Appl. Math. and Comp. Sci., 1993, v.3, No.1 ACEP Workshop, Borowice 1992

MULTI-LEVEL SYNTHESIS BASED ON LOGIC
DECOMPOSITION

Tadeusz Luba*

In this paper an effective decomposition algorithin for mapping of logic functions
onto PLDs as well as FPGAs is proposed. The algorithm exploits our symbolic
decomposition concept to find PLD (FPGA) based implementation with a minimal
number of devices (CLBs). Experimental results of the presented method are
provided and compared to other similar tools.

1. Introduction

In this paper we propose an effective logic synthesis method based on decomposition.
Its distinctive feature is that the decomposition process is carried out as the very first
step in logic synthesis. This general design strategy illustrated in Figure 1 can be
applied for a variety of implementation styles, such as PLAs, gate arrays, or even
programmable logic devices. In the paper we will focus on the serial and parallel
-decompositions aimed primarily at multi-level PLA and PLD structures and its
potential capabilities to reduce the silicon area of the semi-custom implementations.

For a long time the idea of Boolean decomposition, formulated originally by Curtis
(Curtis, 1962), was applied rather infrequently in practical chip designs because of the
lack of effective algorithms. In recent years, however, it is gaining more and more
attention. Spectral methods of logic decomposition have been presented by Varma
(Varma and Trachtenberg, 1989). The complexity of the proposed algorithms
precludes, however, their practical application. Devadas et al. have shown in (Devadas
et al, 1988) that re-encoding of selected inputs reduces the number of product terms in
logic function. The re-encoding network is serially connected with the PLA that
implements the reduced function. The general disjunctive decomposition is the. -
preferred technique of the GATEMAP logic synthesis system (Pitty, 1988). The
GATEMAP synthesizer is used to partition complex logic equations. A similar
approach, but based on algebraic division method, has been presented in (Saucier,
Sicard and Bouchet, 1990). Others methods which target the technology mapping onto
FPGAs include so called groupability (Dresig, Rettig and Baitinger, 1991), which uses
a differential caiculus approach (Hurst, Miller and Muzio, 1985). However, these
algorithms require exponential time to find the minimum cost decomposition and are
still limited to the single-output functions.

* Institute of Telecommunications, Warsaw University of Technology, ul. Nowowiejska
-15/19, 00-665 Warsaw

210 R Tadeusz fuba

FUNCTIONAL
L DESCRIPTIONJ

|
DE OMPOSITION
7 A

TWO-LEVEL
MINIMIZATION

! CIRCUIT !
lOPTIMIZATtONE

TECHNOLOGY ORIENTED
SYNTHESIS

(circuiT LAYOUT

Fig. 1. Logic synthesis based on decomposition.

In this paper we propose new algorithms that attempt to resolve the general
problem of functional decomposition of incompletely specified multiple-output Boolean
functions. As shown in Figure 1, the results of the decomposition procedure can be
directly employed to find an effective physical arrangement of the obtained
components. An automated synthesis system, developed at the Warsaw University of
Technology, implements the proposed design strategy based on logic decomposmon
(Luba, Markowski and Zbierzchowski, 1992).

This paper is organized as follows. First, the symbolic decomposmon idea is
formulated. An effective algorithm that finds decomposition of the logic function is
then presented. Finally, experimental results for PLA and PLD-based implementation
are provided.

2. Basic Notions

The fundamental difference between the traditional approaches to Boolean function
decomposition and our method, lies on the type objects used and the calculation process
itself. Instead of commonly used cubes, we introduce Symbolic Partition Description
(SPD) that represents the relation among cubes in the cover of function F.

Multi-Level Synthesis Based on Logic Decomposition 211

Consider function F(xy,...x;): XP— Y™ This function can be uniquely
represented by ON and OFF sets. The DC-set (DON'T CARE-set) can be easily
calculated as a complement of the union ON and OFF sets. We introduce mapping from
ON and OFF sets onto the subset of integers:

M:M - {1,...kk+1,...,p}, such that

ON — {1,..k} =M0, OFF - {k+1,...p} =Ml

There is a one to one correspondence between cubes from ON and OFF sets and
the integers 1,....p.

Given F(xq,...xp): X8> Y™ and a mapping M: M - {1, kkt+l,. p}the
generalized partition P(x;) on the set M of cubes is defined as follows:

P(x;) = {BY B1}, such that, 1 & Bl only if x; =j or xj =,

where "-" denotes DON'T CARE entry.

