Appl. Math. and Comp. Sci., 1993, v.3, No.l ACEP Workshop, Borowice 1992

A BDD ENGINE FOR LOGIC VERIFICATION

Dariusz Caban”

Logic verification is based on the comparison of a circuit behavioural specification
with its structural realisation. It plays an important part in VLSI design. The circuit
descriptions_are expressed in a hardware description language. A modified

.. danguage may simplify the verification process, e.g. the NODEN HDL. Logic
verification is based on the transformation of different levels of circuit description.
to a common, canonical form. Binary Decision Diagrams (BDD) are used for this
purpose because of their capability to produce simple models for the results of
arithmetic addition. Logic verification is a numerically complex task, which limits
its usefulness. Parallel processing on a multi-transputer system can make it niore
attractive, It is proposed to introduce the parallel processing at the level of
constructing the decision diagrams (BDD Engine).

1. Introduction

Logic verification is a-formal method of establishing the correctness of digital circuits.
It compares the expected and. extracted descriptions of a circuit. Unlike logic testing
verification does not depend on any data stimuli. Thus it can authenticate a design with
total assurance, subject only to errors in the circuit specification (Hachtel. and Jacoby,
1988).

The design process of a digital circuit is split into a number of consecutively
executed stages, with numerous loop-backs. These stages are roughly as follows:

Specnﬁcatlon A formal model of the required behaviour is developed. This is expressed
in a hardware description language (VHDL is the norm at present).

Functional testing. This is a means, along with syntax checks, to determine the
correctness and completeness of a specification. At this level formal verification is not
feasible as there is no model of correct beliaviour.

. Logic design consists of a number of distinct stages, in which the circuit description is
transformed and substantiated to produce a technology dependent design. The result is
a network of cells (gates, registers, etc.). Logic designs are traditionally expressed by
graphical schematics. HDL descriptions are also used.

Implementatlon Mainly the decomposmon, placement and routing or equlvalent
processes. Implementation does not change the logic description, but creates the data
needed to produce the device (printed board, field programmable device, semi-custom
ASIC chip or a full-custorn VLSI product). The realisation may affect the logical

* Department of Electrical and Electronic Engineering, University of Bristol,” University
Walk, Bristol BS8 1TR, UK (on leave from Wroclaw Technical University)



182 - Dariusz Caban -

description (timing is a typical example), so the design description is back-annotated
with this information.

Testing, logic verification and timing analysis. These are aimed at uncovering any
design errors before manufacturing the device (Gupta A., 1992). This is crucial in case
ASIC designs, where the cost of an error is very high. Formal verification is always
preferable if the design complexity does not preclude it. In fact, design verification is
often done at every step of circuit development and is not restricted to the last stage of
the design.

Implementation . verification is aimed -at authentication of the physical implemen-
tation. Unlike logic verification, this is based on checking if the implementation
conforms to (geometrical) constraints. Implementation process is often fully automated
or computer-aided. This ensures 1mplementat10n correctness without further verifi-
cation.

2. Logic Verification

It is best to describe logic verification by the .involved stages of processing (Pygott,
1988). The two models of the designed circuit, obtained from specification and from the
"implemented cell network, form the input to logic verification process. These models
are expressed in a hardware description language.

The first stage of processing is based on:description compilation. An intermediate
form is produced as a result. This form is more compact and particularly suitable for
further processing. The important task at this stage:is the syntax analysis Wthh ensures
that the descriptions do not contain improperly formed constructs.

In the next stage (analysis) the intermediate form is executed. This results in the
construction of a set of logic functions. These functions.are- expressed in a:canonical
form which ensures that equivalent circuit descriptions will produce exactly-the same
set of functions. The choice of the canonical forin is crucial to logic verification as it
determines the complexity of the description. T

The last stage is logic comparison. The previous stages are performed separately
for the specification and implementation. Comparison can.be done by textual testing of
the two canonical descriptions character by character (textual comparison). This is the
fastest method but it can be used only to verify- equivalence of circuit descriptions.
Usually, there are ambiguities in the specxﬁcatxon which are resolved in the design
process. In such cases the aim of verification is to test if the implementation falls within
the bounds set by the specification. This can be done by constructing the Boolean
function of 1mphcat10n and testing if it is always TRUE (comparison by logic
implication). This is very similar to the tasks performed in the analysis stage ‘though
some simplifications are possible.

The logic circuits are trqdltxonally classnﬁed as either combmatlonal or sequential,

- synchronous and asynchronous. The approach to logic verification is essentially general

but each class of circuits introduces specific problems. Combinational circuits are
straightforward to verify on the basis of logic function transformations.



