"Appl. Math. and Comp. Sci., 1993, v.3, No.l ACEP Workshop, Borowice 1992

FUNCTIONAL SIMULATION IN TEACHING
MICROPROCESSORS ARCHITECTURE*

Jacek Majewski** and Wlodzimierz Barafiski™

The paper considers the problem of simulation the microprocessor hardware
functions in the IBM PC/AT computer graphics. The simulation has been based on
the assumption that the electric hardware details of microprocessors are not
important from functional point‘of view. Control programs, written by the users, for
simulated environment and for real hardware must be the same. Of course is very
important that simulated environment is invisible for the students. The paper
considers as an example the process of preparation a control program for the model
of plotter. The control plotter programs are written in 8086 assembler and
compiled by real compiler: Borland TASM.

1. Introduction

From the beginning, when microcomputers were invented the most popular idea of
“microprocessor's communication with outside world is through input/output ports. This
idea is a base of constructing more advanced and more complicated microcomputer

peripherals as parallel/serial ports, timers/counters, DMA controllers and so on.
Generally, internal ports of these peripherals are designated for the following functions:

¢ DATA ports
¢ CONTROL ports
» STATUS ports

Idea of communication through input/output ports is also used for such
complicated devices as printers/plotters, floppy/hard discs, etc.

More complicated devices like display graphic controller have inside not only ports
but also memories or ports mapped into memory.

Complicated external devices have complicated electric schemes. From
programmers point of view electric details of controlled devices are not important. For
proper control is enough to know what to send to CONTROL/DATA ports and what to
watch on STATUS/INPUT ports. Situation is the same even externals are causing
interrupts.

At student teaching of microprocessors above idea is very common: students are
controlling external simple real devices, connected to the microcomputers (Fig. 1), by
writing programs in specified language (assembler, C , Basic). These programs of

* Invited paper not presented at the Workshop
. * Institute of Engineering Cybernetics, Technical University of Wroclaw, ul.
Janiszewskiego 11/17, 50-370 Wroclaw, Poland

114 Jacek Majewski and Wlodzimierz Baranski

course are sending sequence of controls through input/output ports. Instead of real
devices let's consider situation of control simulated devices on computer screen (Fig. 2).
This aspect is presented below.

‘Fig. 2. Simulated envirotiment: a plotter is simulated on the IBM computer's
screen.

115

Functional Simulation in Teaching Microprocessors Architecture

(1 st ajes aanoe) sysod 1enord /] Jo JowLSIsse g ¢ ‘S1.

19d

29d |

X

X

0s

IS

¢s

ds

9

L

" :H10€ 'SsaIppy Hod indu|

€S

¥S

gs

9s

9

L

"HOOE :SSaIPPY Hod Indu

N3d

X,

X

S

9

L

‘HOO€ :ssauppy Hod indino

116 Jacek Majewski and Wiodzimierz Baranski

2. Functional Simulation

Working with simulated devices instead of real environment has some advantages:
e climination of hardware destruction caused by control errors,
» easy modification of simulated hardware.

Simulation of course is not free of drawbacks. The most important are:

« only selected aspects ‘of hardware can be simulated, '

o for complicated simulated hardware speed of working is slower then in a real

situations. '

As it was mentioned above hardware details are not important from control point
"of view. Also from user point of view is not important what will be watched: real
hardware or hardware simulated by computer. In both situations should be the same
reaction for the control. Because only functions of devices are watched, for simulation
are important only external reactions - such accuracy of simulation we will call
*functional simulation”. #

Watching reactlon ~of simulated hardware needs good computer graphics.
EGA/VGA IBM computer graphic standard resolution seems to be quite enough for
functional simulation purposes.

For better understanding problems of simulation let's consnder example of plotter
simulation. :

3. Simulation Example: Plotter

A plotter low level kinematics scheme is shown on Figure 5. The structure of control
and status plotter registers are shown on Figure 3. Two plotter motors are controlled
through LF, RT (left/right) and BW, FW (backward/forward) bits. Ending sensors for
movement at given direction are accessible through bits 53, S4, S5 and S6 of input
status port. Movement at vertical and horizontal directions causes step-positioning
pulses PG/ and PG2. Plotter pen is controlled through PEN bit. There are user push-
buttons S0, SI, S2 and one LED diode controlled by D/ bit.

