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BOUNDED INPUT BOUNDED OUTPUT
STABILIZATION OF NONLINEAR SYSTEMS
USING STATE DETECTORS*

ZHENG-ZHI HAN**, ZHONG-JUN ZHANG™"

This paper is devoted to the study of relations between Lyapunov stabilization
and bounded input bounded output (BIBO) stabilization for those nonlinear
systems whose state is not available for measurement. It is found that when
a state detector is used to construct asymptotic state, the local Lyapunov
stabilization implies the local BIBO stabilization, and in the global case, this
conclusions remain if the initial error between the output of state detector
and state of compensated system is small enough.

1. Introduction

In the past several decades, the problem of feedback stabilization for nonlinear
systems was an active research area, and it is now taken more seriously (Aeyels,
~ 1985; Brockett, 1983; Kalouptsidis and Tsinias, 1984; Marino, 1988; Pan et al,,
1990; Sussmann, 1979). Nowadays, many researchers are engaged in studying
the problem of stabilization for nonlinear systems around their equilibrium points
(Aeyels, 1985; Brockett, 1983; Marino, 1988; Pan et al., 1990; Sussmann, 1979),
i.e., working in the sense of Lyapunov stability, which is an important subject in
this area. However, for many practical applications, such as robot manipulator
control and output regulation of chemical processes, it is far insufficient to merely
study stability of the closed systems without external control. In such cases, a more
useful concept for stability should be bounded input bounded state (or bounded
output) stability. This subject was investigated early by Varaiya and Liu, (1966).
Recently, Sontag (1989) furthered this research by illustrating with an example
that the system which is stable in Lyapunov sense may not be BIBO stable and
proving that systems which are Lyapunov stabilizable are then BIBO stabilizable
by a suitable feedback (Sontag, 1989).

For those systems whose states are not directly measurable, state feedback con-
trol is always realized through an asymptotical state observer. It is well known that
system’s stabilization will not be changed for linear systems when the asymptoti-
cal state estimated from an observer substitutes for the system’s state in feedback.
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But this property does not hold any more when nonlinear systems are concerned.
We shall show this fact by the following example.

Consider nonlinear system

t=-H(z)+2z+v ‘ (1)
where
1/z |z| > 1/2
H(z) = { s 2
asinbz |z| < 1/2

In the Appendix of this paper, we show that there exist positive numbers a and
b with b < 37/2 such that H(z) belongs to C'—class.

Taking feedback control law in the form
u= -2z 4+ t;,
then the closed system becomes
t=-H(z)+v 3)

Using Lyapunov function V(z) = z2/2, it is easily verified that the origin is
a globally stable equilibrium point for system (3) i.e., for any initial condition
z(0) = zo, the trajectory z(t,zo) possesses the property lim;_,oo z(t,zo) = 0.

If we apply feedback control law

u=-2(z+e)+v

where z + e is the asymptotic state got from a state observer and the error e
satisfies differential equation é = —8/9¢3. Then the closed system is

t=—-H(z)—2e+v

_ (4)
€ = —8/9¢3

origin is still an equilibrium point of system (4), but, this system is not globally
stable. For example, let z(0) = 1, e(0) = —3/4, then,

z(t) =Vt +1
e(t) = -3/ (4Vt +1),

and z(t) diverges when t grows to infinite.

The above example shows that the stabilization for nonlinear systems may vary
when asymptotical state observers are applied. Therefore, it is necessary to find
the conditions under which the systems’s stabilization will be invariant no matter
whether an asymptotical state is adopted or not. We shall discuss the problem of
BIBO stability by extending the results obtained by Sontag, (1989) to the cases
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where the only available signal for feedback is asymptotical state estimated from
a state detector (we use the word detector proposed by Vidyasagar, (1980) instead
of observer).

This paper is organized as follows: In section 2, we give some preliminary
materials which include definitions and lemmas. In section 3, we present the main
theorems concerning BIBO stability when different kinds of detector are applied.
Section 4 contains conclusions.

