix operator (Kohonen,
1988). The computation of the matrix operator, being a type of regression problem
(Poelzleitner and Wechsler, 1990), is the key issue. In order to derive the operator,
we use procedures based on the method of matrix inversion by partitioning. There
are two types of self-programming algorithms presented in this paper. In the
first, the indexing of the objects is based on the identification of those elements of
objects’ internal representations that differentiate one object from all others. In
this case, the indexing does not depend on the order of presentation of the training
sequence. The second algorithm takes into account the elements that differentiate
a given object from previously learned ones. The sequence of the presentation of
the training objects now has an impact on the performance of the indexing process.

An extension of the discrete indexing problem into the real-value domain leads
us to the function approximation problem. It has been proven that any continuous
mapping can be approximately realized by multilayer feedforward neural networks

Self-programming of neural networks... ’ 253

with at least one hidden layer of neurons whose transfer functions are sigmoidal
(Funahashi, 1989; Hornik et al., 1989) or non-sigmoidal (Stinchcombe and White,
1989) functions. Theoretical justification for the use of multilayer feedforward
networks in operations requiring simultaneous approximation of a function and its
derivatives is given by Hornik et al. (1990). The problem of efficient learning
of such function approximation networks is still open to research. A form of self-
programming developed by us allows for an approximation of a parametric function
such that the values of the function at the training points correspond precisely to
the required values. Measurement systems are typical examples of an application
where this characteristic of the network may be of importance (Zaremba et al.,
1991). The network output will be equal to the required calibrated values of the
measurand at the calibration points.

The structure of this paper is as follows. In Section 2 we deal with the inde-
xing problem. After a short discussion of the separability of an object’s internal
representations, the self-programming procedures are presented for the strong and
weak seperability cases. Their features are illustrated using a character recognition
example. The application of self-programming to parametric function approxima-
tion is discussed in Séction 3. An example including an optimal approximation
procedure is given.

2. The Indexing Function for Binary Images

In this section, we will consider binary images defined directly as subsets of acti-
vated neurons in a set N of neurons; N is supposed to be one network layer. In
this way, an image z is a binary vector (an element of IRC*9(™) where Card(N)
denotes the cardinality of N), but it is also a subset of N. For n € N, we write
interchangeably z, =1 or n € =.

The task of binary image recognition, regarded as an indexing problem, can
be expressed by :

F(z(k))=€k, k=1)2)"')K) (1)

where F denotes the input—-to—output function of the neural processor, {:z(")}
is a family of binary images, ¢; is an impulse signal in the k—th output neuron,
for each k.

We identify the output layer with the index set
K={1,2,.,K}

Thus €r = op[bkili=1,.. k, where ai > 0 and & is Kronecker delta. Now
we can say that the desired network performance consists of activating the index
corresponding to the input, and only that index.

One layer of weighted connections between the input layer and the layer often
fails to index a family of inputs properly, particularly when the inputs are overlaping

254 M. B. Zaremba and E. Porada

one another’s images. However, two layers of connections are able to deal with any
indexing task. A proof of the above statment is the topic of this section, but the
most important results concern the self-programmability of a network undertaking
an image recognition task. The notion of self-programmability will be defined
later. Here, let us introduce some more notations and explain how the processing
task will be distributed among the different layers.

The input, hidden, and output layers of neurons are denoted by I, D, and
K, respectively. The notation for the hidden layer comes from the dipoles that we
define futher in this section. The transfer functions in I and K are the identity
functions. The transfer function in D is the function

0 if z<0

dz)={ z if 0<z<1 (2)
1 if z2>1

which becomes the hard delimiter (0/1) in the case of an integer variable z

For a given input =z, the output from D is a binary vector y € IRCard(D)
called the internal representation of z. Thus, the mput-to—output processing is
the following composition of functions:

z—oy—z=yw' = F(z),

where w* is the connectivity matrix in the layer D x K of connections.

The network indexes {z(") } if, and only if, its second layer of connections
indexes {y(")}, ie., if

yFw* = ¢, k=12,..,K 3)

A matrix w* satisfying (3) exists if the internal representations are linearly
separable binary vectors. The task of producing separable representations of the
inputs z(*) will be assigned to the first layer Ix D of connections.

2.1. Separable Internal Representations

To produce separable internal representations of the inputs z(1), ..., 2(%), we will
apply a method called dipole processing of binary images. The method gives a
separability which is slightly stronger than the linear separability. In this paragraph
we define that separability of the family {y(")} and, assuming the separability,
we construct the matrix w* satisfying (3).

Definition 1. Let

ky{") =B\ (y(l) u... Uy("'l)) = {d ey®:dgy® for 1< k} (4)

Self-programming of neural networks... 255

The sequence y(, ...,y &) is separable if ﬁ(") # 0 for all k. The family {y(")}
is separable if it can be arranged in a separable sequence. The family is strongly
separable if each arrangement in a sequence is a separable sequence.

We pay attention to the strong separability, because many recognition pro-
blems can be reduced to problems of indexing strongly separable representations.
The indexers preserve the generalization ability that characterizes the neural pro-
cessing systems (the examples in paragraph 2.3. illustrate the generalization func-
tions of indexers).