A BDD Engine for Logic Verification 183

Sequential circuits need to be described by their set of permissible states and by the
state--transition functions. If the specification and realisation state sets are similar,
-verification can be achieved by comparing the state-transition function. Automatic
identification of corresponding states of state machines is not a trivial problem, though.
It can be avoided by comparing the results of logic simulation of the two machines.

Asynchronous circuits introdtice the problem of continuous time in the functional
descriptions. This cannot be handled by the approach discussed in my presentation.
Methods based on temporal logic can be used as shown in (Gupta, 1992).

3. NODEN H‘ardwhi*e"])escription Language

Hardware verification poses the requirement that circuit specification and realisation
are expressed in a formal language. General hardware description languages, such as
VHDL, ELLA or VERILOG, can be used. The expressive capability of these languages
is sufficient use them both for specification and implementation. This is important as it
allows the use of the same tools for description compilation and analysis.

The mentroned HDL languages do not have any mechanisms by which one . could
simplify the verification process. Logic verification is numerically very complex and at
present it can be applied only to relatively simple circuits. The designer can introduce
extra information- ‘which significantly reduces the complexity of the task, .as is
demonstrated further -in the . text. This is the motivation for developmg specrﬁc
languages for verification.- S

The NODEN" Hardware Debcrlptlon Language has evolved from ELLA as a
specific language for logic verification ‘(Pygott, 1988). Its capability is limited to
synchronous circuits only. The language has been tested in practice on the VIPER
“project. It introduces a number of mechanisms by which a designer can influence the
verification process. These are discussed in the followmg paragraphs..

Logic verification can only be. applled to descriptions of a certain size. This is
presently much smaller than the complexity of a VLSI device. It can still be used to
verify fragments of the design. To this end, NODEN introduces two kinds of
hierarchical components of a description: circuits and blocks. Verification is
discontinued at the highest description of "block" type. Circuits are verified in a
simplified way:

- by verifying all the blocks in their description,

- by comparing that all blocks in the spemﬁcatlon correspond to blocks in the
implementation,

- by comparing that all the blocks are srmlldrly connected in the circuit description
of specification and implementation.
Thus, verification of much larger circuits is possxble prov1ded they are 51m11ariy
structured at specification and implementation,

Another problem is caused by the correspondence between the specification and
implementation inputs/outputs . There is no valid reason to use the same names or data
types in the compared descriptions. Thus, verification should be performed for every



184 Dariusz Caban

TYPE int4 = INT{0..15],
int5 = INT[0..30].

MAP UNCNST = int4 -> _integer.

MAP CONSTR = _integer -> int5.

BLOCK ADDER =.(int4: a b) -> (*int5: ¢):
CONSTR(UNCNST a + UNCNST b)).

Fig. 1. Specification of a 4-bit adder.

mapping between the inputsfoutputs of corresponding blocks. Since the canonical
' representations depend on the order of variables, this means repetition of the analysis
and comparison stages for every order of input variables. NODEN avoids this by
requiring the designer to annotate the implementation level description with "associate
bodies". These are special constructs which map block names and the names and types
of inputs/outputs to the names used in specification.

NODEN adopts the associate bodies to the analysis of sequential circuits, too. As
already mentioned, the problem of analysing these circuits lies in the identification of
corresponding states. NODEN requires the designer to supply this mapping in the
associate bodies.

The use of NODEN at specification and implementation level is best illustrated by
example. Figure 1 shows the specification-level description of a 4-bit adder. Figure 2
represents the implementation of the same adder using cells of functionality: XOR2,
XOR3 (2- and 3-input exclusive or) and CR (1 bit carry). Figure 3 shows the associate
body which must be attached to the implementation.

DELAY DL = boo!. '

FN XOR2(bool: a b) -> bool: (@ AND NOT b) OR (NOT a AND b).
FN XOR3(bool: a b ¢) -> bool: a XOR2 b XOR2 ¢. :

FN CR(bool: a b ¢) -> bool: (NOT ¢ AND a AND b) OR (¢ AND (a OR b)).
FN ADD_IMP({4]bool: ab) -> [5]bool:

BEGIN Co :

MAKE bool c2 c3 c4.

MAKE DL: r1 r2 r3 r4 r5.

LET ¢1 = a[0] AND bf0].

JOIN (a[1] XOR2 b[1]) -> r1.

JOIN CR(a[2], bf2], c1) -> ¢c2.

JOIN XOR3(a[2], b[2], c1) -> r2.

JOIN CR(a[3], b[3], ¢2) -> ¢3.