2. Preliminaries

Consider the following affine nonlinear system

i = f(2)+ Y (@) = f(z) + Gle)u (52)

y = h(z) \, (5b)

whete u € R™, £ € R* and y € R" are input, state and output of system (5),
respectively. G(z) = [¢1(2),...,9m(z)]. Let M denote the set {1,2,...,m}. We
assume f and g;, ¢ € M and h are smooth functions. Without loss of
generality, we suppose f(0) = 0. Therefore, origin is an equilibrium point of (5a)
if u=0. Let z(t) = z(t,z0,u) be the solution of (5a) with a specified input u
and initial condition z(0) = zo.

Following (Hahn, 1967), we denote R* for the set of nonnegative real numbers
and present the definitions of class K, KX* and £. A function «: Rt - Rt is
said to belong to class K if it is continuous, strictly increasing and satisfies a(0)=
0. It is of class K, in addition, lim,_, o a(s) = co. A function »v: Rt — Rt is
said to be of class £ if it is continuous, strictly decreasing and lim,_,oo ¥(s) = 0.
A function B(s,t) : Rt x Rt — R* is said to be of class KL if for every fixed
t, the function is of class K and for every fixed s it is of class L. In a similar
way, we can define the class KKXL for the functions (s, 52,t). The details are
omitted.

For every integer p, RP is considered as a normed linear space with Euclid
norm, i.e., for any z € RP, z¥ = (z1..zp), |z| = /3=, £, where 'T’ denotes
the transposition. For any real number 6 > 0, let Bs; = {z,z € RP,|z| < 6}.

In this paper, we adopt the following definition for stability proposed by Sontag,
(1989). :

. Definition 1. If there exist § >0 (6 = c0) and KL function (s, t) such that,
for any z, € Bs (z € R"),

lz(t)] = |=(t, 20, 0)| < B(l=ol, ?), (6)
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then system (5) is said to be Locally (Globally) Asymtotically Stable (LAS(GAS)).
If there exist § > 0 (§ = 00), and two functions B(s,t) € KL and v(s) € K,

such that for any zo € B; (z € R"),
|2(8)] = (¢, 2o, u)| < B(lzol,t) + ¥(|ul) ()

then system (5) is said to be Locally (Globally) Input-State Stable (LISS(GISS)).

Definition 1 is a stronger concept for stability than the usual one. It is clear
from the above definition that ISS implies AS. The inverse conclusion we give below
was verified by Sontag, (1989). In order to describe it, we give the definition of
stabilization.

Definition 2. If there exists a smooth mapping k : R® — R™, satisfying kE(0) =0,
such that for the closed system

& = f(z) + G(=)k(z) = f(2) C)

equilibrium point z = 0 is LAS (GAS), then the system (5) is called LAS-able
(GAS-able).

Furthermore, if ‘
& = f(z) + G(z)u 9)
is LISS (GISS), then the system (5) is called LISS-able (GISS-able).
Lemma 1. (Sontag, 1989). The necessary and sﬁﬁicient condition for eristing a
state feedback to make (5) GISS-able is that (5) is GAS-able.

In this paper, we are going to discuss the conditions under which lemma 1
holds when a state detector is used. For the sake of convenience, we hereby present

the definition of state detectors, (more details about detectors can be found in
(Vidyasagar, 1980)). ' :

Consider the following smooth system
z= y(z;y) u) = y(z’ h(z)) u) (10)

where 2z € R", g vanishes when all of its arguments do. Combining (10) with (5),
we get a composite system

£ = f(z) + G(2)k(z)u - (11a)
z=g(z,y,u) (11b)
y = h(z) (11c)

Definition 3. If there exists a function V; : R" x R® — R*, with Va(z,z) = 0,
Yi €K, (i€3), §>0 and 6, > 0, such that for any z,z € B; and |u| < 6y,
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¥1(lz = z|) < Va(z,2) < ¥a(lz —2]) (12a)
V.Va(z,2)[f(z) + G(z)u] + V. Va(z, 2)g(2, h(z), u) < —¢s(|z — 2[) (12b)

where V, means the gradient with respect to the variable s, then system (5) is
called to be weakly detectable and (11b) is its weak detector.

