Appl. Math. and Comp. Sci., 1993, v.3, No.1 ACEP Workshop, Borowice 1992

BENCHMARKING AN ASSOCIATIVE PROCESSOR ARRAY
FOR VISION

M. Pout” and A.W.G. Duller *

The DARPA Image Understanding Benchmarks are used to measure the suitability
of the GLITCH associative processor architecture for a range of vision related
tasks. In particular the tasks of edge detection, connected component labelling and
the Hough transform are discussed in some detail. Results are then presented for
two different array sizes for all of the image understanding tasks.

1. Introduction

One way of assessing the performance of a computer is by means of benchmark
programs. However, traditional benchmarks are largely irrelevant for computer vision,
since vision requires many different kinds of tasks, which require far more than just
arithmetic. To overcome this problem a number of vision benchmarks have been
suggested, such as the Abingdon Cross (Preston, 1986), the Tanque Verde Suite, the
DARPA Image Understanding Benchmark (Rosenfeld, 1987) and the DARPA
Integrated Image Understanding Benchmark (Weems et al, 1988). Various ‘problems
were encountered with the early benchmarks since they had no prescribed method and
the results depended as much on the ingenuity of the programmer dS the "power" of the
architecture. o

In order to assess the GLITCH system, it was decided to implement the first set of
DARPA benchmarks, since it appeared a somewhat smaller task, and also because the
second set specified the use of IEEE standard 32-bit floating point arithmetic, which
would prove difficult to implement in a 64-bit CAM version of GLiTCH.

2. Associative Processor Architecture

In this section a short overview of the GLiTCH archite‘ctAure will be given. The basic
GLiTCH architecture is targetted at solving low and medingq level vision tasks with an
emphasis on low cost high speed processing which was easily extendable.

The design uses the SIMD paradigm and consists of 64 identical processing
elements (PE's) on each chip and uses Content Addressable Memory (CAM) as local

* Deptartment of Electrical and Electronic Engineering, University of Bristol, Queen's
Building, University Walk, Bristol BS8 1TR, UK. ’

** School of Electronic Engineering -Science, University of Wales, Bangor, Gwynedd
LL571UT, UK. ~

142 : M. Pout and A.W.G. Duller

Image Data In

||
4=

Video Lbit Content
-bi

Shift processor A%/c{l;e;;:ble

Register array Arrayy

l/L Control Search data

ROM alignment

Image

o T T

Search & Read Data

Fig. 1. Floorplan of a GLITCH chip.

storage for each PE. A GLiTCH chip floorplan is shown in Figure 1. The basic
parameters of the architecture are:

¢ 64 processing elements (PE) per chip
o 1-bit ALU in each PE
» 1-bit registers in the ALU
e 64 bits of data CAM per PE
e 4 bits of subset CAM per PE.
e 1-D direct connectivity | between PE's

Long distance communications supported by barrel shifter overlaid on the CAM array
and an external routing network »

The GLiTCH design is an SIMD array, combining the massive parallellsm of a
VLSI processor array with a content addressable memory capability. The array consists
of a number of GLiTCH chips, a routing network, extra RAM for the processors and a
microsequencer-based controller (Fig: 2). The GLiTCH program in the microcode store

_consists of; flow control operations obeyed by the sequencer; scalar operations passed to
the . transputer, and..array operations applied to the GLiTCH chips. Associative
operations allow the simultaneous comparison or writing of multiple data bits in all
processors with a pattern supplied from the data store. Data may be read from a single
processing element (PE) back to the transputer. Arithmetic and logic operations can be
performed within each PE with status flags fed back to the sequencer on a reply bus.
The data routing network shown can be used to pass each PE's "tag" bit between

Benchmarking an Associative Processor Array for Vision 143

Processor S
Aray » Array:s’;
Chip Chp

Data Routing Network
External RAM
<
‘ Data
[Cranspute Store
b N OQutput)
{ \[‘ (~—~————1/} Framestore Image data
Control and flags - i i i
Microcode Sequenter : N Input

/| Framestore Tmage data

Fig. 2. A Multi-chip GLiTCH system.