JOIN XOR3(a[3], b[3], ¢2) -> r3.

JOIN CR(a[4], b[4], c3) -> r5.

JOIN XOR3(a[4], b[4], ¢3) -> r4.

OUTPUT (r5r4 312 r1)

END.

Fig. 2. Implementation of a 4-bit adder.



A BDD Engine for Logic Verification 185

There is a number of reasons for using the NODEN language and verification
system in the reported project. The motivation for choice is outlined in the following
ideas:

- a readily available verification specific language,

- documented analyser interface , which allowed concentration of efforts on con-
struction and manipulation of logic representatlons (instead of language compilation).

From the point of view of practical applications, it would have been preferable to use a
language derived from VHDL , but such was not available.

4. Introduction To Binary Decision Diagrams

Binary Decision Diagram is a graphic representation of Boolean functions. This
representation was introduced in (Akers, 1978). Formal definition of the Diagrams can
be found there and in all the other cited papers on BDDs. An informal description is
given hereafter:

o A BDD is a directed acychc graph in which every node represents a Boolean
function. EENRNAR

e There are two sink nodes corresponchng to - constant functlons TRUE ‘and
FALSE.

¢ Every non-sink node is attributed with a logic variable. Two output edges are
drawn from each node. They are labelled as 0 and 1 edge.
o The Boolean function represente& by a node is determmed 1ecur51vely on the

‘basis of functions represented by the two nodes pointed to by the edges. The
Shannon decomposition is used:

RS

where v,V are the variable attributed to the node and its complement, and

J., /5 - the functions represented by the two nodes pointed by the edges,
labelled 1 and O respectively.

Ordered BDD is obtained by imposing extra constraints on the construction of a
diagram, The input variablés are ordered and the diagram so structured that every
source to sink path passes the variables in ascending order.

Reduced Ordered Binary Decision Diagram 'ff{OBDD) imposes a further
constraint that the diagram must be reduced, i.e. each node must represent a unique
functlon In effect if the decomposition of two different functions yields the same
subfunction, both will point to the same node in the BDD. This type of diagrams was

_proposed by (Bryant, 1986). It is a canonical representation of a Boolean function that
can be used in verification.

Typed Reduced Ordered Binary Decision Diagram (Madre and Blllon, 1988) is

obtained by introducing additional edge attributes. The most commonly used is the edge
complement operation (marked with a dot at the end of an edge). This modification can



186 Ny Dariusz Caban

Fig. 4. BDD representation of Fig. 5. A Shared Typed BDD
a two-bit adder. representing the same adder.

significantly reduce the complexity of some diagrams. Furthermore, it simplifies the
BDD construction algorithm. Unfortunately, the typed diagrams are not canonical
without supplementary constraints, as follows from the de Morgan equations.
Uniqueness of representation is achieved by imposing the rule that 1-labelled edges
cannot be complemented.

Each node of a BDD represents a logic functlon Only the root node represents a
function of all the input variables in an ordered diagram. Multi-rooted diagrams are
introduced to represent multiple functions. Such diagrams are called Shared Binary
_Decision Diagrams.

The use of BDDs for Boolean function representation is illustrated in Figure 4,
which shows the graphs of functions of a two-bit adder:

- C0= A0® B0
Cl= A1® B1® (A0& BO) N )]
CY = A1& B1& A0& BO :

Figure 5 shows the same functions represented by a Shared Typvédk‘BD»D.

5. The Parallel BDD Engine

Logic verification can be speeded up by parallel processing. This is achieved by
implementing a BDD Engine hosted on an array of transputers. The transputers are
connected by their links into a toroidal configuration as shown in Figure 6. The input
block description is initially analysed in the ROOT transputer, which is the only one
capable of communicating with the outside world.



A BDD Engine for Logic Verification 187

A=
G

MK 126 o000 N 1,NJ

)

2,1 227> ooo faNalE=y o

MIKEAM2E o000 MN-T—N MmN

R )

Fig. 6. Hardware configuration of the BDD Engine.