2.1.1. The Case of Strong Separability
The family {y(")} is strongly separable if, and only if, the sets

7® = {d ev® :dgy® for 1£k} (5)
are all not empty. They are maximal sets fulfiling the following condition:

7T cy® and FnyD =9 for I£Ek (k=1,2,..,K)

Tilus, the matrix w* defined by

wi=1 if de 7® and wj, =0 elsewhere (6)
satisfies

yPw* = Card(T®)[6ri], k=1,2,...K (7

Consequently, the processing system < D, w*,K > indexes the representations
for which ij(k) # 0. If the family is strongly separable, the system indexes all y).

2.1.2. The General Case of Separability

Here, the matrix w* is defined by the following recurrent formula:

M©® =0 (zero matrix),

M® = ppE-D (ﬁ(k)T N c(k)) ®8)

where F*) (see (4)) is now regarded as a binary vector, T denotes the transpo-
sition, x is the cross (outer) product, and

¢® = (6] — (1/ o) y®MED), o = Card (7®) (9)

Note that M®) js correctly defined only if oy > 0, 1.e., if 7o # @; this involves
the separability condition. The matrix M &) is our weight matrix w*. The
proof of the indexing property of w* follows:

256 M. B. Zaremba and E. Porada

Theorem 1. We have
VW' = o [br], k=1,2,.,K

so, if the sequence y(), ..., y¥) is separable, the matriz w* is a solution of the
indezing problem (1).

Proof. Using the principle of induction on k, we prove that
‘y(l)M(k) =[], 1=1,2,..,k (10)

First, we verify that y O MM =q, [61). In fact, since ¢(1) =[6;;] and gV =y,

yOM® = y® (FO x [60]) = (¥-7D) (b2:] = Card (7V) 6] = 1 [614]

(- is the dot (scalar) product of vectors; we drop the transposition sign in the dot
product).

Second, supposing that
YOMED = 5], 1=1,2,.,k-1
we prove (10). Thus, by (8) and (9),

yOM® = y(‘)‘{M(k‘l) + (g(k) " c("))]
= yOME-D 4 (ya).g(k)) {[5,“.] —-Q /a,,)y(*)M(k-H}
But, yOg*) =0 for I<k and y & F*) = oy, so
yOM® = yOME-D = o [65], 1=1,2,...k—1
by the inductive assumption, while
Y M® = B pgC-1) 4 o {[5,".] -Q /ak)y(k)M(k—l)} = oy [bs).
This ends the inductive proof. Now we have in particular

yBw* = yOME) = 6] =, k=1,2,.... K.

2.2. The Self-Programming Procedure

Installation of a connectiviﬁy matrix in a layer of connections N xN’ can be
managed by the network itself. We mean by this that, in the learning phase, each

Self-programming of neural networks... 257

connection changes its weight according to a law which expresses the new state of
the connection in terms of the present state and the training signals introduced into
the ends of the connection. Such a procedure of modulating the internal parameters
of system will be referred to as self-programming.

The training signals are data which must be generated before or during the
self-programming session. The training data are a pair (a,b), where @ and b
are distributions of activationsin N and N’, respectively. In this way, each
connection (n, n’) receives training signals a, and b, through n and n’, and
new weights

new __
Wpnt = U(am Wnn', bn’)

are automatically assigned to the connections.

The function w(a,w,bd) is the self-programming law. The variable w runs
over all possible states of the connections. We denote the initial state of a connec-
tion, when no weight is assigned to it, by NIL.

The local character of the self-programming law allows for weight modulation
in all connections in parallel. However, a more important feature of the law is
its explicit, noniterative form: modulation of weights is done in one step. A self-
programming procedure builds the final connectivity matrix through successive
modulation steps. Thus, starting with the initial connectivity matrix

w(® = [NIL],

the matrices

o= o (A e

are successively generated, a(*) and b(®) being the training data in step k.

A solution of the indexing problem (1) will be built in K steps by modulation
of the connection layer D x K. The method we have developed makes the evolving
network produce current training data from the successive training inputs z(*),
Thus, we will have a®) = y*) while b*) will be derived from the current
network output. For this purpose, a working phase will follow each training step
and the training input will be fed to the network to produce the current output =z.
Generally speaking, b®) will represent a deviation of 2 from the desired signal
€x. We can see from the description of the self-programming procedure that the
definition of w(*) is recursive, in spite of the explicit form of the self-programming
law. '

We have to be precise here about how the evolving network, which may con-
tain NIL connections, processes the training inputs. One method is to assign a
default weight of zero to each NIL connection. It is convenient to express such an
assignment in terms of a weight incrementation: if a weight NIL is incremented by

258 M. B. Zaremba and E. Porada

a value w, the new weight is w : NIL4+w = w. In particular, the operation w+0
symbolizes the assignment of weights zero to all possible NIL connections.

2.2.1. Self-Programming in the Case of Strong Separability

The matrix w* defined by (6), which performs the indexing function in the easy
case of strongly separable inputs, can be generated by self-programming in a non—
recursive way, where the associations (z(¥), [6x;]) themselves are used as the
training data. The following theorem precisely specifies that procedure, which we
call diagonal self-programming.

Theorem 2. Let

w(1, NIL,b) = b (Rule 1)

w(1,1,0) =0 (Rule 2)
and -

w(a, w,d) = w, in all other cases (Rule 3)

If a®) = z(®)) = [6xs], £ =1,2,.., K, then we have w* = wX) 0.