GLiTCH chips. The RAM shown attached to each GLiTCH chip can be used to transfer
data to/from a bitslice of the processors internal memory.

Each GLiTCH PE consists of a 64 bit data word, a 4.bit subset word, a single bit
ALU and a few single bit ﬂags The data and subset words are stored in content
addressable memory (CAM), Wthh prowdes '1 bit paralleL match with a search
argument supplied on the data bus The processor data CAM can also be read and
written via the data bus; the subset bus allows only writing and matching. The
matching of the subset data with the subset bus Will set the match subset (MS) register.
This may be used to locally control subsequent global operatlons. Each PE can also
locally control the writing of global data, allowing the disabling:ot"inversion of data
and subset patterns. Two bits of data can be fetched from the CAMsimultaneously for
arithmetic and logic operations, the results of which are stored in the carry and tag
registers. The tag and carry registers are wire-ORed to reply lines to the controller for
conditional branching. A tag shift operation allows the tag registers to be. shxfted one
PE up or down the array per clock cycle. Long distance tag slufls are effected usmg the
data routing network.

As mentioned earlier the GLiTCH chip is initially enwsaged as part of a multi-
chip system which has a configuration such as that shown in Figure 2. A transputer is
shown as part of the configuration both for its scalar processmg capablllty and for
compa‘ublhty with other parts of a luerarchxcml vision system that is being designed
(Pout et al, 1991).

144 M. Pout and A.W.G. Duller

4. Image Understanding Benchmark

The benchmarks that have been used are the first set of DARPA Image Understanding
Benchmarks. This consists of the following tasks: Edge detection (incorporating
convolution, finding and outputting sequences of zero-crossings), Connected
Component Labelling, Hough Transform, Geometrical Constructions (Convex Hull,
Voronoi Diagram and Minimal Spannmg Tree) VlSlbl]lty, Graph Matching and
Minimum Cost Path.

In order to give an idea of the types of methods required for such a processor we
consider only the first three task in the benchmark. Results for all of the tasks are
presented at the end of the paper but without algorithmic details for the other tasks.

5. Edge Detection. .

The first of the Benchmark tasks is a convolution of the image with a high-frequency
filter, and the subsequent identification of edge pixels. This task is representative of a
wide range of simple filtéring algorithms. The benchmark requires the convolution of a
512 by 512 8-bit image with a sampled 11 by 11 Laplacian operator as described in
(Haralick, 1984). . ‘ a

Convolution is a task in which each output, pixel depends on a number of input
pixels. This dependency is both regular and local; each output pixel is calculated as the
“weighted sum of all the pixels within a small radius around the corresponding input
pixel. Normally the number of PEs available is less than the number of pixels within
the image, and so the image is processed in several patches The dependency of each
pixel on a local neighbourhood means that the correct value cannot be calculated for
pixels on the border of a patch; some of their input pixels are in a different patch.

The most efficient method depends on the type of mask required. Three different
cases have been investigated:

o Arbitrary mask

» Repeated weights

e Symmetric mask

By using accumulation schemes specific to the mask type, fast algorithms are
possible. Examples of these schemes are given in Figure 3. The most efficient of these
for the benchmark convolution is a row accumulation method which makes use of the

two degrees of symmetry in the operator; this is over four times faster than the first
method shown.

Another convolution method exists, whereby the patches are 1 pixel high by the
image width and data is kept from one patch to the next. This “‘scan line" method
requires as many registers as there are rows in the mask, and the product of the current
scanline with each row of the operator is added into one of the registers. For 3 by 3
pixel operators, these registers can be stored in the CAM of a single PE. For larger

Benchmarking an Associative Processor Array for Vision 145

Total accumulated in central pixel Spiral: accumulator moves
i /’
/
v T
L —1 :
L —1 C B
* Flyback linéf’s"qml:accmﬁuljator moves Alternating linescan

Each.row 1s accumulated, then row accumulators are accumulated

Ry - Pig’ 3. Different Convolution Methods. v e

operators, registers must be stored in RAM. This method can make use of the symmetry
in the operator.

