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SOME CONTROL PROBLEMS RELATED
TO OPTIMAL
CHEMOTHERAPY-SINGULAR SOLUTIONS

ANDRZEJ émeNlAK‘, Zpzistaw DupaA*

In the paper it has been proved that some optimal control problems resulting
from the simplest models of cancer chemotherapy lead to singular control
solutions. The singularity seems to be a characteristic feature of bilinear
models even if dynamics of the drug activity or reaction of critical normal
tissues is encountered. On the other hand, the singular control is absent when
the Gompertz—type growth is applied.

1. Introduction

Cancer chemotherapy is based on suitable dosage (discrete or continuous) of phar-
maceutical agents called cytostatics. The cytostatics do not only destroy cancer
cells but also damage other tissues especially so—called critical normal tissues such
as: endothelum medulla, hairs, mucous membrane of alimentary canal. Thus, it is
necessary to work out control strategies (chemotherapy protocols) in order to ma-
ximize result of cancer cells destruction under constrains of normal tissues damage.
It seems that some methods of optimal control can be applied to that problem.

Application of optimal control theory to cancer therapy was first discussed
probably by Bahrami and Kim (1975), where the discrete maximum principle is
proposed for elaboration of optimal protocols in related radiotherapy problem.

Application of control theory to optimize chemotherapy protocols appears first
in (Swan and Vincent, 1977) for continuous models and in (Kim et al., 1977) for
discrete ones. In (Swan and Vincent, 1977) control strategy minimizes a toxic effect,
while in (Kim et al., 1977) it maximizes a destruction result on cancer population.

. The simplest model of the proliferation cycle was proposed by Kimmel and
Swierniak (1983) in the following form

N=—aN+2(1- w)aN, N(0)=No >0 (1)

where N(t) is a size of a cancer cell population, 1—u(t) represents a probablhty
of cell survival after a cytostatic dosage, 0 < u(t) < 1, constant a is an inverse
of average lenght of cell cycle time, 2 represents a mother cell symmetric division
into two daugter cells.
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A performance index has a form (Kimmel and Swierniak, 1983)
T
min — J = rN(T) + / u(t)dt @)
0

where r is a weighting coefficient, the second component in (2) represents a
negative cumulated cytostatic effect, T is a lenght of chemotherapy time.

It has been shown, via direct optimization, that a solution to the problem
can be nonunique. This property can be eliminated by taking into account a
multicompartment model and effect of cytostatic phase sensitivity. The optimal
control has a bang-bang form and it is determined by a solution to a two point
value boundary problem.

In (Swierniak and Kimmel, 1984; S;wierniak, 1989; 1990) a linear structure of
system equations and partially analytical form of solutions are proposed. It seems
to be more effective than the method STVM used to solve similar problems (Shin
and Pado, 1982).

The objective of our paper is to show that nonuniqueness of the solution to the
problem formulated by Kimmel and Swierniak (1983) results from a total singula-
rity of the optimal control. In chapter 2 we present a solution to the problem in
a simpler form than in (Kimmel and Swierniak, 1983) pointing out its singularity.
Dynamics of the drug activity is introduced in chapter 3, while reactions of both
cancer and normal tissues are discussed in chapter 4. It has been proved that opti-
mal control is still singular. It seems that multicompartmental models discussed
in (Swiemiak and Kimmel, 1984; Swierniak, 1989; 1990; Shin and Pado, 1982) do
not have this property. In chapter 5 we show that singular control is absent when
non-linear models, e.g. Gompertz—type growth are applied.

2. Optimal Chemotherapy Protocol for the Simplest Model

Model (1) occurs under assumptions of linear outflow from the compartment i.e. a
linear dependence of the number of cells leaving the proliferation cycle, a symme-
tric division of cells in mitosis and a monotonic (for feasible dosage) dependence
between the dose of the drug and a fraction of cells incapable of further division.

The minimization of performance index (2) takes into account a compromise
between cancer cell population at the end of the chemotherapy and a negative
cumulated cytostatic effect.