Proof. Consider an arbitrary hidden neuron d € D. Three cases are possible:
a) d does not belong to any y(*
b)d €y®),but dgy® forany I#k ie, deyg® (see (5),
¢) d belongs to at least two sets y(V.

We will prove that, respectively,

a") w{f) =NIL, b) w§) = b, ¢) wi) =0
forall i € K.
In case a), the training input that isfed to d is zero in each self-programming
step. Rule 3 will apply, so w&? = wgf) =..= wgf) = NIL.

In case b), Rule 3 applies to the connections (d, i), ¢ € K, insteps | =
1,2,..k—1, so) = NIL But a{’ = ¢’ = 1,50 vl = w(1, NIL, 3{!)) =
bgk) = &;. This assignment will not be changed in steps & + 1,..., K, because
ag) =0 for 1>k

Consider case c). Let k be the smellest index such that d € y®). Step
makes w,(h) = ér; (analogously to case b)). Let us see what happens to the
connection (d, i) insteps I > k. If i #k, wg) = 0 and this assignment
will not change in any step ! > k, since only Rule 3 will apply. So, consider the
connection (d, k); () = 1. Now we have y() =1= a() for at least one !> k.
Thus, if the weight of (d, k) was still 1in step -1, Rule 2 makes it zero in
step .

In this way, wg:) =1 for deyg® (k=1,2,..,K) and wg-{) =0 in all
other cases, i.e., when d¢ ﬁ(k) for any k£ or de€ ’ﬂ(k), but k # i. This proves
the following equivalence

Self-programming of neural networks... 259

W +0=1 &4 eg® (1)
and gives the thesis w() 4 0 = bw*; see (6).

2.2.2. The Test for Str;)n,g Separability

The self-programming method allows us to test the successive training inputs for
separability before the corresponding modulation steps are executed. We avoid
unsuccessful modulations (which are irreversible) in this way. For the test that
follows self-programming step K’ < K, we use the connectivity matrix w&’),
which is already installed on the network. Actually

y® (w(x') + 0) =Belbri], k=1,2,.. K’
This statement is an analogy to the statement (7); now, (i = Card(Bg), where
Br={dgy®:dgy® for 1#k 1<K}

(in the case of K' = K, By = §*); see(5)).

For testing, we assigh default weights 1 to the connections that remain NIL
after the K' steps of self-programming. This default weight matrix will be
denoted by wiest- The test is based on the following proposition.

Propomtlon 1. Suppose that y(b),... y(K) are sirongly separable. Let z =
yE tDa,,,.. The family yb), .. y(K) y(K +1) s strongly separable if, and only
if,

n<B k=12.,K', and zg:i41 >0
Proof. By analogy to (11), we have

u¥)'=1edeB: (k=12..,K)
Thus

z = Card(B, Ny), k=1,2,..,K', and zgi4; = Card(A)
where A = {d wdk;(? 1= NIL}.

Suppose that step (K’+ 1) of the diagonal self-programming was executed.
‘We have ng tW_0forde Bi Ny&'+1) because of Rule 2, thus

uE =16 d € B \y¥'*), k=12, K,
while

wg(}g_e_l =le d e A\y(f(l"'l)

260 M. B. Zaremba and E. Porada

because of Rule 1. By this
yPwE+) = Card(B, \ y®"+V)[8;] = Card(B, \ Bx Ny X' +V))[6]
= (B — 2&)[0ni]
yE D E D) = Card(A) [k 41,4] = 2041 [k 41,1]

So, step K’+ 1 will be successful (what is equivalent to the strong separability of
the family y®), k < K"+ 1) if,and only if, B¢ > z for k < K, and zx+4; > 0.
. - -

2.2.3. Self-Programming in the General Case of Separability

The matrix w* = M) defined 2.1.2. can be generated by a self-programming
procedure, which we call triangular. A precise formulation of this result is the
following theorem. ‘

Theorem 3. Let
w(1, NIL,3) = b (Rule 1)
w(a,w,b) = w in all other cases (Rule 2)

Taking ¢®) = y® and b® = c®) (see (9) for the definition of ¢(*)) as training
data, the self-programming will result in a matrix w(X) such that w(¥)4+0 = w*.

Proof. We will prove in fact that w®) +0 =M ®) for all k. First, let us prove
the folowing formula concerning the triangular self-programming with use of the
training data (y®), c(®)):

o (P, W, 49) +0.= W 4 DD ©

for d € D and i € K.

This formula holds true when wg’f—l) =

{3
inputs: both sides of (12) are cgk) when Rule 1 is applicable, or they are zero

when Rule 2 is to be applied. Thus, suppose that wg—l) # NIL. We prove that

both sides (12) are equal to wg—l) + 0. It is sufficient to prove that ﬂgk) =0,1.e.,

that

NIL, independently of the training

WD #ENLFP =0 (13)

Note that w(a,w,b) can be NIL only if w = NIL. So, once a connection is

switched on (passes from the state NIL to a weighted state) in a self-programming

step, it will never return to the state NIL. This means that for each (d,7) e Dx K

there is a unique ! such that the connection is switched on in step I. In this step,

the training input to d is obligatorily 1, i.e., yg) = 1, while yg') =0 for <l
(and wg'.') = NIL).