Where théte’ are more 'PES than the number of pixels in a scanline, the extra PEs
can either be'uséd’ (instead Sf RAM)fo store some registers, or to simulate other scan-
line array procéssors working'on other pérts of the image. The former approach will
increase communidation time by separating the pixels, but not add significantly to the
parallelism. The latter method will not affect the time per scanline, but will reduce the
number of repetitions required:: Restlts show.that-the scan line method is the more
efficient for small array sizes, and-the patch processing for large array sizes.

146 B M. Pout and A.W.G. Duller

Table 1. Total convolution times for different system sizes

No. PEs | Patch Width | No. Patches | Total Tpocess (ms) | Total Tjyq4 (ms)

256 16 - 7056 1629.23 90.317
512 22 1638 404.422 41.933
1024 31 528 143.035 27.034
2048 44 210 58.569 21.504
4096 56 88 24.543 18.022
8192 73 40 ' 12.116 16.384
16384 111 20 6.378 16.384
32768 178 9 3.086 14.746
65536 128 5 1.555 16.384
131072 256 3 1.221 19.661
262144 512 1 0.599 13.107

Table 2 . Convolution times for scan line convolution.

No. PEs [No. Scanlines|Scanlines/Sections| Total Tprocess (ms) | Total T}, qq (ns)

512 512 512 137.037 13.107
1024 522 261 69.857 13.363
2048 542 136 36.267 13.875
4096 582 73 19.472 14.899
8192 662 42 11.074 : 16.947

16384 822 26 6.875 21.043
32768 1142 18 4776 29.235
65536 1782 14 3.726 45.619
131072 | 3062 ‘ 12 3.201 78.387
262144 5622 o1l 2.939 143.923

6. Zero Crossing Detection and Extraction

The sequence of zero crossings have to be produced as a list. The zero crossings of the
Laplacian of Gaussian operator are defined as those pixels at which the output is
positive, but which have neighbours where the output is negative. This can be
performed by fetching the sign bits from the neighbours and comparing them with the
sign bit of the central pixel.

Having identified the zero-crossings (ZCs), it is now required that ordered
sequences specifying the border of each region with positive LoG output are produced.

Benchmarking an Associative Processor Array for Vision 147

With one PE per pixel, this can be performed using either a sequential or a parailel
method. If the array has fewer PEs, this introduces a problem where a sequence crosses
a patch boundary, and this is dealt with separately.

The sequential method is as follows. An-initial "seed” ZC can be selected using a
"first" operation, and from this one pixel, the border must be followed pixel by pixel.
The address of the initial pixel is read out as the first ZC of as sequence. The next ZC
can be selected either by shifting a tag, or by broadcasting the next address. When the
sequence returns to the original ZC address, the border of the first object is complete,
and a seed point on the border of another region must be selected using a first
operation. When there are no more regions is the process complete. If each PE stores a
bit indicating which of its neighbours are ZCs, the controller can calculate the next
address by examlmng the pattem of neighbours,

“The’ pamllel method is best performed using a connected component labelling
,algorlthm since the operations are effectively the same. The position within the
sequence can be produced by markmg the first pixel in each sequence, and passing a
tag '1round the’ sequence writing its position.

7. Connected Component Labelling

This task takes as its input a 512 x 512 binary image, and requires as output an image
which’ has *0's where the input image has "0's, but replaces the *1's with an integer,
such that a]l pixels which are part of the same contiguous region have the same unique
number,”

The labelling can be either component sequential or component parallel.

Component sequential. An initial "seed' pixel in one component is identified, and
adjacent pixels are identified using either a breadth- or depth-first method. A breadth-
first method, as described by Storer (Duller, Storer et al 1989) attempts to grow one
pixel in each direction at each step. After each step, the new pixels are identified, and if
none have been found, the component is labelled. A new seed pixel in another
component is then selected. A depth-first method extends the labelled region as far as
possible in each of the directions. Although this avoids continually trying to extend the
region beyond a boundary, a test is required to decide when a boundary has been
reached.

