Appl. Math. and Comp. Sci., 1993, v.3, No.l ACEP Workshop, Borowice 1992

THE COMPUTER ARCHITECTURE COURSE IN A
COMMON CORE IN COMPUTER SCIENCE AND ENGINEER
DEGREES

Alberto José Proenga’

The computer architecture subject is part of any course structure on computer
related degrees at most Universities. A comprehensive curriculum spawns from
computer structure and organisation to concurrent architectures, including
performance evaluation.

The approach to this subject - top-down from programming techniques to
hardware issues, or bottom-up, from digital systems to instruction sets - and its
contents and duration, vary from course to course, and often from University to
University. The order of the presentations may also vary - from the generic
concepts to the practice with specific devices, versus - from. programming a
microprocessor to the-generic concepts. The advantages / disadvantages of these
approaches are discussed in the tatk.

An attempt to define a conumon core of topics, from concepts to laboratory practice,
is presented here, based on 2 different sources: the results from a Working Party on
Advanced Computer Architecture courses (whose goals are to define a common set
of topics for the 6 cooperating Universities under TEMPUS), and the author
experience in lecturing this subject to students in 2 different courses - Computer
Science and Computer Systems Engineering,

1. Intreduction

This communication presents the author’s experience in the course organisation and
lecturing of the Computer Architecture (CA) course to two different University degrees:
Lic. Informatics and Systems Engineering and Lic. Maths and Computer Science (both
are five years courses). The author lectures at a medium size Portuguese Umversxty in
one of the southern EEC countries, Portugal.

An overview of the main components of a computer related degree opens the
communication, pointing out the main differences between a science and an
engineering approach to the CA subject. Its role and a short description of the main
modules are then summarised. The presentation of some relevant issues closes the
communication with some open questions.

‘2. CA in a Cemputing Curricula

Computing Curricula at European Universities are spread through courses organised in
several faculties: science, engineering, education and economics. The first two often

* Dep. Informética, Universidade do Minho, Largo do Paco, 4719 Braga, Portugal

110 . A : Alberto José Proenga

provides the more demanding graduates: on computer science and on computer
engineering.

In a typical computer science/engineering degree, the computer related courses
usually contain the following main subjects:

- fundamentals ‘of computing, which may include Algorithm and Data Structures,
Programming Languages, Compilers, Formal Methods of Specification, ...

- computer engineering, which may include Digital Systems, Computer
Organisation and Architectures, Interface and Communication, Operating
Systems, Concurrent Architectures,...

- systems engineering, which may include Software Engineering, Data/Knowledge
Bases, Information Systems, Man-Machine Interface, Application Specific
Topics, ...

A similar framework is also adopted by the USA Academic Institutions, and
presented at the Report of the ACM and IEEE-CS on Computer Curricula (Tucker et al,
1990). - ' _

The Computer Organisation and Architecture topic establishes the link between a
programming language - used in any application development environment - and the
physical machine built out of electronic circuits and managed by an operating system.
As such, this topic must be in any computer related degree to allow any student to
understand how programs are executed in a computer.

3. CA for Computer Science/Engineering Students

A CA course looks at the computer as a machine, and its contents should aim 3 main
goals:

- to describe the internal structure or organisation of a computer, as a system, and
each one of its parts, the CPU, the memory, the I/O interfaces and the
communications (description),

- to become aware of its internal details, which are required to efficiently run HLL
(High Level Languages) and to support a sophisticated operating system
(analysisy, =

- to be able to build new computers, either as integrated systems, or designing new
chips/boards (synthesis).

The first and second parts of the course - the description and the analysis - should
always be included in any CA course; however, the synthesis is usually more detailed
on Computer Engineering courses. The depth of the synthesis part is what makes the
main difference between a CA course on a Computer Engineering course and other
Computer related degrees.

The organisation of a common core on CA for several Computer related degrees
must take into account the different backgrounds and motivations of the participants.
The traditional approach on CA - bottom-up, from digital electronics - may prove
unsuccessful with sciences or economics students. The common background all these
students have since the early stages of there College activities is in Computer
"Programming: by the end of the first semester at the University they become familiar

The Computer Architecture course in a common core ... 111

with HLL programming. This suggests a better approach to CA, once the basic
concepts on Computer Organisation are presented: top-down, from a programming
language. .

