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VLSI IMPLEMENTATION OF CELLULAR AUTOMATA :
MODULO-ARITHMETIC UNITS

T.A. York" , B. Srisuchinwong®, P.J. Hicks*, Ph. Tsalides* and A. Thanailakis**

Cellular Automata (CA) and their natural affinity for VLSI are discussed. Group
behaviour of CA is related to that for modulo-arithmetic units and this leads to an
architecture for modulo multiplication. Implementation of a mod-127 multiplier
using two techniques, fill custom CMOS design and Xilinx programmable gate
arrays is described. The principle of operation is based on two identical 12x12,
nuil-bounded, CA each having semi-group order 126. In practice, implementation
utilises the data compression capabilities to reduce the area required by these
arrays by about 90%. This is achieved by using triangular CA, each comprising 15
cells that have appropriately chosen initial boundary conditions. Encoding and
deceding is performed on-chip and the complexity of this task is significantly
reduced by observing only critical cells. Performance and area requirements for this
modest function are revealed such that predictions can then be made for more
* substantial units.

1. Introduction

The theoretical foundations of modern Residue Number System (RNS) theory were
developed in the eighteenth and nineteenth centuries by Euler, Fermat, Gauss and other
notable mathematicians. The major factor that has influenced the revival of RNS
arithmetic was the emergence, by the mid-1960's, of digital signal processing as a
technical subject distinct from general digital computing.

When the VLSI era arrived in the late 1970's, it was found that traditional
.algorithms used in digital signal processing did not "parallelise” nor "modularise”
easily, both of which are essential to fully utilise VLSI technology. It became clear that
new design approaches were needed that could incorporate modularity, parallelism and
fault tolerance. It was noted by several researchers that such features can be provided by
residue arithmetic (Soderstrand, Jenkins, Jullien and Taylor, 1986), due to its modular
algebraic structure. The potential of residue arithmetic for realising high speed signal
processing has been demonstrated in many application areas involving digital filters
and transforms (Soderstrand, Jenkins, Jullien and Taylor, 1986; Jenkins and Leon,
1977; Soderstrand, 1977; Tseng, Jullien and Miller, 1979). The common feature that
emerges from this earlier work is the use of mod-p multipliers as fundamental building
blocks. Such multipliers can be implemented by several techniques, such as direct
lookup tables using semiconductor memory, index calculus (Fraenkel, 1961;
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Soderstrand, 1983), square-law multipliers (Soderstrand and Vernia, 1980), and others
(Yau and Chung, 1976, Taylor, 1982, Taylor and Huang, 1982). Recently, new
techniques for impiementing mod-p muliipliers using celiular automata (CA) have been
reported (Pries, Thanailakis and Card, 1986; Tsalides, Thanailakis, Card and Pries,
1987).

Cellular automata have been of theoretical interest since the pioneering work of
von Neumann (Neumann, 1966) and others in the 1940's. Briefly, they consist of a
regular uniform lattice of identical cells in an N-dimensional space each
communicating with a specific set of its neighbours. Each cell is capable of existing in a
finite discrete state space where, in general, the state space is quite small, typically 1 or
0. A CA is characterised by four basic properties : the cell geometry, the neighbourhood
specification, the number of states per cell and finally the localised algorithm of
computation. Unlike the related systolic arrays the cells in a CA perform only basic
' computations, typically exclusive-or. Due to the mesh connection of the cells in a
physical layout, the CA will exhibit minimal wire area and therefore such structures are
particularly well matched to implementation using VLSI.

A new technique for the design and VLSI implementation of a mod-127 multiplier
based on 2-D CA is presented in this paper. This technique utilises the data
compression capabilities of CA to reduce the silicon area required for these units by
about 90%, by exploiting the symmetry existing in the states of CA. To minimise the
demands on silicon fabrication for this investigative project the present device has been
restricted to a, modest, mod-127 multiplier. This is sufficient to satisfy the objective,
namely to reveal complexity measures for the approach such that, by extrapolation, its
suitability for larger, more useful, multipliers can be evaluated relative to alternative
techniques.