The only parallelism in these methods is that a component can be extended from
all the pixels along one edge simultaneously.

*Component parallel. In this method, each set pixel is given a unique label e.g it's
address (Rosenfeld and Kak, 1982), and a minimum- operation is repeatedly performed
between adjacent pixels until all. the plxels in each component have the minimum label
in that component. :

148 M. Pout and A.W.G. Duller

7.1. Comparison of Methods

The time of all the above methods is data-dependent; a rectangle will be labelled more
quickly than a snake-like object with the same area. The component parallel methods
depend on the time to label the largest component only. The sequential methods have
the advantage of not being too inefficient with large components, having simpler code,
using less memory and producing shorter labels.

7.2. Patch Consistency

When an image is labelled in patches, each component within a patch is given a unique
label, but those components crossing patch boundaries will be assigned different labels
in different patches. It is therefore necessary to also perform a patch corisistency phase,
which re-labels such components correctly. The amount of work required depends on
the data, and also on the choice of patch shape. Although a square patch gives the
minimum total length of boundary (Duller, Morgan and Storer, 1987), image height
patches make the consistency problem one- rather than two-dimensional.

The patch consistency problem can be approached using a global or a patchwise
approach. In a global approach to patch consistency, the patch boundaries are retained
as each patch is labelled. Pixels on the boundaries of adjacent patches can be used to

~produce a list of component label equivalence classes. Each image patch is then
reloaded, and all components with inconsistent labels are changed. If the boundaries are
extracted as each patch is labelled, the computation of the equivalence classes can be
performed by the host in parallel with the labelling of subsequent patches.

A patchwise approach to this probiem was taken by Brandao (Brandad, Storcr and
Dagless, 1990) for the component labelling part of a Number Plate Recognition
program on GLiTCH. All the labelled patches are placed in RAM, and subsequently
pairs are fetched and re-labelled. This will deal with most components, but some
components which appear unconnected prove to be joined in a later patch; thus the
process may need to be repeated in the reverse direction. This method can be improved
upon by keeping the previous patch in memory, and performing the consistency check
before the first patch is stored. This will correctly label most components, and those
patches which do require any relabelling can be selectively processed. ;

8. Hough Transform

The Hough Transform is a technique for detecting straight lines in noisy images. It
performs a transformation on the image space to produce an output parameter space in
which collinearities will be easily identified. Each edge pixel in the input image casts a
vole in the parameter space for those lines on which it lies, and hence straight lines
appear as peaks in the parameter space.

Benchmarking an Associative Processor Array for Vision 149

The most popular parameters for straight line detecnon are the polar coordinates (
p,0). p i the length of the perpendicular from the origin to the llne and 6 is the angle
which this makes with the x-axis.

p=xcosO +ysint (H

In the Image Understanding Benchmark definition, the input is a 512 x 512 binary
image (which has already been processed using an edge operator), and. the output array
covers the ranges © = [0...180], and p = [0..,511]. Each pixel calculates a p value for
each value of 0, and the total number of votes for each (p,8) pair is stored in the output
array. The following sections describe three approaches to the problem 0 sequential,
pixel sequential and scan line sequential. :

81.0 Sequentlal

If the, array has sufficient DES to provrde one per prxel each p1xe1 can store an input
pixel, apd can also store. an output accumulator. This approach to the Hough Transform
is described in (Pout, 1988). For each value of 0, the values sin © and cos 6 are
broadcast, and each set pixel calculates its corresponding p. These p values indicate
which accumulators should be incremented in the current © column. The process of
collating these ‘votes into accumulator bins is similar to a histogram operation, and can
be performed using either a p-sequential method of counting responders, or a more
parallel approach in which each set of 512 PEs forms a local histogram of its own p
votes, and a cascaded addition performed to sum the local votes.