It is easily seen from (10) that if |u| < 84, and both z(t) and z(¢) do not
leave Bj, then |z(t) — z(t)] = 0 (t — 00). If 9; € K® and 6 = oo in Definition
2, then system (5) is said to be detectable and (11b) is a detector.

3. Main Results

Throughout this section, we suppose system (5) is LAS-able or GAS-able, i.e.,
there exists a feedback control law

u=ki(z)+v ' (13)

where k; : R* — R™ is a smooth mapping with k;(0) = 0, such that origin is
a locally (globally) asymptotically stable equilibrium point of the following closed
system

& = f(z) + G(z)v (14a)
y = h(z) (14b)

where f(z) is defined as (8). By inverse Lyapunov theorems (Hahn, 1967), there
exist § > 0, Lyapunov function V; : R* — Rt and K-—class (K* —class)
functions ¢;, ¢ € 3, such that for any z € B;

e1(lz]) < V(=) < ¢a(l2l) (15a)

V.Vi(2)f(2) < —ps(jzl) (15b)

If (14) is GAS, then 6 = o0

Although system (14) is LAS (GAS), it may not be LISS (GISS) (Sontag 1989),
Therefore, it is necessary to give another feedback for achieving ISS. We propose
the following feedback control law

u=kyi(z) + ko) + v (16)
where ki(z) is that in (13) which makes (14) stable and
1
ko(z) = —%—a(z)b(z)
where a(z) and b(z) are defined as follows:

a(z) = =V Vai(z)f(z), b (z) = [bl(z)....bm(z)] and b;(z) = V.Vi(z)gi(x).
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By (15b), a(z) > s(|z]) > 0. With a detector, the closed system becomes
(cf. Figure 1)

z = f(z) + G(z)k1(2) + G(z)ks(2) + G(z)v (17a)
z = g(z,y)k1(2) + k2(2) + v) (17p)
y = h(z) (17¢)

To prevent confusion, we denote v7 = [uy, ..., up].

v~ u z = f(z) + G(z)u y _
o y = h(z)
z=g(z,y,u)
K z
k1(2) + ka(2)

Fig. 1. The feedback system using a state detector.

We still use Vi as a Lyapunov function for partial state z of system (17). The
derivative of Vj(z) along trajectory z(t) may be calculated as follows

Vl(z(t)) = Vi@ [f(2) + G(@)ka(2) + G@)kalz) + G(z)v] =

—a(z)+2[b.-(z)u.- XD o) + (@) ) - b)) =

i=1
a(z) a(z) _mu, 2 _ [ mu 2
;l(”" ) +(l (%) )]*
57 (2) [a(e)b(z) - a()b(2)] + 57(@) [a(2) - a(2)] (15)

Let [2(t) 2(t)]" denote the trajectory of the closed system (11) with initial con-
ditions z(0) = 29, 2(0) = 2o and input v.

Lemma 2. Suppose there ezist two functions Vi and V, satisfying
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Vi:R* - Rt with  V4(0) =0,
V2:R*xRY - Rt with Vy(z,z) =0,

such that in some neighbourhood B of [ :3 ], the following inequalities are

valid
p1(lz)) < Vi(2) < pallel) (199)
iz = 2I) < Va(e,2) < valle — 20) (19)
LVi(2) < ~ps(lel) + Llz — < (19¢)
ZVi(2,2) < ~Ya(le - 2I) (199

for any (z 2)T € B, where ¢; and vy, i€ 3, are K—functions and L is a
positive constant, then, there exist three KL-—functions B, f2 and fFs such
that

l2(t) — 2(®)] < Bi(lzo — 20l,2) (20a)
lz(t)] < Bz(I(z0 20)71,2) (20b)
l2()] < Bs(l(z0 20)7|,2) (20¢)

so long as [z(t) z(¢)]T € B.