The generalized partitions concept is simple extension of partition algebra, with
which reader familiarity is assumed (Almaini, 1964; Hartmanis and Stearns, 1966).

Summarizing, we can say that using SPD, a function is represented as a set of two
block input partitions, P(xj), i=1,..,n, and a multiple-block output partition, Pg. For an
input partition, P(x;), one block contains input vectors for which x; = 0, the other block
- the input vectors for which x; =1. The input vectors that correspond to the same
output vector are grouped in the same block of Pg. If the Boolean function is given as
array of cubes, then the blocks of partitions may not be disjoint.

3. Logic Decomposition

It is sometimes the case that a set of Boolean functions cannot be made to fit into any

_single module destinated to its implementation. The only solution is to decompose the
problem in such a way that the requirement can be met by a network of two or more
components each implementing a part of the functions.

The general problem can be stated as follows. The set of functions to be
implemented requires a logic block with N inputs and M outputs. The decomposition
task is to design a network which will implement the function using blocks with a
maximum n inpats and m outputs, where n < N or m < M. There are possible two basic
logic decomposition strategies as illustrated in Figure 2. The first one, called parallel
decomposition (Fig. 2b), is based on argument reduction concept (Bolton, 1990),
whereas the second, called serial, finds serially connected components as shown in
Figure 2c.

3.1. Parallel Decomposition

Consider a multiple-output Boolean function F given in a form of the truth table
specification. The set Y of outputs can be partitioned into two disjoint subsets such that

Tadeusz Luba

212

Fig. 2. Parallel and serial decomposition of function F.

the input supports of the obtained components are Xy, and X, respectively. These may
be easily obtained because each output usually depends on a dnfferent set of variables,
which cardinality is smaller than for the primary X set. Thus, we can group the outputs
into separate sets, to obtain the minimal input support sets Xy, and Xg.

Example 1.

For the Boolean function‘given in Table 1, the dependence sets of input variables for
every single-output function are as follows:

y1-
Y2
y3:
: {Xl,XZ, 3» X4,X7},
Y5 -
¥6::

¥4

{X1.X2.%g},
{X3.%4},
{X1.X0.X4,X5.X0}, {X1,X),X4,%6,X9 }

ixpxg.x4h,
{x1.X2.X6X0}

Therefore, we can determine an optimal two-block decomposition G = {y7, y4, Y5}
‘and H= {yy, y3, ¥} with the input support sets Xg = {X], X2, X3, X4, x7}, and Xp =
{X1, X, X4, X6, Xg}. The truth tables of these components are shown in Table 2,

respectively.

T

Multi-Level Synthesis Based on Logic Decomposition 213

Table 1.
X] Xp X3 X4 X5 Xg X7 Xg X9 |YI Y3 Y3 Y4 Y5 Ve
10 0 0 L 1L 1 0 0 0f/0 0 0 0 - 0
211 0 1 0 0 0 0 0 0}0 0 - 1 0 1
3110 1.1 1 0 0 0 oflo0o 1 1 o0 1 1
41 1 1 1 0 1 0 0 o0|l0o 1 1 1 1 o0
5/t 0 1.0 1.0 0 0 0l0o 0 0 - 0 1
6{0 0 1 1 1 0 0 0 Of1 1 0 I 0 0
711 1t 1 0 0 0 0 0 O0f1 0 - 0 1 0
81 0 I 1 0 1 0 0 O0{1 1 0 0 - 1
911 0 1 1 0 1 1 0 0|- 1 0 1 1
{1 1 1 0 0 0 o0 1 ofl1 0 1 0 1 -
1mfo o0 o 1 1 1 0 o 1/0 0 1 0 - 1
12/]0 0 0 1 1 0 0 0 1|- - 1 0 0 0
Table 2.
a) b)
X] X3 X3 X4 X71¥p ¥4 Y5 X X2 X4 X6 X9 Y] ¥3 Y6
0 0 0 1 00 0 0 0 0 1 1 0}0 0 0
1 0 1 0 00 1 0 1 0 0 0 0|0 0 1
1 0 1 1 o1 o0 1 1 0 1 0 0|0 1 1
1 1 1 1 of1 1 1 I 1.1 1 o0/lo 1 o0
1 0 1 0 0]0 - 0 1 06 1 0 o1 0 o
0 0 1 1 01 1 0 0 0 0 0 01 1 0
1 1 1 0 o0 o0 1 1 1 1 1 o1 0 1
1 o0 I 1 of1 o0 - 1 0 1 1 1[0 1 1
1 0 1 1 1|- 1 - 1 0 1 0 1|- 1 0