A HLL program consists of an algorithm - data operations and flow control
instructions grouped into modules - and data structures - with declarations of scalar
and structured data in global/local environments. The compiler interface seems to be a
suitable approach to introduce the internal details which are relevant for machine
language programming: data representation, instruction formats, addressing modes,
data operations, flow control architectural support for procedures/functions. The
analysis part of CA can be further extended to include:

- support to operating system functions (including interrupt mechanisms);

- acceleration mechanisms, such as pipelining, cache and support for
multiprocessing.

The synthesis part of the course is more relevant to Computer Engineering
students and it may require some background on digital systems - finite state machines
-and programmable logic devices. To design new systems the student must know how
current implementations work: a course module on microarchitecture and
microprogramming, and the evolution into the RISC architectures may easily motivate
engineering students, but for the science/economics students the subject should be
presentcd in a broad way, without too much detail on hardware specific
implementations.

Two excellent textbooks take this approach to CA (Van de Goor, 1989;
Tanenbaum, 1990). ’

4. Relevant Issues

The author’s experience in the subject lies in the following courses:

- Digital Systems and Computer Architecture, 3rd and 4th semesters on Systems
and Informatics Engineering (since 1983): 3rd semester covers Combinatorial
and Sequential Logic, Programmable Logic, and Microarchitecture and
Microprogramming, as a case study of a particularly complex digital system and
acting as bridge to CA ; 4th semester is for Computer Organisation, Machine
Language {compiler and operating system interfaces), and Acceleration

.. Mechanisms; Interfacing and Communications is dealt in a later course;

- Computer Architecture, 3rd semester on Maths and Computer Science (since
1988): the course contents is the same as the 4th semester in the engineering
course;

- Computing Systems, 3rd and 4th semesters on Informatics on Management
(starting 1992): the course contents during 3rd semester will be the same as the
4th semester in the engineering course, while the 4th semester deals with
Interfacing and Communications.

Each one of these courses has exercises/laboratory classes. These are mainly used

to teach the students assembly programming methodologies; the stress has been on
methodologies rather than an in-depth analysis on a particular assembly language.

112 Alberto José Proenga

Some relevant issues are still open: '

- what should come first; assembly programming or computer architecture? - -
- what is the best tool to introduce assembly programming?

- what type of programs should the students implement?

The teaching of assembly programming has followed a similar path to the teaching
of HLL programming. In the 70s the use of a high level programming language was a
course by itself, while in the 80°s the students began to learn the concepts (algorithms
and data structures) and later used a HLL as an implementation tool in the lab classes.
In the 80's some students had assembly programming (of a given CPU) as a course by
itself and, as a result, most of these graduates are tied te a specific CPU modei and/or
manufacturer and have difficulties to adapt to a new machine; current trend in some
Universities is to emphasise the basic concepts on the instruction set design of a
processor, and then use an assembly language as an implementation and evaluation tool
in the lab classes.

The choice of an appropriate assembly language is not an easy task: commercial
.microprocessors are too complex to an introductory course, yet they represent a real
architecture and the students are more motivated to them. A good compromise would be
to use a simulator of a very simple architecture - like the one designed and implemented
at Universidade do Minho, as a subset of 18086, or described in the literature elsewhere
- which would introduce the basic concepts of assembly programming during the first
weeks. The students then realise the limitations of such model and request a more
powerful processor; by this time they are ready to practice with a real microprocessor,
preferably with one that they can use in the labs to test the programs they implement
(personal computers based on Intel microprocessors at Universidade do Minho).

Two main categories of exercises are usually available to the students to practice
their skills in assembly programming: bit manipulation of peripheral ports for control-
like applications, and compilation "by hand" of HLL programs. The first category may
be useful for computer engineers, but the students do not learn the techniques of
structured programming applied to an assembly language, and these:exercises do not
follow closely the lectures; the second type of exercises match quite closely the lectures
and induce the students to specify the problem resolution through a HLL notation,
stressing the quality and maintenance of the final product rather than speed.

As a concluding remark, it is feasible to successfully organise and lecture the same
course on CA to students of Computer Engineering, Computer Sciences and Computer
Business, provided a top-down approach is followed based on previous experience of
the students on HLL programming.

References

“Tanenbaum A.S. (1990): Structured Computer Organisation (3rd Ed.).- Prentice Hall

Tucker A.B. et al (1990): Computing Curricula 1991 .- Report of the ACM/IEEE-CS Joint
Curriculum Task Force.

Van de Goor A.J. (1989): Computer Architecture and Design.- Addison-Wesley.