Self-programming of neural networks... 261

The connection (d,i) that we consider here was switched on in step [< k;
this is the hypothesis of (13). Thus, d € y,s0d g ¥, i.e., 7y = 0. Implication
(13) and formula (12) are proven. Now we have:

w® 40 = o, D,)] +0= o] + 0+ [0S
= w4 o4+ FF) x BT
Since w® + 0 = M(®, induction gives

w® 4 0= ME-D L F®) , BT = pr*)
|
Note that the right-hand training data b®) in the triangular self-
programming procedure, which are [6x] — (1/cx)y®w(*=1), in fact represent a
deviation of the current output z = y®w(*-1) from the desired impulse signal
ek = ag[bki].

2.3. Dipole processing

Separable internal representations for an arbitrary family of binary inputs can be
produced by the dipole processing introduced in this paragraph. The following -
theorem gives the theoretical result concerning the separability through dipole re-
presentations.

Theorem 4. Consider a processing system < L,w, D > (the transfer function in
D is the function ¢ defined in (2)). For an arbitrary family of binary vectors
{z(®)}, where k <Card(D), There ezists an assignment of weights wiq = ~1,0
or 1 such that the representations y*) are separable.

We will prove the theorem at the end of the paragraph. First, let us introduce
a simple version of the dipole processors, which seems to be an efficient separator
in most practical applications involving the indexing of planar binary images.
; <

Definition 2. A connection network < I,w, D > is a dipole processor if for
each d€D there exists exactly one ordered pair (i, i’) of input neurons such that
wig = 1, wyq = —1 and the other connections are NIL. The dipole d will be
denoted by d(i, i').

We can assume that only the weighted connections can be physical realised,
so there are 2n(n— 1) connections and n(n— 1) dipoles in the network where
Card(I) =n.

Let y be the internal representation of an image z. Note that d(i,i') € y
if, and only if, i€ = and i'¢ =.

" The dipole processor can separate images even when there are linear depen-
dences among them. As an illustration, consider two overlapping sets such as those
in Figure 1 and the sequence

262 ' M. B. Zaremba and E. Porada

2V =ANB, z@P=A, 2®=B, z®=A\B, 2z®=B\A
The sequence y(1),...,y®) is separable. In fact, taking
d; =d(b,a), dz =d(a,e), ds =d(c,e), d4 =d(a,b), ds =d(c,b),
one will have d; € y*) and d; ¢ y for I<k, k=1,..,5.

When indexing regular figures (as opposed to noiselike patterns), short-range
dipoles successfully separate the inputs. We say that d(i, i’) is a short-range
dipole if i and i’ are neighbours in the planar grid of input neurons. We mean
horizontal, vertical, and diagonal connectivity, so there are less than 8n dipoles.’
This moderately sized set of hidden processing units gives separable internal re-
presentations in most of the realistic recognition problems, while ensuring, at the
same time, a robust processing insensitive to input noises and degradations of in-
put images. To an extent, damaged images are recognized and properly indexed.
In this sense, the dipole solution of the indexing problem is also a solution of the
image recognition problem.

There are families of images that th'ei simple dipole processor does not separate.
More complex dipoles do. To prove this, and the previously stated theorem, we
generalize the notion of a dipole in the following way.

Definition 3. A hidden neuron d is a dipole if for exactly one input neuron
i the connection (i, d) has the weight 1 and the set A= {i€l:wyq = -1} is
not empty. The dipole d will be denoted by d(i, A).

Proof of Theorem 4. Note that the following equivalence holds true for = CI:
d(i,A)ey if, andonlyif, i€z and ANz =40.
In fact,
di,A)eyemu=14¢ (:ci - E :n-,:) =1
IY€EA
r=landzy=0foriieAeiczandznNA=0

(see (2) for the definition of @).

Consider the dipoles d; = d(ik,I\x(")), where i is a neuron chosenin ().
We will prove that the dipole family {dx} is sufficient for the separability of the
sequence y(l),y(z), oy ¥, if only the ordering of the sequence is an extention
of the partial order D in the family {z(k)} (such an extention always exists).
Thus, it is assumed that

2520 k<l _ (14)
We have to prove that if I < k, then d; ¢ y(*). By (14),
1<k =—(z® 520

Self-programming of neural networks... 263

where — signifies negation. Consequently, (I\z(*))Nz() = @, which implies d; ¢

y®. Finally, the K dipoles ensure the separability of the internal representations
(k)

vy |

2.4. Character Recognition

The recognition capabilities of dipole neural indexers were tested using images of
the characters A-Z. A 68 x 68 array of black and white pixels in a fixed window
on a computer monitor screen represented an image . In this way, the window
acted as the input layer of the network. A dipole d was represented as a record
containing addresses of two neighbouring pixels in the window and the weights of
connections (d,k), & = 1,2,..., K. Declared variables z,z3,..,2x Wwere the
outputs of the network.

The processing # — z consisted of the execution of the following two opera-
tions, separately and independently for each dipole:

a) read the values p,q of the two pixel addressed by d and compute y3 =
é(p— 9),
b) increment zr by yawar, k£=1,2,..,K. :

In the learning phase, the self-programming procedure updated the file of
dipoles K times. In step k, the weights wq; recorded in d were replaced by
w(ya,wai,c;) for each dipole, starting from initial weights NIL.