3.2. Serial Decomposition

Let F be a Boolean function representing functional dependency Y = F(X), where
X is the set of input variables and Y is the set of binary output variables. Let X = A U B
-and C ¢ A. We say there is a serial decomposition of F iff

F=H(A.GB,0)) =H(A,Z)
where G and H denote functional dependencies: G(B,C) = Z and H(A,Z)= Y and Z is

the set of two-valued variables. If in addition, C = @, then H is called a simple disjoint
decomposition of F.

214) , : Tadeusz £uba

Figure 2¢ illustrates the problem which has to be solved. We try to find a function
H depending-on the -variables of the set A as well on the outputs of a function G
depending on the set B U C.. The outputs of the function H .are identical with the
function values of F. : ;

The following theorem states the sufficient condition for serial decomposition.
Theorem 1: Functions G and H represent a serial decomposition of function F i.e.
F = H(A,G(B,C)) iff there exists a partition 1 = P(B v C) such that

P(A) ‘TIg<Pp N ¢))

where all the partitions are over the set of minterms and the number of two-valued
output variables of component G is equal to rlogzL(HGﬂ, where L(IT) denotes the
number of blocks of partition IT.

1In the theorem partition I1G; represents component G, and the product of partitions
P(A) and Il corresponds to H. The truth tables of the resulting components can be
easily obtained from these partitions. :

Example 2.

Let us decompose a function F of 5 input variables and 3 binary output variables as it is
shown in Table 3.
For A= {xl_,X3,X4}; B = {x9,x5}, C = @, we obtain

U PA)Y=(1,758,13:2,359,14,15: 4,5, 10,6 11,12)

Table 3.

Xy ¥y X3 x4 ¥s|y1 Y2 W3
1{o o o o olo o o0
210 0 o0 1 1]0 1 0
310 0 0 1 01 0 0
410 1 1 0o ofo0o 1 1
500 1 1 0 1]0 0o 1
6|l0 1 1 1 0|0 1 0
710 1 0o 0o 0|0 0 1
sl1 1 0 o o|0 O 1

“9l1 1 0 1 0p0 0 0
‘0|1 1T 1.0 0[1 0 0
Imjr 1 1 1 1}{0 1 1
201 1 1 1 0|0 1 o0
BJ1 0 0o o0: 10 0 1
‘41 07"0 1 1{0 0 0
1501 0 0 1 of1 0 0

Multi-Level Synthesis Based on Logic Decomposition 215

P(B) = (1,3,15 ; 2,13,14 ; 4,6,7,8,9,10,12 ; 5,11)
TG =(1,3,5,11,15; 2,4.6,7,.8,9,10,12,13,14)

It can be easily verified that since P(A) ¢ I < P, where
Pp=(1,9,14;5778,13; 2,6,1,2‘. ;4,115 3,10,15),

function F is decomposable as F=H(x|,x3,x4,G(x9,X5)), where G is one-output
function of two variables. '

A key concept in the decomposition method is partitioning of the input support set,
X, into two subsets, A and B, that include inputs for components H and G, respectively.
The input support set for coraponent H includes also the outputs of G, i.e. Xg=A U Z.
For component G there can exist an additional set of inputs, C, that includes the inputs
which are shared between Gand H, i.e., Cc A.

The r-admissability test presented below allows to obtain the set A of variables
which should be connected directly to the circuit H and for which there exists function

"G (generally with t outputs) such that |A| + t < n, where n = [X].

Let Py,...,Py be partitions on M, the set of minterms of a function F. The set of
partitions {Py,...,Py} is r-admissible in relation to partition if and only if there is a set
{Pg+1--Pry of two-block partitions such that the product TT of partitions
Pyi.....PPr+1,....Py satisfies the inequality IT < 0, and there does not exist any set of r —
k — 1 two-block partitions which meets this requirement.