The fundamental algorithm used for BDD conistruction is based- oni{Brace, Rudell
and Bryant, 1990). It is represented in the following pseudo-OCCAM.niotation Fig. 7.
The procedure MLApply is strongly recursive -‘each diagram is constructed by the
application of MLApply to its two subdiagrams.” Parallelism is achieved by replacing
the recursion in this algorithm with requests for "child" ML Apply processes. Thus the
parent process, blocked until the subdiagrams are constructed, invokes two child
processes which run completely independently. g

In fact the MLApply process does not generate any processes directly. It only sends
messages, requesting subdiagram processing. These Inessages are transmitted to
different processing nodes (transputers), where they are queued. The requests are dealt
with one by one. A new message is processed.only after the previous one is finished or
blocked. This is preferred to unproductive switching between processes simultaneously
evaluating diagrams on the same transpyter. | '

- The transhut_er toroid is a distributed, processing and distributed data system. Thus
the BDD coding tables and the evaluated and. stored construction results are distributed
between the transputers. The BDD,Engine was constructed so that a request for. BDD
construction is always routed to the same transputer node, so the results of previous
calculations are available locally. This is important - benchmarks indicate that as much
as 50 % of the requests are repetitions of previous ones. o .
. The distribution of BDD coding tables necessitates some other types of messages,

)

i.e. requests for BDD encoding and decoding, which can be realised only in the node
containing the proper coding table. Some other messages are introduced for diagnostics
and control.



188 , - Dariusz Caban

BDDCODE FUNCTION MLApply_OP(VAL BDDCODE Z1, VAL BDDCODE Z2)
VALOF
iIF
Z1 or Z2 represents a logic constant
result:=Z1 OP Z2
Z1 OP Z2 previously evaluated
result:=stored resuit
TRUE
SEQ Co :
PAR
Decode Z1 -- determine v1, F1, G1
- Decode Z2 -- determine v2, F2, G2
vi=min(vi,v2)
PAR
IF «
AR 20 -
F1:=G1:=Z1
V2 <>y
F2:=G2:=22
TRUE
SKIP
PAR
r1:=MLApply_OP(F1,F2) -- recursion
12:=MLApply_OP(G1,G2)-- recursion
sgn:=normalize r1,r2 pair to conform to rules of unlqueness o
result:=search for entry (v,r1,r2) or add new entry to coding table
result:=result*sgn :
stare OP result for future reference
RESULT result

Fig. 7. Fundamental BDD construction algorithm.

The messages are handled at each node by a supervisor process which invokes one
of six message handling processes. The MLApply algorithm is split into a number of
these processes in such a way that none can be blocked before completion. If the
MLApply processing needs to wait for information from another transputer node (i.e.
for the reply-‘to a request for subdiagram construction, BDD decoding or BDD
encoding), this occurs at a point between the node processes. The processes are so
constructed that no two can access the same data. These processes are as follows:

Process 1. Searches if the requested BDD has been previously constructed or is
currenﬂy‘being constr};cted. If so, it invoke Process 4. Otherwise, it schedules decoding
of argument BDDs.



A BDD Engine for Logic Verification 189

Process 2. Finds if the result can be evaluated directly. If so, it passes the result to
Process 4. Otherwise, it requests the construction of subdiagrams.

Process 3. Schedules the encoding of the diagram.

Process 4. Sends the result to the requesting node.

Process S (DECOBE). Searches the local BDD coding table to determine the node
variable and subdiagrams and sends the result to the requesting node.

Process 6 (ENCODE). Searches the local coding table for the presence of specified
BDD. It creates a new position if one is non-existent. Finally, it sends the encoded BDD
identifier to the requesting node (this identifier consists of the node number and posi-
tion in the coding table). '

Acknowledgements

“The presented research is funded at the University of Bristol by a SERC grant.

I wish to thank Clive H. Pygott from RSRE, who let me have the NODEN interface
documentation and helped me develop the concept of parallel BDD Engine.

References

Akers S.B. (1978). Binary Decision Diagrams.- [EEE Trans. Computers, v.27, No.6, pp.509-
516.

Brace K.S., Rudell R.L. and Bryant R.E. (1990): Efficient implemenation of a BDD package -
Proc. 27th ACM/EEE DAC, pp.40-45.

Bryant R.E. (1986): Graph-based algorithms for Boolean function manipulation.. - IEEE Trans.
Computers, v.35, No.8, pp. 677-691.

Hachtel G.D. and Jacoby R.M. (1988): Verification algorithms for VLSI synthesis.- IEEE
Trans. Computer-Aided Design, v.7, No.5, pp. 616-640.

Gupta A. (1992): Formal hardware verification methods: a survey.-Formal Methods in System
Design,v.1, No.2/3, pp.151-238.

Madre J.C. and Billon J.P. (1988): Proving circuit correctness using formal comparison
between expected and extracted behaviour.- Proc. 25th ACM/IEEE DAC, pp.205-210.
Pygott C.H. (1989): The NODEN Hardware Description Language.- RSRE Report No. 89011,

Ministry of Defence.

Pygott C.H. (1989): The Algebra of the NODEN Analyser.- RSRE Report No. 89012, Ministry
of Defence.