This paper describes the basic features of cellular automata and their application to
modulo-arithmetic units. Two implementations of a mod-127 multiplier are described,
in full custom CMOS and as a Xilinx programmable gate array, and these are
compared to other approaches in terms of size and performance.

2 Cellular Automata

Cellular automata comprise simple, identical, cells arranged in a regular array. The
cells can be arranged in one (Nx1), two (NxN) or three dimensions (NxNxN). Each cell
communicates with those cells in its immediate vicinity, the neighbourhood, leading to
‘a highly desirable situation when considering silicon implementations, namely a
preponderance of local interconnections. The state of each cell is updated,
synchronously, at each clock cycle according to a local rule, typically exclusive-OR. At
the extremities of the array CA exhibit either null or periodic boundaries. Each
arrangement of local states for the cells corresponds to a global state for the CA. The
present work is restricted to arrays in which the neighbourhood is composed of only the
nearest neighbours and information is not saved beyond the previous iteration.

Examples of simple one-dimensional CA are shown in Figures 1, 2 and 3 below.
The local rule of operation is exclusive-OR in each case and either null or periodic
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boundaries are used. In Figures 1, 2 and 3 the sequence of binary words, corresponding
to iterations of the global state of each CA are shown on the left hand side of each
figure. As can be seen on the right-hand side of each figure CA can exhibit a variety of
characteristics. Figure 1 shows a cyclic group, of order 6, with each state having unique
predecessor and successor states. Figure 2 displays semi-group behaviour. Each state
has a unique successor but there are a variety of combinations of predecessors. State '1’
is a so-called 'garden of eden’ state, having no predecessor, states 2, 5 and 6 have
unique predecessors and state 9 has two possible predecessors. In contrast, Figure 3
displays no group behaviour. There are many 'garden of eden' states with no
predecessors and one 'graveyard' state whose only sucessor is itself.

garden of eden

N Y

13

~
graveyard

127 /9 6% N3
Fig. 3. Rule 90 - Periodic Boundary.
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For 1-D CA the local rules associated with each cell are commonly referred to
using names that were introduced by Wolfram (1983). These names are derived from
operations on ihe thuree-cell neighbourhood as shiown in the exampies below :

Rule 150 : Exclusive-OR of a cell and its two neighbours :

111 110 101 100 OIi 010 001 000
1 0 0 1 0 1 1 0
binary 10010110 = decimal 150
Rule 90 ; Exclusive-OR of the two neighbours :
ill1 110 101 100 o0l1 010 ¢OO01 000
0 1 0 1 I 0 1 0
binary 01011010 = decimal 90

It is possible to express the evolution of a CA by S(t+1) = Ty x S(t), where S(t) is
the global state of CA at time t and Ty, is the transition matrix. For 1-D CA, S is a
column matrix of length N and Ty is an NxN matrix. For 2-D CA, S is a column
matrix of length N? and Ty, is an N? x N2 matrix. Below is given an example shomng
the matrix equation for a 6 cell, rule-90, 1-D CA with null boundaries :

S1(t+1)" 01 0 0 0 OfSKN]
S206+1)] {1 01 0 0 0f 8200
S3(r+1)| 10 1 0 1 0 0] .S3()
S4¢t+D| |0 0 1 0 1 0|84
S5¢¢+1) 1 [0 0 0 0 1 0l S51)
L S6(t+1)| [0 0 0 0 0 1]S6(r))

In a similar way neighbourhoods and types of behaviour can be expressed for 2-D
CA, though these have received less attention in the literature. Examples of the von
Neumann and Moore neighbourhoods are shown in Figure 4. Names for such
neighbourhoods are according to (Tsali.de;szet al).

Rule (12-D)  Rule (4,2-D)
Moore . .. von Neumann
Fig. 4. 2-D nei gﬁbéurhbgds.
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3. Mod-p Multiplication Based on 2-D CA

Every element of a cyclic group is a ‘power’ of one element 'g' - called a generator.