Proof. Because (20a) and (20b) imply (20c), it is sufficient to verify the above two
inequalities. From (19b), we get

Iz - 21 2 92" (Va(=, 2))- (21)
Substituting (21) for the right side of (19d), we have

] .

= V2(®,2) < —va¥7 " (Va(2, 2)) (22)

Using Lemma 6.1 of (Sontag, 1989), (22) together with the initial condition
V(zo0,20) > 0, we find that there exists a KL—function » such that for every
t>0, [=(2) 2()]" € B,

Va(2(t),2(t)) < v(Va(2o, 20),)

< v(¥2(lzo — 20l),t)

then, (19b) leads to the following inequality
|2(t) — 2(t)] < ¥7 v (Y2(|20 — 20, 1)) -
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Let Bi(s,t) = 1/)1'1V(1/)2(s),t), it is easily verified that (3, € KL. Thus, (20a) is
proved.

Furthermore, {(19a) and (19b) together with (20a) result in

d

V@) < —y397 ' (Va(2)) + LBi (|20 — 20),1). (23)
Consider now the following first—order differential equation

d

a‘t‘v = ¢3¢1—1(V) + Lﬂl(lID -_ Zgi,t) and V(O) = ‘/1(1:0) (24)

where 2q is considered a constant. Using Lasalle-Levin invariant theorem (Michel
et al., 1978), we easily get that for any ¢ > 0 the solution of (24), denoted by
V(zo, 2o — 20,1), exists and V(zq,zo — 20,t) — 0 (t — 00).

By the comparison principle (Hahn, 1967; Michel et al., 1978) the above dis-
cussion leads to the following inequality

V(zo,z0 — z0,t) > Vi(2(t)) > p1(=(t)),

|2(t)| < 1V (20,20 = 20,1).
Because @] V(zo,zo — z0,t) — 0 (t — 00), the method presented by Sontag,
(1989) yields that 7'V is KKL—bounded, i.e., there exists a KKL—function
v, satisfying

Sol_lv(slas%t) < V1(51a32’t) (25)

hence,

|=(®)]

IA

vi(|zol, |20 — 20],t)

IA

(2o + |2ol, o] + |20], t)
< n(V2|(zo, 20)T |, V2|(20, 20) |, 2)

The last inequality comes from the fact that |zo| 4 |z0] < V2|(z0,20)T|. Let
B2(s,t) = 11(V/25,/2s,t), it is clear that B5(s,t) € KL, (20b) is then verified.

Denote u(s) = @3 (ms), then u(s) € K or p(s) € K* according to the
classification of 3. For the sake of convenience, we suppose that (12) and (15)
hold in the same closed sphere B..

We are now ready to deal with the problem of BIBO stability. At first, we
give a theorem to describe the boundedness of trajectories.

Theorem 1. If u(Jv]) < C, then for any ¢, with u(|v]) < e < C, there exist
80 >0 and &, > 0 such that for all z9,z90 € Béy and |v| < §,, the following
estimations are valid.
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l”(t)l = |z(t, zo, 20,v)| < €
|z(t)] = |2(t, zo, 20,v)| L €

where z(t,zo,20,v) and z(t,zo,20,v) are the trajectories of (17) with initial
conditions z(0) = zo, 2(0) = zo and input v.