Theorem 2: Let for o < 7, tjo denotes the quotient partition and n(t|o) be the number
of elements in the largest block of tjo. Let e(t|o) denote the smallest integer equal to or
larger than logy (7o) i.e.

e(tlo) =[logyn(tlo) |
Then {Py,...,P} is r-admissible, where
r=k+e(IlIp)

~moreover I1 is the product of partitions Py,...,Py and Il = ITePf.

Theorem 2 provides an approach to evaluate the admissability of a set of input
variable partitions P(x;). In searching for a maximuin set of variables, which can be
connected to the circuit H (Fig. 2) directly, we compute sets of t-admissible partitions
P(x;) only, where t is the given number of inputs of the circuit H.

Example 3,

Consider the following set of partitions on M = {1,...,15}.
P;=(1,..7;8,...15)

Py =(1,2,3,13,14,15; 4,...,12)
Ps=(1,2,3,7,8,9,13,14,15 ; 4,5,6,10,11,12)

216 Tadeusz fuba

Py =(1,4,5738,10,13},2,3,6,9,11,12,14,15)
P5=1(1,3.4,6,..10,12.15;2,5,11,13 14)

-1

Prp=(19.14; 5,78,13;2,6,12;4,11;3,i0,15) .
representing function F of Example 2,where P; denotes P(x;).
By examining admissability of P we obtain

PiePp= (1:9,14;57:8,13;2,6;12;4;11;3;10,15)
Pi[PjePr= ((D(2,6)3)@)(5,7) ; (8,13)(9,14)(10,15)(11)(12))

Hence, r-admlssablhly, r=1 +flog251 4, i.e. r(Py) = 4. Also, as the quotient
partition IT| HoPF, where I1 = P|eP3eP, is equal

(D7) ;5 (8,13) ;)B3) 5 (9.19(15) ; (O(5) 5 (10) 5 (6) 5 (11)(12)).

the set {P|,P3,P4} is 4-admissible. Similarly, r = 4 for set {P3,P4,P5}. Therefore, F can
be realized in the circuit H with inputs xj, X3, Xq, 8] Of X3, X4, X5, g), where
F = H(x1,X3.%4,G(x2.X5,C)) or F = H(x3,x4,X5,Ga(x 1:X2,C7)), respectively.

The next task is to find a subset of inputs for component G that serially connected
with component H will 1mp1ement function F (Fig. 2), i.e. to find PG =P(B u C), such
that there exists IIg = P that satisfies condition (1) in Theorem 1. To solve this
problem, con51der a subset of primary inputs, D=8 uC, and an m-block partition
P(D)=(By;By; ...; By generated by this subset. :

A relation of compatlblhly of partition blocks will be used to verify whether or not

- partition P(D) is suitable for serial decomposition.
Two blocks BI,B € P(D) are compatible iff partition HG obtained from partition

P(D) by merging blocks B; and B into a single block B_| satisfies condition (1) in
Theorem |1, 1.e., iff

P(A) T <Pp

A subset of n partition biocks, B = {Bil,Bi2,...,.Bin}, where Bij € P(D), is a class of
compatible blocks for partition P(D) iff all blocks in B are pairwise compatible.

A compatible class is called Maximal Compatible Class (MCC) iff it cannot be
properly covered by any other compatible class.

If we canform suitable MCCs of blocks, we can merge them into a singular block
to obtain partition I such that

P(A) o IIG < Pf, 2

where partition Il represents function G, and the product of partitions P(A) and P
corresponds to function H. The truth table description of these functions can be easily
obtained from the partitions.

We have developed an algorithmn that finds serial decomposition of a given logic
function. The algorithm includes several steps. At first it determines the input variable
sets for both components, using an r-admissability criterion. In general the r-

Multi-Level Synthesis Based on Logic Decomposition 217

admissability test allows to select the input variables for each component. Next we
calculate so called compatibility classes for blocks of partition P(B u C). These classes
represent relation between blocks of partition induced by input support set for
component G. Then the minimal cover of compatibility classes is found to minimize the
number of outputs of compenent G. In the first run of decomposer we check an
existence of disjoint decomposition. If such a decomposition does not exist we include
in the input support of component G, an additional, minimal set of inputs, to satisfy the
non-disjoint decomposition.