G={g’ gl g% ... (8= D}
It is well known that the integers form a cyclic group of order 'p-1' (where 'p' is
prime) under mod-p multiplication. For instance,

g=3,p=7:G6={1,3,2,6,4,5,1, ...}
This produces the following multiplication table.

Table 1. Mod-7 multiplication using generator '3'.

2 6 4 5
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It is also well known that cyclic groups of equal order are isomorphic, in other
words there is a one-to-one mapping between elements of the groups. Therefore, in
order to multiply two binary numbers (a x b) mod-p, where p is prime, using CA:

i) Use two CA, (A and B) each displaying cyclic groups of order n = p-1
ii) Encode a,b into f(a) and f(b)

ii) Load A with f(a)

iv)  Load B with f(1)

V) Cycle both CA until the global state of B = f(b)

vi) The result is then given by the global state of A

The example below shows the multiplication 6'x 4 (mod-7) using rule 150 CA of
length 4 and group order n = p-1 = 6, as shown in Figure 1. ~

ISOMORPHIC MAPPING =

G & R W e

([ |
S S = S o
_ 0 OO = O
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. B A
ITERATIONS = 01T 00 T 1T 01
1110 0001
01 06 1 0011
1 1 01 0100
00 01 1110
00 11 0101

The one-to-one mapping between the states of the CA which form a cyclic group of
order 6 and the elements of the mod-7 multiplication using generator '3' is shown
above. It can be seen that, for this example, the identity state is assumed to be 0100’
and, prior to each calculation, this is loaded into B. At the same time A is loaded with
the state corresponding to number '6' (1101). After 4 iterations B contains the state
which corresponds to number '4' (0001). The result can be read from A (1110) and
decoded into number '3, i.e. 6x4 (mod 7) = 3.

4. Implementation of a Mod-127 Multiplier

For reasons of economy it was decided to implement a mod-127 multiplier using this
approach and while, admittedly, it is of modest proportions, such an approach can
teveal the potential of the technique for more ambitious devices. (Tsalides et al) have
shown that the lower bound for the array size 'N' to yield group order 'n' for 2-D CA
which evolve according to rule (4 2—D) usmg the von Neumann neighbourhood using
such CA is given by :

n=2(2N2-1)
Therefore, for group order n=126, the multiplier is based on two 12x12 CA with
null boundaries. It is quite evident that such a scheme has huge redundancy as only 126

states are used from a total of 2!44. For this reason the data compression capabilities of
CA, which arise due to the occurence of symmetrlcal states, have been exploited.

If the initial state of the present CA is symmetrical then it is clear that all

subsequent states in the cycle will also be symmetrical due to the nature of the local

“rule. In the present case 8-fold symmetry has been employed and this enables the use of
15-cell 'triangular CA' as shown in Figure 5.

Because of symmetry the cells that lie on the diagonal of the array maintain their
initial state during the evolution of the array. Each remaining cell is associated with 7
'twin' cells in the other octants, depicted by ‘a, b, c, ....n, 0"-that display the same local
state. Therefore reduced ‘triangular’ CA, consisting of 15 cells can be employed with
boundary conditions as indicated in Figure 5.

Null boundaries are maintained along the original edge of the CA. A 'mirror
boundary is formed along the edge containing cells ‘e, i, 1, n, o' because each cell in
such a position communicates with its 'twin' from the neighbouring octant. The
diagonal boundary has no effect because the two 'T' cells neighbouring ‘a, £, j, m, o' are
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Fig. 5. Triangular CA.

arranged to have identical contents. The group order of such triangular arrays is halved,
to 63, due to symmetry and therefore an overflow bit is also employed in order to realise
126 distinct states. This results in considerably reduced, though admittedly still
considerable, redundancy, 126 states are employed from a possible 216,
In order to emulate a system that can communicate with the outside world it is
-necessary to use binary communications. This could be achieved by the use of a 7-bit to
16 bit encoder for the inputs and a 16-bit to 7 bit decoder for the outputs. In order to
reduce the demands on silicon an investigation was undertaken to seek optimum 6-bit
signatures, each of which unambiguously represents a global state of the CA. From
4000 computer simulations of the triangular CA, each starting from a unique initial
state, only 4 yielded such a signature. This has enabled the use of a reduced decoder
having 7-bit input (6-bit signature + overflow) and 7-bit output. In addition, from
observation it was found that the binary representations of the first 63 states are
complementary to those for the second 63 states. Therefore, with careful selection of
inverted outputs, only half as many product terms are required for the decoder. Both the
enceder and decoder have been realised as Programmable Logic Arrays (PLA).