Proof: Tt is sufficient to consider only the case of |z(t)| > u(|v|), it then implies
that for every ¢ € m,

ea(lz(®)) > mlo] > mu. (26)

Within the closed sphere B, b(z) is bounded, a(z)b(z) and ki(z) are Lipschitz .
bounded, i.e., there exist M, Li and Ly such that

b(2)| < Ms,
|a(2)b(z) —va(Z)b(Z)I <Lz -2,
|k1(2) = k1(2)] < La|z — 2|-

Let L = My¢Ly/2m+Ls). Provided with (26), (18) leads to the following inequality

d ' 1
% V1(z(1) < —ga(z() + Li=(t) - z(t)].
Since k;(0) =0 and a(0) = 0, the continuity of k;(z) and a(z) implies that
there exists a positive §; with 6; < ¢ such that for any z € B, the following
is valid
[ka(2) + a(2)] = a(z) — =a(2)b(2)] < 2C
1 22N =1E) = o 8 =3

Furthermore, one can select ordinally positive numbers 6z, 83 and 64 to satisfy
the following inequalities, respectively. The existence of &, (i = 2,3,4) is a
guaranty of the property of K—class functions.

p2(82) < ¢1(61/2), 63 < min (2%%(52)152) , %2(84) < ¥a(ba).

At last, let 6y = 64/2 and 6, = min(u~'(C),C/3). Now it only remains to verify
these 6o and §,. Because zg, zgp € By, there exists a positive T such that for
any t € [0,T],

[k1(2(2)) + ka(2()) + v(8)| < C.
‘From (12b), for any ¢t € [0,T]

SVa(a(t) 2(0) < 0 | (21)
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Due to the continuity of £V;(z(t)), it is possible that for this 7' the following
inequality is also valid (if necessary, one may alter T)

SACORY (28)
Thus, (27) leads to |

da(l(t) ~ 20D < Va(2(®)2(9) < Va(zo,20)

< Ya(lzo — 20]) < ¥2(84) < $1(83), (29)

hence ‘

|z(t) — 2(t)] < 63 for every t € [0,7]
By a similar consideration, it can be verified from (28) that

[z(t)] < 61/2 for every te€[0,7]

We shall fulfill the proof of Theorem 1 by showing T = co. This fact will be
verified by reduction to a contradiction. If T < oo, then there exists some ¢, with
o0 > t; > T, such that one of the following two cases has to take place:

i) |z(t1)] = 61/2, but |z(t) — 2(t)] < 85 for every t € [0,t]; or
i) |z(t)] < 61/2, for every t €[0,4], but |z(t;) — z(t1)| = 83

First, we prove that it is impossible to happen to case ii). As a matter of
fact, if |z(t1) — z(t1)| = 63, then there exists a positive to € [0,¢,] such that
|z(t0) — z(to)| = 64 and 63 > |2(t) — z(t)| > 64 for all ¢t € [to,1]. Because for
te€fto,td], |2(t)| <6:/2<C, |2(t)| < b3+ 61/2 < C. Using (12b) and repeating
the calculation of (29), we get

|(t) — z(¢)] <63 for every t € [to,t1]

Especially, |2(¢1) — 2(¢1)| < é3. A contradiction now comes.

If case i) takes place, i.e., |2(t1)| = 61/2, then there exists to € [0,¢,) such
that |z(¢0)| =62 and t€ (to,tl] 61/2 > (z(t)) > 8. Using (20), we get

Evl(t) < -“(”) + L8 < -—<p3(x(t)) + L8 < __303(52) +Lé3 < 0,
hence, for every z € [to,11]
pi(lz@®)]) < Vi(z()) < Vi(z(to))
pa(|z(to)]) = w2(62) < 1(81/2)

IA

|z(t)] < 61/2
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Especially, |z(t1)| < 61/2, it also contradicts the hypothesis. Thus, T = oo, the
conclusion is implied.

A more specified conclusion is the following theorem which reveals the property
of LISS for closed system (17).

Theorem 2. If system (5) is LAS-able and weakly detectable, then, there ezisis a
positive number 6, such that the closed system (17) is LISS with regarding 1o =
whenever |v] < 6,.