The diagonal self-programming was simulated first. Each step of the weights’
modulation was proceded by the test described in 2.2.2. Since the internal represen-
tations of the images of A, B, ..., Z are not strongly separable, the test eliminated
some of them from the family of training inputs. In fact, to ensure robustness of
the processing, all condidates for =(X "+1) were eliminated for which

Br — zx <50 for k < K’ or zx141 <50

in the notation introduced in 2.2.2.

Thus, A, ..., E pased the test in steps 1, ..., b, respectively, while in step 6, the
image of F and G did not. The results of testing F, G (which were discarded)
and H (which was accepted) are given in Table 1.

Tab. 1. Outputs from the test network after step 5.

index cell || 1 2 3 4 B5(K') | 6(K'+1)
B 536 269 425 163 206 -
=(F) 0 0 0 0 157 7
2(G) || 23 16 318 7 1 110
z(H) 13 1056 0 54 33 136

Eventually, seventeen characters passed the test. After the training, the net-
work was switched to the recall (working) phase. Figure 2 shows some results of

264 M. B. Zaremba and E. Porada

processing different input images. To make the reading of results easier, indices
1, 2, ..., 17 were replaced by their corresponding images. The values of the stimu-
lation of output neurons were normalised and range from 1 to 100. They represent
the percentage of the maximum possible signal that can be produced in given index
(when z = 2(*) where k is the index), showing similarity between z and z(*).

Figure 3 illustrates the results of processing by the procedure of triangular
self-programming. The training images now appear in an order that is an exten-
tion of the inclusion reation in the image family. However, three letters are still
missing. Their indices produced a nonsignificant signal. This is due to possible
non-separability of the family A-Z when using only short-range dipoles.

3. Self-Programmable Linear Approximators

In this section, we address those problems that require processing of analog distri-
buted signals. These kinds of signals can be encountered in measurement systems
involving cameras and other array sensors. The input to the neural processor comes
in the form of a sampled distributed signal; one input neuron i receives a sample
z; of the sensor signal X. Variation of the measured physical value v modifies
the distribution, but the dependence between » and a sample z;(v) is not, in
general, given analytically. The task of the neural processor is to evaluate v from
the vector sample

z(v) = [zi(v)] ier
where 1 denotes the input layer.

Definition. A set of sampling operations is separable (in a measurement range
Ymin < ¥ < Vmax) if the corresponding inputs z;(v) are mutualy linearly indepen-
dent functions in some vicinity of each ».

We will construct a linear network which combines the functions zi(v) into
a function F approximating the measurand v:

|F(2) — v| < € for z = 2(v) (15)

The bigger the number of separable sampling procedures (and, consequently, the
number of inputs neurons), the better a combination of zi(v) approximates v
uniformly in [Vmin, ¥max]. Our approch consists in improving the approximation
with each new sampling operation involved in the processing—as long as the sepa-
rability is preserved. We investigate in particular systems where the sensor output
is a continuous distribution of an analog signal X (p) over a planar domain {p},
and where, for different values of the parameter v, the corresponding distributions
X, are mutualy linearly independent (as elements of the infinite—dimentional space
of continuous functions in the domain {p}). For each p, X,(p) varies smoothly
with the variation of v. In such a case, for an arbitrary set {p; :i € I} C {p}, the
sample functions '

Zi(V) = XV(pi)v i € I

Self-programming of neural networks... 265

form a family of smooth functions linearly independent in a vicinity of each point
V € [Vmin, Vmax]- Here, the vector samples @ are produced by the set of sample
points {pi}.

The vector #(v) varies smoothly with a variation of the measurand, thus,
sufficient measurement precision can be achieved when interpolating the measurand
on a discrete set of vector samples. The interpolation problem can be stated as
follows: construct a neural processor which transforms @(vx) into g, k =
1,2,..., K, for a given finite set {Vx} C [Vmin, VYmax]- The values v, will be called
caltbration values.

The interpolation problem can be reduced to an indexing problem. Consider
a network < I,w*,K >, supposing that z(vi)w* = (6], k=1,2,.., K. Let us
extend the network by an interpolation layer, which connects all index neurons k
to one output cell o (see Figure 4.; the figure represents a network where Card(I)
= Card(K) = K). Putting wg, = v&, we will have

Fz(w))=w, k=12,.,K

where F :IR™ — R is the function of the extended network < I,w*,K,w,0 >.
The function F is a linear functional of the form:

F(z) = zw*w

where w = [11, vy, ..., vk]T.

Such a solution poses the problem of selecting the calibration values vy :
first, the samples «(v;) must be linearly independent vectors, and second, the
function F, besides interpolating, should approximate v uniformly in the interval
[Vmin; Vmax]- A method for selecting appropriate calibration values will be a part
of the self-programming procedure presented in the next paragraph.

3.1. Self-Programming: Case of Analog Input Vectors

The self-programming procedure is based on the classical method of matrix in-
version by partitioning. The procedure generates the matrix w*. In each suc-
cessive weight modulation step k, a new calibration value v is found and the
training data are generated from the vector sample @(vi). We describe the self-
programming first; v, will be considered to be an arbitrary parameter of step .
Next, the method of finding the optimal value of v, optimal with respect to the
uniformity of the approximation (15) will be introduced.