Optimization problem (1), (2) with constrained control variable
0<u<l (3)

can be solved directly but we apply the control theoretic approach to show singu-
larity of the solution. To solve the problem we transform equation (1) to a linear
form substituting

z=InN 4)
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We obtain
t=—-a+2a(l-u) z(0) =In Ny
Then
z=a-—2au (5)

and performance index (2) has the following form

T
J=re™ 4 / u(t)dt (6)
0 -

Equation (5) describes an integral system. One can find that (6) can be written
in the form

T T
J= reaT+z(0)e—201; udt +/ udt (7)
0

Therefore, we have a static optimization problem with respect to

T
v:/ udt 0<v<T (8)
0
Thus we have
J=rie” 2% 4y 9
where r, = re®T+2(0), By differentiating
dJ/dv = —2arie™?* +1=0

we obtain

v= —1—ln 2ar; = lT+ %ln 2arN, (10)

2a 2
Formula (10) is the optimﬂ solution under the condition
0 <In2ar; < 2qaT

or
-T< %ln2arNo <T (11)

If condition (11) is not fulfiled, then control wu(t) is on the bounderies of the
constraints. Solution (10) confirms the nonunigness of the optimal control u(t)
because any u(t) satisfying (8) and (10) is optimal. The order reduction (from
a dynamical problem of the 1st order to a static problem) indicates a singularity
of optimal control (Johnson, 1985). In order to prove precisely this property, we
apply the maximum principle (Pontryagin et al., 1965).



296 A. Swierniak and Z. Duda

Hamiltonian for problem (5), (6) has the form
H =u+pa(l - 2u)
where p is a costate variable described by an equation
p=0 p(T) = re*D) (12)
Thus
p(t) = const = re*(T) (13)
Necessary conditions of the optimality control have the form

{ 0 if p<1/2a

=<1 if p>1/2a

singular if p=1/2a
Since
z(T) = z(0) + aT — 2av
the substitution (10) implies

2(T) = ~In 2ar ' (14)
By (13) and (14) we have
p(t)=1/2a for te€(0,T] (15)

Thus, control u(t) is singular in the whole horizon.

3. Chemotherapy Model Including the Dynamics
of Cytostatic Activity

In model (1) we assume immediate reaction of cancer cell population on cytostatic
dosage. To include the inertia in the cytostatic activity we may introduce

u=-but+w, u(0)=0, 0<w<b (16)
where u denotes once more cell destruction after the drug being applied, (0<

u<1), and w is a control variable representing drug dosage.

The second order optimization problem (5), (16), (6) can be reduced to the
first order task. Similarly as in chapter 2 substitution (8) leads to performance
index (9) and solution (10).

After having integrating (16) we have

T
u(T) = —bv +/(; w(r)dr 17
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By substituting
T
u(T) = / e"("T)w(r)d‘r
0

and (10) to (17) we obtain

r b b T ¥(r-T)
> + % In2arNy = 27'1!1 2ar; = ./o l1-e Jw(r)dr (18)

Any w(t) satisfying (18) is the optimal solution assuming that
-T < %ln2arNo <T- -Z—(l —e ) (19)

Singularity of control can be proved by the use of the maximum principle.
Hamiltonian has the form

H = u+ pi(a — 2au) + p2(w — bu)

where the costate variables p;(t) and ps(t) are described by equations

Pp=0 pi(T) = re”™ (20)
P2 = —1+ 2ap; + bps po(T) =0 (21)
Necessary optimality conditions have the form
{ 0 if py>0
w=<¢ b if p2<0
singular if p,=0
Since py(t) = const = re®T) =1/2a (see (14), (15)) thus
p2 = bpy pT) =0 B
Then
p2(t) =0 dla te[0,T) (22)

We see that control w(t) is singular in the whole horizon.

4. Chemotherapy Model Including the Efect of Cytostatic
on Normal Tissues

So far, a negative impact of cytostatics on normal critical tissues has been taken
into account by the second component in (2). Now, we introduce a model of the
drug effect on normal tissues similarly as for cancer cells.

The system to be controlled is given by equation (1) for cancer cells and the
following equation for normal ones
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L=—cL+2(1-u)cL L(0) = L, (23)

with the constraint L(¢) > Luin.
The performance index, which should be minimized has the form

Jo = N(T) - (24)
Using (4) and the substition

y=InL (25)
we obtain state equation (5) and |

§=c—2cu ¥(0) =1InLo > yinin (26)
the performance index

Jo =™ (27)

and the contraint y(t) > ymin where ymin = In Lmin.