Proof: Let ¢ = C, from Theorem 1, § and §, can be found such that when
zo, 20 € Béy and |v| < 6y,

lz(t)| = |=(t, 20, 20,v)| < C
Iz(t)l = |z(t’30’ ZO:v)l <C

where z(t,z0,20,v) and 2z(t,zg,20,v) are the solutions of closed system (17).
Recall the proof of Lemma 2, when u(|v|) < |z(t)] < C, p(Jv]) < |2(t)] < C and
|v] < by, there exists a function vy(s1,52,t) belonging to KXL—class such that

lz()] < vi(lzol, |20 — 20l, ) (30)
Choose 6, to satisfy the following inequality

n(p(8,),2C,0) < C (31
Denote v*(s) = v1(p(s),2C,0). Now (30) implies that
u(s) <v*(s) for all s (32)

Let 6% = min(8,,6,), we now discuss the following two cases provided with |v| <&}
and |zo| € Béo.

First, let |zo| < p(|v]), we show that |z(t)] < v*(jv]) for all t. H |z(t)| <
p(Jv]) for all ¢, then |z(t)] < v*(|v]) by (32). If for some ty, |z(t1)| > u(|v]),
then there exists to <t such that |z(to)| = p(|v]). From (30) and (31), we have

lz($)] < va(lzol, lzo — 2ol,t — to) < wa(u(lvl),2C,0) = v*(lo])

Second, if 8o > |zo| > 6(|v]), Theorem 1 assures that |z(t)] < C, then using
Lemma 2, there exists a function (;(s,t) € KL such that B

lz(®)] < Bi(l(=o0 20)7,t)

Because B;((zo 20)T,t) = 0 (t — o00), there exists some t; > 0 |z(¢1)] < p(|v]).
Furthermore, the discussion for the first case shows that for all ¢ > t,,

lz(8)] < v* (Iv])-
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Concluding the above two cases, we get

lz@®)] < Br(I(zo 20)[T,8) + v* (|l)

for all 29,20 € Béy and |v| < 6.

In Theorem 2, there is a constraint on the magnitude of system input, this
is the consequence of the fact that the weak detector can only track the original
system state in a small area around equilibrium point. This constraint possess some
limit on the use and causes inconvenience to some practical applications. In the
following theorem, this constraint, together with constraint on z - are removed.

Theorem 3. If system (5) is GAS-able and detectable, then for any z, € R",
there exists & = 6(zo v) > 0, for all 20 € B(zo,6), where B(zg,8) =
{z; z €R", |z — zo| < 68}, the closed system (17) is ISS—able.

Proof: We still adoi)t feedback shown in (16) and the K—function u(s) = p3'(ms).
K |2(t)| < p(]v]), then the theorem is verified. Hence, we only need to discuss the
case that there exist some t, such that |z(t)| > pu(|v]).

For any zo € R", denote I; = max {u(|v]),|20|}, and let I, satisfy inequality
#a(l1) < ¢1(I2/2). Within closed sphere Bi,, b(z) is bounded, a(z)b(z) and
ki(z) satisfy Lipschitz condition, let¢ M, L;, Ly and L be the same as those
defined in the proof of Theorem 2. When pu(|v|) < |2(¢)] < 1z, p(lv]) < |2(t)} < 1o,
we can get the following inequality from (18)

ZVi(a(t)) < —a(z)/2 + Lz(t) - (0. @)

If there exists § > 0, such that, for all 2, € B(zo,8), the inequalities |z(t)| =
|z(t, zo, 20)| <1, and |2(t)| = |z(¢, zo, 20)| < Iz hold for all ¢ > 0, then we can
complete the proof by only repeating the proof of Theorem 2.