Let the input neurons be arranged in a sequence 1iy,iz,...,in, Where
n =Card(I). A sample z; where i=i;, or a training input a; to the neuron
i=ig, will be simply written =z, or ag, respectively. Similarly, wj; will de-
note the weight wj; where i=i;. Initially, all connection weights in the network
<I,w*,K,w,0> areset to 0:

w® = 0, wpo=0, k=12,..,n

266 M. B. Zaremba and E. Porada

The self-programming law is defined by the incrementation formula
w(a,w,b) = w+ad (16)

The training data in step k are computed from (v;) with the use of the present
weight matrix w(*=1), Thus

a®) = [§,;]T — w15 (17)
b®) = by (1) . (18)

where: [6;;] represents an input signal equal to 1in i; and to 0 in all other input
neurons ij,

8™ = [zx(1n), zx(v2), ..., ze(1-1,0, ..., 0]T € R" (19)
ar(v) = —z(v)-a® (20)
bi(v) = 1/x(v) (2(v)w) ~ [51]) (21)

Step k is concluded by setting the weight of the connection (k,0) in the inter-
polation layer equal to »;. K modulation steps (K < n) yield w* = w(X) and
w =1, v, ..., vg]T.

Selection of a specific value of 1 that is optimal from the point of view
of measurement precision, will be based on the transition formula (27), which
describes the errors of the new network in terms of the previous errors and v;. Let
us prove the most elementary statements concerning the weight modulation using
the self-programming law (16) and the trazining data (17), (18).

Proposition 2. The matriz term wff) 1s zero when 1>k ori> k.

Proof. Induction on k allows for an easy proof that agk) =0 and bfk) =0
for ! > k. Thus (16) modifies only the connections (i;,) where I, I' < k; other
connections preserve their initial weights of zero. []

This proposition states, in particular, that wg,() = 0 for I > K, so, the
neurons i; where /> K remain mute. Only the principal K x K minor of w*
takes part in the processing; we can simply assume that n = K (as in Figure 4).

Proposition 3. The a—function (20) can vanish only on a discrete set of points
in the measurement range [Vmin,Vmax]-

Proof. Note that ag‘) =1,s0 a® is a nonzero array. By the separability of
the family {zi(v)}, the dot product in (20) cannot vanish in a segment of the
measurement range. This means that the a—function can be zero only at discrete
points.]

Theorem 5. For I <k, z(v)w®) =[5;].
Proof. Equation (16) signifies that wfﬁ) = wgﬁ-1)+a§k)b§f) forall ,I'=1,2,.., K.

Self-programming of neural networks... 267

Thus
w® = -1 4 g(®) , p(¥)
Consequently,

z()w®) = z(v) [w(’"’l) + a(k) X bk(uk)]
= z(v)w*V 4+ (z(u)oa(")) bi(ve)

= 2(v)w* D = ap(V)be(i) (22)
Now we can prove the theorem by induction on k.

The case k = 1. Because by(v) = —1/a;(v)[61;], we obtain immediately
from (22)

2(v)w) = —a; ()b (1) = [61]]
The inductive assumption:

a:(v;)w("'l) =[], 1=12,..,k—1.

This assumption ifnplies
ar(v) : 0 for I<k.. (23)

In fact, by definitions (20) and (17),

ax(v) = —2() {[%']T - w(""l)s(")} = —z(n)-[85] + 2()wDs®)
and, by the inductive assumption and definition (19),

ar(v) = —2 (1) [8k] + [8]-8%) = —z (1) + 2 (1) = 0

The inductive step. By the transition formula (22) and (23),
2()w® = 2(n)w®D = 5] for 1<k
while
2(vi)w® = 2(ve)w Y — ap (V)b () = [6ri]
by definition (21). [|

Concluding, the current function F(*) of the network interpolates the mea-
surand v at points z(11),2(v2),...,2(¥), Le.,

F® (@w))=w, =12,k (24)

268 M. B. Zaremba and E. Porada

This interpolation formula follows the theorem above, since, obviously, the inter-
polation layer transforms [6;] into ;.
3.2. Analysis of the Uniform Approximation

Let us now prove a transition formula for the network’s deviation function. Recall
that after k steps of modulation, the network performs a mapping

z — F®)(z) = zw®p®
where v(®) = 1), .., 151, 1,0, ...,0]T € RK.
The present deviation of F(*)(z) from v, for z = 2(v), is the function
Ex(v) = F®)(2(v)) — v = 2(1)wFp*) —y (25)

which also expresses the approximation errors of the system after the stage k. By
the interpolation formula (24)

Ek(l/;) = 0, l= 1, 2, veny k (26)

An estimate of the uniform convergence of the deviations to 0 when k increases
is based on the following theorem:

Theorem 6. The following formula ezpresses the relation between Ey_1(v) and
Ex(v):

Ey(v) = Ex_a(v) - ::((;;)) Ero1(ve) 27

Proof. Definition (21) gives

bk(Vk)-l)(k) = 1/ak(uk) [z(uk)w(k‘l)u(k‘l) - Vk] = Ek_l(l/k)/ak(l/k)
(see(25)). Thus, we obtain by applying (22)
Er(v) = z@)w®® —py = 2(0)w*Do® — y — 0 ()b (i) v *)

= Er_1(v) — [ax(V) Jar(ve)] Ex-1(vi)