4.1 Full Custom Implementation

The mod-127 multiplier has been designed using 2 micron CMOS design rules from
European Silicon Structures (ES2). CASS and Princess from Silvar Lisco, HSPICE
from Meta software and HILO from Genrad were used for schematic capture, layout,
circuit simulation and logic simulation respectively. The encoder and decoder have
been implemented using pseudo-nMOS Programmable Logic Arrays which offer small
size and simplicity but have relatively high power dissipation.

Simulation results for the whole design have been obtained using HILO with gate
delays extracted from circuit simulation of the cells using HSPICE. From these results
it was predicted that the multiplier would operate at a maximum clock frequency of 25

.MHz. The completed chip occupies an area measuring 2.4 mm x 2.2 mm (including
pads) and contains approximately 4,600 transistors. It was fabricated, by arrangement
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with the UK ECAD initiative, at a cost of £.100 per mm? with a turnaround time of 12
weeks. Tests, using Hewlett-Packard equipment and a breadboard, reveal 100% yield up
to a clock frequency of 20 MHz. It shouid be noted that the nature of the architecture
leads to a worst case calculation time of 126 clock cycles.

A floorplan for the multiplier is shown in Figure 6. A schematic showing the

-repeated CA cell is shown in Figure 7 and the completed layout is depicted in Figure 8.

4.1.1 VLSI Complexity

Using the VLSI compexity metrics, A, AT and AT2, of Thompson (1979) previous
authors (Pries, Thanailakis and, 1986) have compared the CA approach with more
conventional algorithms. Results are presented in Figure 9. It can be seen from this
figure that the 2-D CA with encoder and decoder does not offer the best solution, using
these metrics, as the problem size grows. However, it should be remembered that the
modularity, regularity and local interconnection strategy offer advantages in terms of
design complexity and this may be a significant factor.

4.2 Programmable Gate Array Implementation

The multiplier has also been implemented using a Xilinx LCA 2018 programmable
gate array. This device contains approximately 1800 'gate equivalents' and costs about
L.10. Design was performed on a PC-compatible using Orcad for schematic capture and
simulation and XACT for automatic layout. The chip is configured at power-up using
an EPROM.

In order to reduce the number of required gates this implementation employs ‘a
slightly different strategy to that used for the full custom approach. At the initiation of a
calculation binary input 'a’ is first latched into the chip and then CA 'A’ is cycled until
its decoded state corresponds to 'a'. This removes the need for the area hungry encoder,

_at a cost of decreased performance. The completed circuit operates at a clock frequency
of 10 MHz and this is limited by the performance of the chip. Xilinx arrays include a
number of active switches in each interconnection path and these impose significant
delays on signals. For this reason Xilinx LCAs typically operate at system clock
frequencies that are only about 20% of the specified performance, which in the case of
the present design is 50 MHz.

5. S'u>mxjna,r¥_

The work has demonstrated the suitability of CA for silicon implementations. Although
the design is of modest proportions the full custom implementation can be regarded as
'VLSI' in the sense that it uses appropriate CAD tools and techniques. VLSI complexity
measures relating area and performance of a mod-p multiplier to problem complexity
are dissapointing buf' advantages in terms of design complexity are evident. The
implementation’ using 2-D CA incurs significant redundancy, despite the use of
'triantgular’ CA, arising from considerations of symmetry, to reduce the necessary array
size' by about 90%. More receiit work has concentrated on 'hybrid' CA in which the
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Tocal rule is not unique across the array and this has yielded optimum sized 1-D arrays
with group order 'p-1' and no redundancy. This latter work has been submitted for
publication elsewhere and is currently under consideration.
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