4. Application of The Decomposition for PLA, PLD and PGA
Implementations

The decomposition procedure can be easily applied to decompose a PLA into a set of
smaller interconnected PLAs such that the overall area of the resulting logic network,
deemed to be the sum of the areas of the constituent PLAs, is minimized. The silicon
area of the PLA can be estimated as S = (2n + m)P, where n and m denote the number
of inputs and outputs, respectively, and P is the number of product terms in a
minimized form, An interesting example is one of the MCNC benchmarks, called
RD84. After Espresso minimization the truth table of RD84 has 8 inputs, 4 outputs and
255 cubes thus, the estimated area of the chip is: S = (2-8 + 4)-255 = 5100.

When the RD84 function is decomposed into 3 components connected as shown in
Figure 3, the number of product terms for components Gog G 1> and H are 16, 16, and
25, respectively. But minimizing them we gain 10, 10 and 19, respectively. Therefore
the total PLA area is only 10% of the original circuit after minimization procedure.
Advantages of the decomposition can be also demonstrated by comparing various PLD-
based implementations of the RD84 function. Using the design method presented in
(Saucier, Sicard and Bouchet, 1990), this function was reported to require 4 PALs from

Y, Y, Yo Y

Fig. 3. Serial decomposition of RD84 benchmark circuit.

218 . Tadeusz Fuba

a) x|3 . 77
|
Xg X1 Xz GO
l l l D (9 |92

G (91 {92

]

Yo Y3

Fig. 4. Decomposition of RD84 for
PGA implementation.

the MMI PAL library. Decomposition procedure yields the spectacular result: just one
PAL device is sufficient. ‘

Decomposition concept can be also effectively used for the logic synthesis based on
PGAs. As a basic logic unit in‘PGA is a CLB, with the number of inputs limited to m
(typically 4 or 5), so implementation of any logic function of more inputs, needs the
function to be decomposed. However, it should be noticed that for PGA implementation
a function does not need to be minimized, because the CLB block can realize any logic
fanction of its input variables. Therefore serial decomposer that runs before the
minimization procedure is applied would be an ideal tool for this purpose.

The example design produced by the serial decomposition procedure for RD84
benchmark example is given in Figure 4. In the first run decomposer finds the structure
of 2 blocks: Gy and H as shown in Figure 4a. The decomposition process is applied
iteratively so component H can be decomposed in the next step with respect to the set

“A={gp. g1- 22}. Thus, complete decomposition process of the RD84 function, yields a

Multi-Level Synthesis Based on Logic Decomposition 219

set of 3 hierarchically interconnected blocks shown in Figure 4b. Because the number of
inputs to each block is less than 5, this circuit can be directly implemented by the net-
work of CLBs in XILINX family 3000 (Xilinx Inc,, 1991). In this seric a CLB can
implement any single-output function of up to 5 input variables or any two-output fun-
ction of up to 5 variables, with each output depending on at most 4 input variables. We
“can easily verify that this implementation occupies only 8 CLBs configured in 2 CLB
levels (critical path), which is a much better result than results reported so far in the
available literature. This function was reported to require 27 (Filo et al, 1991), 33
(Sicard et al, 1991), and 12 (Dresig, Rettig and Baitinger, 1991) CLBs with ?, 7, and 4
levels of CLBs in a critical path, respectively). However increasing the critical path up
to 3 this result can be improved up to only 6 (!) CLBs (Luba, Markowski and
Zbierzchowski, 1992).

S. Summary

In this paper we have proposed a general method for decomposition of incompletely
specified multiple-output Boolean functions. The symbolic decomposition algorithm is
simple and, even for complex circuits, does not involve significant computational effort.

Our experiments have shown that, when a Boolean function is decomposed before
the two-level minimization is applied, then the minimization process is more effective.

We have proved that combining logic decomposition with topological partitioning
we can decrease product term count for PLA implementations. The decomposition
concept can also be effectively used as the collapse algorithn that manipulates the
network into a form suitable for PAL and PGA implementations. This becomes
especially important with respect to the increasing market of Programmable Logic
Devices and Programmable Gate Arrays.

It is our hope that the ideas described in this paper represent a foundation for the
.development multi-level logic decomposition algorithms. Many of the difficulties
existing in previous decomposition methods now have practical solution. The starting
point to all practical decomposition solutions can be, developed in this paper, general
theorem of the decomposition, which allows to decompose any Boolean function.

References

Almaini AE.A. (1964):. Electronic Logic Systems.- Englewood Cliffs NI, Prentice-Hall
International.

AMD and MMI (1988): PAL Device Handbook.