Let us transform the identity (27) into the following formula

Ex(v) = Ex_1(v) — Qi) ar(v) = Ex_1(v) [1 - Q(ve) /Q(V)] (28)

where Q(v) = Ex—1(v)/ax(v). The two functions Ej_; and o are smooth
functions sharing the same set of roots (see (26) and (23)). They are, in fact,
nearly proportional. An evaluation of this proportionality is beyond the scope of
this paper. Let us note, however, that this proportionality promotes the modu-
lation method that we are investigating here: @ is a continuous function (the

Self-programming of neural networks... 269

zeros of the numerator and denominator can be simplified), everywhere positive or
everywhere negative, fitting a constant function well enough, so that Q(v:)/Q(v)
approximates 1 for all v;. In any event, |Ex(v)| is smaller than [E;_i(v)| at
points v where Q(1:)/Q(v) < 2. The better the proportionality between the
a—function and the deviation function, the closer Q(vx)/Q(v) approaches 1 and,
- by (28), the magnitude of the deviation diminishes in a larger neigbourhcod of the
current calibration value. On the other hand, the present deviation function (28)
is expressed as a pointwise product of two factors, thus, its uniform norm will de-
crease in the most efficient way if a zero for one factor coincides with the extremum
of another factor. Consequently, to temper the uniform norm of Ej(v), we chose

vy = mazimum point of the first factor |Er_1(v)] (29)

the second factor 1 — Q(vx)/Q(v) is zero in the point v = v;.

This selection has one more advantage. Due to the proportionality, v, is
also a maximum point of |ay|, so the magnitude of connection weights grows in
the slowest possible way (ai(vx) is a divisor). The selection (29) delays the
moment when the computation errors overtake the approximation errors. In our
experiments, this did not happen until the approximation errors diminished to an
e of the order of 10~%. That precision required 12 calibration steps. The matrix
inversion process and all computations were performed by means of single precision
floating point operations, for a more faithful simulation of real world situations.

3.3. Exampie

We illustrate the self-programming method with a simulated of v from the Gaus-
sian distributions

X, (p) = ¢(v) exp(—v*r(p)?),

where r(p) is the distance between p and the center of the distribution and
¢(v) is a smooth function. The accuracy of the processing versus the network size
is evaluated in the measurement range 0 < v < 10, when ¢(v) = 5sin(v/4). The
sample of X, is an array z: = z;(v) = X,(p), k¥ =1,2,..., K, where p; are
sampling points. In our example, r(px) = k/40, k < K = 12.

As little as 6 calibration steps make the error of the network practically ne-
gligible; see the plot of F(®)(z(v)) versus v in Figure 5. The uniform decrease
of the deviation function is illustrated in Figure 6. Thus, Figure 6a illustrates
step 7 of the self-programming. Although the deviation and a—functions versus
v are represented on a logarithmic scale, we can easily see that they are pro-
portional to a great degree. The small triangles indicate the previous calibration
values. According to (26) and (23), the two functions are zero at those points.
The new calibration value (where the deviation is maximum) is indicated by an
arrow at the bottom of the grid. Figure 6b shows the situation in step 9; at this
step the deviation in the whole measurement range is well below 1/100. In step 12

270 M. B. Zaremba and E. Porada

(see figure 6¢), the computer errors become visible in the display of the deviation
function. The a—function is no longer distinguishable from zero. Beyond step 12
(figure 6d), the computation errors contribute significantly to the approximation
errors, so any continuation of the modulation is pointless. Finally, the network
uses only 12 input neurons and 12 samples of the input distribution; the maximum
deviations are smaller than 104,

4. Conclusions

In this paper we have presented a self-programming approch to non—iterative
learning of the association matrix to be used on a multilayer feedforward neu-
ral network. We have addressed two particular problems: indexing as a content
addressable memory problem and function approximation.

A key issue in object recognition by indexing is the separability of the ob-
ject family. Two self-programming algorithms have been proposed: diagonal self—
programming for strongly separable objects and triangular self-programming for
the weakly separable object family. The processing of object images by a short—
range dipole operator was used in order to achieve separability. The object recogni-
tion process was illustrated by an example of the recognition of a set of characters.
The results show very good immunity to noise of the dipole-processing-based reco-
gnition. In certain situations, however, short-range simple dipoles do not provide
sufficient separability. In those cases, more complex dipoles should be considered.

The extention of self-programming method to the real number domain led us
to the solution of the function approximation problem, oriented toward the require-
ments of the measurement systems. In those systems, it is ofen necessary that the
value of the measurand at the calibration points be extracted very precisely, while
maintaining precise interpolation between the points. We showed that modulation
of connection weights with regard to more and more refined interpolation does not
require more than resolving linear problems and that the solution can be generated
by a self-programming procedure. Thus, we construct universal approximators of
the measurands, using only the two-layer feedforward linear networks. The mo-
dulation is a few—step process of defining the next optimal interpolation point and
adjusting the weights to fit the network to the increasing interpolation task. The
method provides the user with a possibility of on—going insight into approxima-
tion precision and with the means to determine optimal selection of the successive
training inputs.

References

Barnard E. and Casasent D. (1989): A comparison between criterion functions for
linear classifiers, with an application to neural nets.— IEEE Trans. Systems, Man,
and Cybern., v.19, Sept./Oct. pp.1030-1041.