We now prove the statement about boundedness of z(t) and z(t). Let
N = min{a(z): p(]v]) < |z| <1} then N > 0 as a(z) > p3(|z]). Denote
p = min(N/2L,1;/2). Select 6;, such that

¥2(81) < ¥1(p). (39

At last, let § = min(é;,%). From (11b), for all t > 0, dVa(z(t), 2(t))/dt < 0,
therefore

A

d1(|=(t) = 2(t)]) < Va(=(t)2(t)) < Va(=o, 20)
Ya(|zo — 20]).< ¥2(81) < ¥1(p) ‘
() - z(®)| < p (35)

IA
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Consider now the set S = {t;dVi(z(t))/dt <0, p(lv|) < |=(t)] < 12/2}. Without
loss of generality, we may assume that p(Jv]) < |zo| < &, then at ¢ = 0, (33)
holds. By the definition of p and (35), we know dVi(z(t))/dt|;=0 < 0, hence S
is a nonempty set. Let [0,7] C S, if T # oo, we show that there exists ¢ > 0,
such that [T,T +¢) C S. Because, when t € [0,7], dvi(z(t))/dt <0

e1(Jz@)]) < Va(2(t)) < Vai(z0) < wa(l) < ¢1(12/2)
lz(t)] < 12/2

Particularly, z(T)| < l2/2. By the continuity of the function z(t), there exists
€ > 0, such that for every t € [T, T -+¢), |z(t)| < l2/2. Thus (33) is still true over.
[T, T +¢€). By (35), for every t € [T,T+¢), dvi(z(t)/dt <0, thus [T, T+¢)CS.
It implies that T = o0, i.e., t >0, |2(¢)| < I3/2. Moreover, we have

l2()] < l2@)] +|2(t) —2(®)| < /2 +p <1,

Using Lemma 2, Theorem 3 allows a corollary which extends partially the result
derived by Vidyasagar, (1980).

Corollary 1. If system (5) is GAS-able and detectable, then composite system
(17) is also GISS-able provided that zy € B(zo,6).

Theorem 3 and Corollary 1 illustrate that if zp approaches sufficiently to zo,
the system will remain ISS or GAS when asymptotical state estimation is used.
For a large class of systems that initially work in a small area, the constraint on
the initial point can be easily satisfied. For those systems whose state varies over
a considerable area, we suggest to install a switch at the place indicated by ” K”
on Figure 1. At the start, the switch is put off. Since the norm of z(t) — z(t) will
degenerate as long as the system runs, after a few minutes, the trajectories z(t)
and z(t) will enter an identical sphere B,, when the switch is put on, the system
may be ISS or GAS.

4. Conclusions

In this paper, we have shown that asymptotical stabilization of a nonlinear system
implies its input to state stabilization when some constraints are imposed on the
initial point of the detector. As for any continuous output map y = h(z), there
always exists ¢ € K, such that y = h(z) < ¢(|z]). Therefore, the conditions given
in Thecrem 2 and Theorem 3 also serve as the sufficient conditions for input—output
stabilization.
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Appendix

In this appendix, we show that there exist positive numbers @ and b such that
the following function H(z) belongs to C!—class:

1/z |z} > 1/2
H(z) =
asinbz |z| < 1/2

Let fi(z) = 1/z and fa(z) = asinbz. It is sufficient to verify that there exist
positive numbers a and b such that

A2 =£(1/2)  and  £1(1/2) = f2(1/2) (A1)
Equations (A.1) are equivalent to the following
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asin(b/2) =2 (A.2)
abcos(b/2) = —4 (A3)
Dividing (A.2) by (A.3), we get
tg(b/2) = —b/2 (A4)
|
I b
—7 | 3 5 %“ T 2
_bo [
2
|
|

Fig. 2. Solutions of Equation (A.4).

It is clear, from Figure 2, that (A.4) is solvable, and there are infinite solutions,
but on the travel (#/2,37/4) the solution is unique, we denote this solution by
bo/2 (note: 7 < by < 37/2).

From (A.2), we get
2bo

A+ b2

1/z |z] > 1/2
H(z)= .
abo/\/4 + B3sinboz |z| < 1/2

where by is the unique solution of equation =+ tgz = 0 on the travel (7, 37/2).

a=

Thus

The above discussion also suggests that one can construct smoother function
H(z) if he defines another function fy(z) with more free coefficients.