8.2. Pixel Sequential

The pixel sequential method provides one PE per value of 6 (i.c. 180 PEs) and the
accumulator bins associated with that 6 are stored in the RAM associated with that PE.
'The (x, y) coordinates of each set pixel are broadcast by the controller, and each PE
calculates a p value from Equation (1). The p values produced are used to calculate ithe
RAM addresses .of the bins to be incremented. These bins are loaded into GLiTCH,
incremented, then stored back in RAM.

The host transputer passes the coordinates of set pixels to the controller This
should not amount to a significant overhead, since the bulk of the testing can také place
in parallel with the processing of earlier pixels. Initially, each PE is loaded with the
values of sin 6 and cos 6 for its 07 A match operatlon on the MSBs is used to discard p
values outside the range [0.. 512] L

T he process of incrementing Lhe accum ator, bins stored in RAM is slow since
sliceés of RAM cannot be locally addre d Tlms each different value of p requlres a.
separate load-and-save cycle. Also, sin re
unaltered ones, it is more efficient to load condmonally increment and save all the bins
for each produced p value sequentially. For an'average pixel on the image, only about

150 T M. Pout and A.W.G. Duller

120 unique p values will be produced due to out of range values and duplication. Thus
the required values are fetched selectively, using a first operation to select PE with valid
p values, which are read and used to address the RAM to fetch the correct accumulator.

8.2.1 Multiple PEs per 0

The most direct way of using more than 180 PEs is to provide many PEs for each 9,
each of which can calculate a different p values. There will be a slight increase in the
time to calculate the p values, since Vector-Vector rather than Scalar-Vector arithmetic
must be used.

8.2.2 Using Less RAM

_The above method requires a large amount of RAM; this can be reduced if the 512 p
bins belonging to each 6 are divided equally amongst a group of M PEs to be assigned
to each 0. Now each PE calculates the same p value, but instead of checking against the
maximum and minimum values, p is compared with the range appropriate to each PE.

8.2.3 Multiple Buckets per PE

The method above uses a group of PEs for each 6, but the memory map of the CAM for
the above algorithm is largely empty. This space can be used to store the p values from
other few pixels, so that when an increment is performed, several votes are accumulated
at once. The term "bucket” is used to denote a register in which a p value can be stored.

The above method has the drawback that the same calculation is carried out in the
M PEs of the group, only one of which has a valid vote. If only the first PE in the group
is used to perform the calculation, the remainder have more space for buckets. There
will be a slight overhead in passing each p value to the other PEs in the group, but this
is more than outweighed by the greater number of votes included in each accumulator
update. The update now requires all the buckets to be compared with the broadcast p,
and the number of matches accumulated in a register which is added to the accumulator
bin. The value of Q (the number of bins needing updating) increases up to the
maximum possible (i.e. 512/M) as the votes from several pixels are combined.

8.2.4 Bins in CAM

"If the array has 32768 PEs, the RAM can be dispensed with completely, since all the
bins can be stored in CAM. If the array is more than 32768 PEs, then the process can
be replicated, with different sections of the array being given different pixel values. A
small overhead is introduced in the calculation time, since Scalar-Vector multiplication
can no longer be used, and also to sum the values of the bins across the array, but apart
from this, the algorithm will show a linear speed-up.

Times for all the pixel sequential methods are shown in Figure 4.

- Benchmarking an Associative Processor Array for Vision 151

Time (us) per pixel
1,000 ¢
so0 |
200
100 ¢
Csof

;20

256 512 1024 2048 4096 8192 16384 32768 65536 131072
Number of PEs

Using Buckels Less RAM Muitiple p(xals Bins in CAM

Fig. 4. Times for pixel-sequential Hough transforms.

8.3. Scan Line HT

In the projection-based algorithm (Sanz and Dinstein, 1987) described by (Fisher and
Highnam, 1989) for their Scan Line Array Processor: (SLAP) (Fisher, 1986), (Fisher
Highnam and Rockoff, 1988), the Hough space accumulators (bins) travel along the
path of pixellated lines, accumulating the votes from each set. p1xel as it is passed
through. : e

A table is created which indicates. those accumulator bins wh1ch are to be shifted.at
each scan line. Lines which intersect with the boftom of the image will have their bins
left in the array when the process is complete. Lines.which pass off the edge of the
image are extracted from the array before they-are shifted off;the edge of the array. In
order to minimise the shifting time, only lines which pass through one pixel per scan
line (i.e. within 45° of vertical) are processed, the others being handled- by a second
pass on a diagonal reflection of the image.