Barnard E. (1992): Optimization for training neural nets— IEEE Trans. Neural Net-
works, v.3, No.2, pp.232-240.

Self-programming of neural networks... 271

Dennis J.E., Jr. and Schnabel R.B. (1983): Numerical Methods for Unconstrained
Optimization and Nonlinear Equations.— Englewood Cliffs, NJ: Prentice-Hall.

Fitch J.P., Lehman S.K., Dowla F.U., Lu S.Y., Johansson E.M. and Good-
man D.M. (1991): Ship wake—detection procedure using conjugate gradient trained
artificial neural networks~ IEEE Trans. Geoscience and Remote Sensing, v.29,
No.5, pp.718-725.

Funahashi K.-1. (1989): On the approzimate realization of continuous mappmga by
neural networks.— Neural Networks, v.2, pp.183-192.

Gorman R.P. and Sejnowski T.J. (1988): Analysis of hidden units in a layered
network trained to classify sonar signals.— Neural Networks, v.1, No.1, pp.75-90.

Gray D.L. and Michel A.N. (1992): A training algorithm for binary feedforward
neural networks.— IEEE Trans. Neural Networks, v.3, No.2, pp.176-194.

Hebb D.O. (1949): Organization of Behavior.— New York: Science Editions.

Hornik K., Stinchcombe M. and White A. (1989): Multilayer feedforward networks
are universal approzimators.— Neural Networks, v.2, pp.359-366.

Hornik K., Stinchcombe M. and White A. (1990): Universal approzimation of
an unknown mapping and its derivatives using multilayer feedforward networks.—
Neural Networks, v.3, pp.551-560.

Hwang J.N. and Kung S.Y. (1989): Parallel algorithms/architectures for neural
networks.— VLSI Signal Processing, pp.221-251.

Kohonen T. (1988): Self-Organization and Associative Memory.— New York: Springer-
Verlag.

Kyuma K., Ohta J., Kojima K. and Nakayama T. (1988): Optical neural systems:
system and device technologies.— Proc. Optical Computing’88, Toulon, France,
29 Aug. — 2 Sept., pp.475-484.

Miller W.T., Glanz F.H. and Kraft L.G. (1990): CMAC: An associative neural
network alternative to backpropagation.— Proc. IEEE, v.78, No.10, pp.1561-1567.

Poelzleitner W. and Wechsler H. (1990): Selective and focused invariant recognition
using distributed associative memories (DAM).— IEEE Trans. Pattern Analysis and
Machine Intelligence, v.12, No.8, pp.809-814.

Porada E. and Zaremba M.B. (1992): A connectionist method for distributed sen-

sory signal processing.— Research report No.92/01-2, Dept. d’informatique, UQAH,
Canada.

Rosenblatt R. (1959): Principles of Neurodynamics.— New York: Spartan Books.

Rumélhart D.E., Hinton G.E. and Williams R.J. (1986): Learning internal repre-
sentations by error propagation. In: Parallel Distributed Processing.— Cambridge:
MIT Press, MA, v.1, pp.318-362.

Stinchcombe M. and White H. (1989): Universal approzimation using feedforward
networks with non—sigmoidal hidden layer activation functions.— Proc. Int. Joint
Conf. Neural Networks, Washington, USA, v.1, pp.613-617.

272

M. B. Zaremba and E. Porada

Zaremba M.B., Bock W.J., Porada E. and Skorek A. (1991): The recognition and
measurement of optically detected variables using interactional neural networks—
Proc. Int. Conf. Neural Networks, San Diego, USA, 29-31 May, v.2, pp.77-85.

I\
2 6 0 17
A ’ 6 10
K st 0 7
E 70 5 0
Z 0 0 o
B 0 100 0
A 100 0 0

ABC

17

17

17

0

Received April 9, 1992
Revised August 5, 1992

.

€

Fig. 1.

0

17

17

0

Feature representation sets.

0 0 0 0 0 0 0 0 0 0 100

1] 0 0 0 0 0 1] 0 0 0 0

DEHJKMNRSTVWXYZ

Fig. 2. Results of diagonal self-programming.

Self-programming of neural networks... 273

y

;

[JCDFEGHKMNPQBRSUWXYZAV

Fig. 3. Results of triangular self-programming.

274 M. B. Zaremmba and E. Porada

Sampling
operations

€

*
Py
€

2--

X > X P XW* P xW*W = F(x)

Fig. 4. Network architecture.

10

0 Y 10

Fig. 5. Network outputs versus measurand after 6 steps.

Self-programming of neural networks... 275

-1

10

10 P

-107% \\g , ~— \

Fig. 6a. Precision of the self-programming procedure before the execution of
step 7.

-3
-10
~—_ NN
-107° E
-1
-10 A A ¥ A B A R

Fig. 6b. Precision of the self-programming procedure before the execution of
step 9.

276

M. B. Zaremba and E. Porada

EEENEN Y
A

Fig. 6c. Precision of the self-programming procedure before the execution of
step 12,

-1

10

-2

10

-3

10

0 JVNV /;\]WM’\VA JV AAU V“NAV AVAWi' Wi Mﬂ

A A a &a A a a a A A A

Fig. 6d. Precision of the self-programming procedure before the execution of
step 13.