It is worth to mention that plotter model kinematics scheme also describes two-way
positioner - simplified model of robot arm. Pen bit can be 1nterpreted as "catch" for
_robot arm.

The Figure 4 shows an‘TASM Turbo Assembler example of controlling the plotter
model. Exemplary program draws a diamond shape picture. The size of the picture
depends on duration of the delay subroutine.

It is important to understand that structures of programs for controlling real
devices and simulated devices must be the same. For example, for TASM language
communication with the real devices is through in and out microprocessor instructions.
When a device is simulated the INPUT and OUTPUT macro definitions call written for
simulation purposes library functions (see include "plptter.mac" statement). INPUT and
OUTPUT macro definitions replace in and out instructions.

Functional Simulation in Teaching Microprocessors Architecture 117
(A) REAL HARDWARE ENVIRONMENT:: (B)SIMULATED ENVIRONMENT
ideal ideal
model large ™ model large
INCLUDE "PLOTTER.MAC"
Jjumps) - jumps
1f equ “* 04k 1f equ 04h
rt equ rt equ 02h
fw equ fw equ 08h
bw egu bw equ 10h
pen equ’ pen equ 20h
edge ‘ ' edge equ 300
step Cegly step equ 200
repeat_no equ 7 repeat_no equ 7
extrn _delay:far : extrn _delay:far
stack 100 istack 100
dataseg :dataseg
codeseqg codeseq
macro make _move action macro make_move action
mov dx,300h mov dx, 300h
mov al,action mov al_:,,action
our dx,al OUTPUT dx,al
add cx,step add cx,step
call delay call delay
endm - make move endm make move
proc delay proc delay
push cx push cx
call _delay call 'Vdelay
pop cx .pop cx
ret ret
endp endp
proc _main far proc _main far
PUSH DS CALL _START
3UB AX, S
push ax 7, mowv: cx, edge
mov cx, edge mov bx, repeat_no
mov bx, repeat_ :
repeat: repeat:
push bx ¥ < push bx ,
make move ma ke move fwt+lft+pen
make move fw+rt+pen make movefwtrt+pen
make_move bwtrt+pen make move bw+rt+pen
make _move bw+lf+pen make mov w+1f+pen
pop: bx pop CYhax
dec bx dec’ |58
jnz repeat jnz: repeat
mov al,00h ‘mov al,00h
OUT dx,al OUTPUT dx,al
CALL _STOP
ret ret
endp 4 endp
end _MAIN end

Fig. 4. Exemplary program, written in 8086 assembler language, for drawing a

rhomboidal spiral.

118

Jacek Majewski-and Wiodzimierz Bararnski

S5
|

4\ forward (fw)

right (rt}

backward (bw)

Status Bit (Sensor)

Control Bit

S0 S1 S2 Free Programable Buttons
S3 Right Sensor

S4 Left Sensor

S5 Forward Sensor

$6 Backward Sensor

PG1 Pulse Generator for Motor M1
PG2 Pulse Generator for Motor M2
SP Pen Position Status Bit

M1 Left/Right Motor

M2 Forward/Backward Motor
PEN Up/Down Pen Control

LED Light Emiting Diode Control

Fig.5. Kinematics scheme of the plotter.

Drawing Area Result of User Program

State of Input/Output Ports

Area of Messages

for change of these sensors

/ Help Area Plotter on/off Line

Manual Control of the Pen Position

use the IBM PC keyboard: 0,1,2,3,4,56

Fig. 6. The plotter simulated on the IBM PC computer screen: all details are the
same like for the real plotter.

Functional Simulation in Teaching Microprocessors Architecture 119

4. Simulatiom Difficulties

f Problems of simulating real devices on a computer functmnally can be classified as
follows: .

SOUND: working, stopping, destroying actions are _using the sound generated by
computer; sound generation by IBM computers is very bounded i

VISION: static displaying, on/off permanent fragments of a prcture motion on the
screen: object rotation, object panning; there are dlﬁicui‘aes of simultaneous simulation
*of many moving objects on IBM computers.

KEYBOARD/MOUSE: asynchronous using of keyboard/rnouse should give chance to
change states of simulated environment (e.g. push-button pressing simulation, state
changing of sensors by force).