The solution to the minimization problem for performance index (27) could
be found by minimizing

Ji =z(T) ' (28)
Hamiltonian to problem (5), (26), (28), (29) has the form
H = pi(a — 2au) + pa(c — 2¢u) + MY — Ymin) (29)
where costates p)(t) and po(t) are described as follows
Pr=0 p(T)=1 thus pi(t)=1 (30)
P2 = =X , (31)
The Lagrange multiplier A(¢) has the form
0= Jo i yZhm @)
Necessary optimality conditions have the form
{ 1 ‘ if a+epy>0
u=4¢ 0 if a+epy<0
singular if a+cpy; =0

For the switching line we have
P2 = —afc

p2=0
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Thus, we have A =0 and y > yYmin-

For the initial moment we have y(0) > ymin and consequently A =0, ps =
const and the control cannot be switched. The control u(0) is nonadmissible
because z increases in this case. For u(0) =1 we have

y(t) = y(0) — ct

Let y(t1) = Ymin for t =t; < T. Then p3 > 0, p2 increases and the control
should be 1, which is nonadmissible in the light of requirement y(t) > ymin. If only

T 2 (¥(0) — ¥min)/c = (1/c)In(Lo/Lmin)

then the control is singﬁlat. Its form can be found by the order reduction. Namely
it follows

y(T) = Ymin

Hence
T
b= /0 udt = (9(0) — Yumin)/2¢ + T/2 (33)

2(T) = 2(0) — a(y(0) — Ymin)/c

Any control satisfying (33) is optimal.

5. Nonlinear Model of Cancer Cells Population Growth

An assumption of the exponential growth of the uncontrolled cell population is a
great simplification. Each population has a saturation tendency. In the literature
a Gompertz-type growth (Wheldon, 1988) is considered very often although its
biological interpretation is not quite clear. We present the simplest model of this
type including the effect of chemotherapy and we show that the singular control
is absent in this case. The model presented here can be well-fitted to measuring
data (Speer et al., 1984).

The Gompertz model of the cell population growth under control has the
following form

N = gN In(Npax/N) — 2auN (34)
By applying (4) to (34) we have '

Z = —gZ+ gTmax — 208 (35)
Taking into account performance index (2) or (6) we have the Hamiltonian

H =u+ p(—gz + g2max — 2au) (36)

where the costate variable p(t) is described by equation
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p=rg pT) = res@ (37)
Necessary optimality conditions have the form

0 if p<1/2a (38)

1 if p>1/2a
U=
singular if p=1/2a = const

Since p(t) = re*(T)~9(T=*) a gingular control does not exist in the problem.

Let us assume that u(0) = 1. It is the case when p(0) = re=(T)—4T > 1 /24,
Since p increases, u cannot be switched. We have

z(T) = z(0)e™ 9T + (Zmax — 2a/9)(1 — e~ 7)
The following condition has to be satisfied
2are=IT+mex o(2(0)—~Zmax)e™*7 o~ (2a/g)(1-¢~7T)

or

-gT

g
2arNpmage™ 5T ((N(,/N,,,,m)e“/ﬂ)e e=20/9 5 1
Alternatively

(1= e~ *T)(In(Nmax/No) — 2a/g) + In2arNy — ¢T > 0 (39)

If model parameters do not satisfy (39), the optimal control has the sequence
{0,1} with switching at the time ¢; described as follows

2:(T) = z(o)e_ﬂ + xmax(l - e—gT) - (20/9)(1 - e_g(T_‘l))

1 (t1) = re~ 9T~ 11)+2(0)e ™ +2mux(1-e™9T)=(2a/g)(1-e~*(T=10))

2a

Then

5}-— = re—g(T-“l)(No/Nmax)e-'TNmaxe_(zalg)(l_e—y(T—ll))
a
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or
(2a/g)e~?T—*) _ (T — t;) — 2a/g + In2ar Ny + (1 — €97 ) In(Npax/No) = 0 (40)
Equation (40) should be solved numerically.

6. Final Remarks

In this paper four simple models of optimal chemotherapy protocols which lead to
optimal control problems are presented. Three of them are based on the assumption
of expontential cell population growth and lead to bilinear state equations. The
negative cytostatic effect on critical tissues is taken into account in the performance
index or in the state equation for normal tissues. The optimal control is singular in
the problems mentioned above. The result is interesting, because control singularity
has not been discussed in the literature (Swan, 1990). The singular control does
not exist when Gompertz-type model is applied. It seems that also other models
of nonlinear growth e.g. Pearl-Verhulst do not lead to singular controls.
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