The Scan Line method can bé run on & GLiTCH system as described in (Duller et
al, 1989), but the limited amount’of CAM per PE means that many PEs must be used
for each pixel, or several passes are tequired for different sets of 6 values. The time
taken by this algorithm is shown in Figure 5.

8.3.1 Double Scan Line

The:above algorithm requires that the data store is sufficiently large to store the Hough
space array, or alternatively that values be stored inthe transputer. The alternative

152 " M. Pout and A.W.G. Duller

Time/ms
600 -

........
~ -
500 Forevieeenae T e N

~~~~~~~~
——————————
-------------

F 0 e R LR R LR L T R P R PR PO PP PP PP PPRIP PP P
300 T O

e le o B R e R R R R e e R LRt

........
.............

PEs

Fig. 5. Scan line transform times.

place for storing data, in RAM is not practical since all the bins which intersect the
edge of the image are produced only at the end PEs of the array.

This inefficiency can be avoided if two scan lines' worth of processors are used: the
scan line is loaded, filling only the first half of the array. Lines which intersect the edge
of the image do not now "fall off" the edge of the array, but instead are projected down
through the empty half of the array to reach the final scan line. The array is now
configured as a ring rather than a chain, so that data wraps around. All the results for
each © value are thus available, 1 per PE, in order at the end of each pass.

The times for the double scan line method are also shown in Figure 5. The vast
improvement in DSR' loading time due to the use of RAM is clear, and other
algorithmic improvements lead to a more nearly linear computation time. As the system
size doubles however, the length of the DSR also doubles, and thus the idle time at the
start of the first patch increases. This is unfortunate, since the amount of data loaded is
constant, it is only the number of blank spaces interleaved with the data which
_increases. The alternative (and often faster) method to loading data interspersed with
spaces is to load the data into the first few PEs, and subsequently use low data
manipulation routines to organise the data as required.

8.3.2 Resampling Hough Space

The results produced by the scan line Hough Transform is in the form of a rectangular
array of accumulators indexed by p and 8. The 6 values can be chosen to be integers,
but the p index goes in steps of cos © rather than integers (which is required by the



Benchmarking an Associative Processor Array for Vision 153

benchmark specification). Each column of the array must therefore be resampled using
the methoed described by Storer (Duller et al, 1989). :

9. Overall Results

A full set of results are not yet available for the IUB. The intention is to define two
types of system,.a small and large version. All of the benchmarks will then be run on
these two systems which will allow sensible comparison with other such architectures.
In addition the comparison of the two systems will give an indication of the efficiency
of the algorithms used: It has already been found that for many of the benchmarks the
optimum algorithm depends strongly on the number of PE's available. Early results are
given below with others for comparison.

By

Architecture Task/
time
(ms) .
la-lb| Ic 2 3 4a 4b 4c 5 7
Butterfly (16 nodes) {18300 - - 1452001 190 - - {67000 -
Butterfly (100+ nodes) | 2900 | 8200 | 7200 | 7400 - - - 14150 -
CM-1 3 100 | 400 | 700 200 | 2000|2200} 1000 | 50
NON-VON 2 -~ | 1000| 400 40 - .| 40 100 | 40
Cube (256 Nodes) 100 <1 140 1 1800 | 2.4 - - - 10
Mosaic (16K nodes) | 25| 1 | 6 10 [36] - | - - 1

MULTIMAX (20 46000] 6900 122700|244000| 1800 |30000| 8700 {91400| 180