Solving of keyboard problems and simultaneous object aniﬁié&tion are forcing
multiprogramming. Multiprogramming means using computer . interrupts, like
keyboard/mouse or real-time clock interrupt at low-level programming in assemblers.
Second way of multiprogramming is using multi-thread model programming in
languages like MODULA, Top-Speed C. Multi-thread programming uses low-level
real-time clock interrupts. Of course the second way of writing simulation environment
libraries is easier but consumes more time, what causes slower simulation.

5. Simulation of the Plotter

How does simulated plotter works? For better understanding a TASM assembler
exemplary program will be considered. General structure of user assembler programs is
as follows:

include "plotter.mac" B

call _START()

66%PUT dx,al

iZILII.’UT al,dx

call _STOP :
The statement include "plotter.mac"” includes macro definitions for simulated

environment.

_START, STOP functions are for creatmg/remowng the plotter plcture on/from
the screen as a background

The tunction OUTPUZT:moves the plotter arm with the pen at given in output port

direction. When the arm reaches the edge of the sheet a sound is produced. The sound
means that moving mechanics are destroying.

120 ‘ Jacek Majewski and Wiodzimierz Barariski

EXTRN _OUTPUT:FAR, INPUT:FAR, STOP:FAR, START:FAR, MESSAGE:FAR
EXTERN _MAIN

MACRO OUTPUT DDD1,DDD2 ;DDD1 <-- DX REG. / DDD2 <-- AL REG.
PUSH BP '
PUSH . AX
PUSH BX
PUSH cX
PUSH DX
PUSH sp
PUSH sI
PUSH DI
PUSH ES
_IFIDNI <DDD1>,<DX>

IFIDNI <DDD2> ,<AL>

PUSH AX
PUSH DX
CALL = _OUTPUT ;CALL EXTERNAL PROCEDURE
ADD sp,4 : ;
ELSE
MOV AX,5
PUSH AX
CALL _MESSAGE ;IF NOT CORRECT CALL ERROR
POP AX : :
ENDIF
ELSE
MOV AX,5
PUSH AX
CALL _MESSAGE ;IF NOT CORRECT CALL. ERROR
POP AX ‘
ENDIF
POP BS
POP DI .
POP sI B
POP sp
POP DX
POP oxX
POP BX
POP AX
POP - BP
ENDM JEND OF MACRO
MACRO INPUT DDD1,DDD2 ;DDD1 <~-- DX REG. / DDD2 <-- AL REG.
cse ; THE SAME LIKE FOR OUTPUT !!!!

ENDM ;END OF MACRO]

Fig. 7. Contents of the PLOTTER.MAC macro definition file.

Functional Simulation in Teaching Microprocessors Architecture 121

The function INPUT gives the state of sensors. There are two situations when state of
sensor is changed. First, state of sensors is changed as a result of movement, when a
user program is executed. Second, at any moment when a user program is executed the
user has possibility to change states of sensors "manually”, by pressing keys on IBM PC
keyboard. For example press the key "4" changes the state of sensor S4. In this way the
user has chance to "cheat" - is possible to make active left sensor (LF) before the plotter
arm reaches the left edge of drawing sheet.

States of all sensors and control bits are visible on the computer's screen (Fig. 6).

Above description shows that only functions of the plotter are simulated, not
electrical or mechanical details.

All functions of simulated environment are hidden in above described macro
definitions. The simplified structure of plotfer.mac file, where all plotter definitions are
placed, is shown on Figure 7.

6. Conclusion

The above presented ideas were applied and checked in writing control programs for
the following devices:

o traffic lights control simulation

e stepper motor control simulation

o control of industrial lifts and conveyor belts simulation

¢ dynamic control of 8-segment LED display and keyboard simulation
e plotter simulation.

The Microprocessors Architecture Laboratory, designed for didactic purposes,
uses above exercises: instead of real environment students are trained on wunreal,
simulated devices.

Reference

Baranski W, and Majewski J. (1991): Functional Simulation.- Scientific Papers of the Institute
of Engineering Cybernetics of the Technical Univ. of Wroclaw, No.89, pp. 7-12.

Borland International Inc. (1988): Turbo Assembler, User's Guide.
Nicoud J.D (1991). Dedicated Tools for Microprocessor Education.- IEEE Micro.