Bolton M. (1990). Digital Systems Design with Programmable Logic.- Addison-Wesley
Publishing Company.

Brayton RK,, Hachtel G.D., McMulien C.T. and Sangiovanni-Vincentelli A. (1984): Logic
Minimization Algorithms for VLSI Synthesis.- Kluwer Academic Publ.

Curtis HA. (1962): A New Approach to the Design of Switching Circuits.- Van Nostrand
Company, Princeton, N.J.

220 Tadetsz Fuba

Kuo Y.H., Wang RR. and Kung L.Y. (1988): Logic design using the PLA's with limited I/O
- pins and product terms.- Microprocessing and Microprogramming. No.23.

Devadas S., Wang AR, Newton A.R. and Sangievanni-Vincentelli A. (1988): Boolean
© decomposition in multz-level logic optimization.- Proc. Int Conf on Computer-Aided
Design, Nov., pp. 290-293.

Dresig F., Rettig O. and Baitinger U.G. (1991): Logic synthesis for universal logic cells.- Int.
Workshop on Field Programmable Logic and Applications, Oxford, UK.

Filo D., Yang J.C., Mailhot F. and De Micheli G. (1991): Technology mapping for a two-
output RAM- basad Jield programmable gate array.- Proc of European Conf. on Des1gn
Automation, Feb., pp. 534-538.

Hartmanis J. and Stearns R.E. (1966): dlgebraic Structure Theory of Sequennal Machines.-
Prentice-Hall, Inc.

‘Hurst S.L., Miller D.M. and Muzio J.C. (1985): Spectral Techniques in Digital Logic.-
Academic Press.

Jasinski K., Luba T. and Kalinowski J. (1989). Parallel decomposition in logic synthesis.-
Proc. 15th European Solid-State Circuits Conf., Sept., pp. 113-116.

Jasinski K., Euba T. and Kalinowski J. (1991): CAD tools for PLD zmplementatzon of ASICs.-
Proc. of Second Eurochip Workshop on VLSI Design Training, Grenoble, pp225-230.

Luba T. (1986): A Uniform method of boolean function decomposition.- Rozprawy
Elektrotechniczne, Journal of the Polish Academy of Science, No.4, pp. 1041-1054.

Luba T., Kalinowski J.,, Jasinski K. and Krasniewski A. (1991) Combining serial
decomposition with topological partitioning for effective multi-level PLA implementations.-
P.Michel and G.Saucier (Eds.), Logic and Architecture Synthesis, Elsevier Science
Publishers B.V. (North-Holland).

Luba T., Kalinowski J. and Jasinski K. (1991): PLATO: A CAD tool for logic synthesis based
on decomposition. Proc. of European Conference on Design Automation, Feb., pp. 65-69.

Euba T., Markowski M. and Zbierzchowski B. (1992): Logic decomposition for

- programmable gate arrays.- Proc. EURO-ASIC'92, June, Paris, France.

McCluskey E.J. (1986): Logic Design Principles With Emphasis on Testable Semicustom
Circuits.- Prentice-Hall.

Murgai R., Nishizaki Y Shenoy N., BraymnRIs. and Sangiovanni-Vincentelli A.: Logic
synthesis for programmable gate arrays.- Proc. of the 27th ACM/IEEE.

Pawlak Z. (1991): Rough Sets. Theoretical Aspects of Reasoning about Data.- Kluwer
Academic Publishers.

Pitty E.B. (1988): A Critique of the GATEMAP Logic Synthesis System.- Proc. Int. Workshop on
Logic and Architecture Synthesis for Silicon Compilers, May, Grenoble, France, pp.65-84.

Sicard P., Crastes M., Sakouti K. and Saucier G. (1991): Aufomatic synthesis of Boolean
Junctions.on Xilinx and Actel programmable devices.- Proc. Euro ASIC '91, May, pp.142-
145.

Saucier G., Sicard P. and Bouchet L. (1990): Multi-level synthesis on PALs.- Proc. European
Design Automation Cenf., March, Glasgow, UK, pp.542-546.

Varma D. and Trachtenberg E.A. (1989): Design automation tools for efficient
implementation of logic functions by decomposition.- IEEE Trans. on CAD, v.8, No.g,
Aug., pp.901-916.

Xilinx Inc. (1991): Xilinx Programmable Gate Array User's Guide.