Inodes)

TUA 0.02 02 ]000s| 27 | 7 {50 | 11| 20 | 07
Warp 16 |69 | 750 | 600 | 3 | 11 | 43 | 40 | 25
HBA (16 nodes) . [3200] 100 | 170 | 270 {3550 - | - | - | -
HBA (100+ nodes) | 600 | - | 370 | 30 |90 | - | - | = | -

GLiTCH (4K PE's) 27 | 249 | 157 | 205 |252|1201] 14 | 457 | 373
GLiTCH (256K PE's) | 0.60 | 2.11{3.36 | 143 {252 30 | 14 | 13 | 177

10. Conclusions

As can be seen from the overall results, the GLiTCH architecture performs well on
most of the benchmark tasks, especially when similar "size" systems are compared. It
has been shown that a realistic system, the 4k PE configuration, is capable of
performing all of the tasks in the benchmark.



‘ 154 M. Pout and A.W.G. Duller

The increasing integration possible with VLSI will make larger systems than that
proposed readily accessible and algorithms such as those presented here will allow such
architectures to be used efficiently.

References

Brandaé A., Storer R., and Dagless E.L. (1990): Vehicle license plate recognition with an
associative processor array.- Internal Report Dept. of Electrical Engmeenng, University of
Bristol.

Duller A W.G., Morgan A.D. and Storer R. (1987): Associative processor arrays: Simulation
and performance estimates for image processing.- Proc. of Alvey Vision Conf. 87,
September, pp.139-145.

Duller AW.G., Storer RH.,, Thomson A.R. and Dagless E.L. (1989): An associative
processor array for image processing.- Image and Vision Computing, v.7, No.2, May.
Duller AW.G., Storer RH., Thomson A.R., Pout M.R. and Dagless E.L. (1989): Image
processing applications using an associative processor array.- Proc. of the 5th Alvey

Vision Conf., September.

Fisher A.L. and Highnam P.T. (1989): Computing the Hough transform on a scan line array
processor.- IEEE Trans. on Pattern Analysis and Machine Intelhgence v.11, No.3, pp.262-
265.

"Fisher A.L. (1986): Scan line array processors for image computation.- Proc. 13th Annual Int.
Symp. on Computer Architecture, pp.338-345.

Fisher A L., Highnam P.T. and Rockoff T. (1988): Scan line array processors.- Ambler T.,
Agrawal P. and Moore W, (Eds.), Hardware Accelerators for Electrical CAD, Adam Hilger,
pp-312-324.

Haralick R.M. (1984): Digital step edges from zero crossings of second directional derivatives.-
IEEE Trans. on Pattern Analysis and Machine Intelligence, v.6, No.1, January, pp.58-68.

Pout M.R. (1988): Comparison of the content addressable parallel processors, SCAPE and
GLiTCH based on the Hough transform.- Undergraduate Thesis, Dept. of Electncal
Engineering, University of Bristol.

Pout MR, Storer RH., Thomson AR., Dagless EL. and Duller AW.G. (1991} An
associative processor array as part of a heterogeneous vision architecture.- V. Milutinovic -

and B.D. Shriver (Eds.), Proc. of the 24th Annual Int. Conf. on System Sciences, JEEE
Computer Society Press, v.1, pp. 260-268.

Preston K. (1986): Benchmark results: The Abingdon cross.- UlrL. et al (Ed.), Evaluation of
Multicomputers for Image Processing, pp. 23-54, Academic Press.

Rosenfeld A. (1987):. 4 report on the DARPA image understanding architectures workshop.-
Proc. of the DARPA Image Understanding Workshop, pp.1:298-302.

Rosenfeld A. and Kak A.C. (1982): Digital Picture Processing (2nd Edition).- Academic Press.

Sapz JL.C. and Dinstein I (1987): Projection-based geometrical feature extraction for
computer vision: Algorithms in pipeline architectures.- IEEE Trans. on Pattern Analysis
and Machine Intelligence, v.9, No.1, pp.160-168.

- Weems C., Riseman E. and Hanson R. (1988): An integrated image understanding benchmark:

Recognition of a 2 1/2d mobile.-Proc. Image Understanding Workshop, v.1, pp.111-126.



