Appl. Math. and Comp. Sci., 1993, vol.3, No.2, 373-381

COMPARISON OF OPTIMAL AND SUBOPTIMAL
SYNTHESIS OF ORDERED BINARY
DECISION DIAGRAMS

VacLav DvoRrRAK*

The minimum cost ordered (binary) decision diagrams (OBDD’s) are diffi-
cult to find due to high computational cost. The optimal synthesis of ordered
binary decision diagrams is compared with the suboptimal synthesis based
on the level minimization technique. Using a set of popular benchmarks, it
is shown, that despite much higher computational effort, the optimal synthe-
sis does not yield corresponding difference in quality (size) of the resulting
diagrams.

1. Introduction

Binary decision diagrams (BDDs) or branching programs have been studied for a
long time as well as their applications in computer science and engineering (Moret,
1982). They enable concise representation of combinational or sequential logic cir-
cuits for simulation, modelling, verification or test generation and can be directly
implemented in memory- based finite-state machines, programmable controllers or
in multiplexer- based FPGA’s, (Coraor et al., 1987; Zsombor-Murray et al., 1983;
Murgai R. et al.,, 1990). However, efficient optimization techniques to minimize
their size (number of decision nodes) are /stil‘f to be developed. The problem of
optimization is NP—hard and therefore the exact approach using e.g‘.‘ so called
P—functions (Davio et al., 1983) is too greedy on computer time and beyond engi-
neering applications. The problem of computation complexity remains even if the
synthesis is restricted to minimal binary decision trees for multiple output Boolean
functions (Cerny et al., 1979).

The problem can be simplified a great deal by considering only a class of BDDs
referred to as ordered BDDs (OBDDs) (Bryant, 1985). A BDD is ordered if the
order of testing variables is the same in all paths from the root node to terminal
nodes. The minimum cost OBDD (also areduced OBDD or ROBDD) is a canonical
representation for a logic function, given an ordering on its variables (Bryant, 1985).
The exact synthesis of the ROBDD for a complete Boolean function of n variables
is still demanding too much effort as it can be done in time O(n23"), (Friedman
and Supowit, 1990). A new approach taken recently in the direction of suboptimal

* Technical University of Brno, Crzechoslovakia, Department of Computer Science and Engi-
neering, BoZetéchova 2, CS-612 66 Brno, CSFR

374 V. Dvorak

synthesis is based on a technique of iterative disjunctive decomposition (Dvorak,
1992). The central notion in this process is that of subfunctions. There is an 1:1
mapping between decision nodes in a level of the OBDD and distinct subfunctions
recognized in a corresponding decomposition step. We will show that in spite of
much lower computation complexity this heuristic approach gives results very close
to the optimum. We begin with preliminary concepts and definitions related to the
following analysis of time complexity of the OBDD construction. The analysis will
focus on a brute—force approach, then on a more efficient approach of Friedman
(Friedman and Supowit, 1990), and finally on the level-minimization approach of
suboptimal synthesis. Conclusions are derived on the basis of solved benchmark
examples.

2. Preliminaries and Problem Formulation

For the sake of comparison, we are going to consider OBDDs for complete Boolean
functions only. Construction of OBDDs for partial functions may have much lower
computational complexity (Nair and Brand, 1986), but to the author’s knowledge
there are hardly any solved benchmark examples of this sort published in the
literature.

We will start with some definitions and preliminary concepts needed for the
following analysis of time complexity of OBDD construction.

Definition 1. A p—variable subfunction S of the Boolean function F is
function F restricted to p from original n variables:

S(ziy,eenziy) = Flz;,,, =b1,...,xi, = bn_p

where b1,bs,...,b,_p € {0,1} and 1i,4s,...,4, are distinct members of
{1,2,...,n}. A single-variable subfunction f(z;) of F will be denoted as
i—subfunction of F.

Definition 2. A residual function R: {0,1}"~? — {0,1,...,r} of n—p variables
to the function F of n variables is the function whose co-domain consists
of distinct integer values assigned as id numbers to all the distinct p—variable
subfunctions of F (a procedure known as subfunction counting).

We can identify single-variable subfunctions of F specified by a table with
the pairs of values

[to,tl] = [le,'l =by,.,zi,_, = bn_1,2;, =0, (1)
Fi.’l:,’l =b, .., 2, =by_y,z; = 1] = id[tO,tl]

for all combinations of b; € {0,1}, enumerate them and create a new table of

the residual function F,_; using subfunction’s numeric identification as values of
F n—1-

Fn..llm,'l =by, ..., Ti_, =bpoq = id[to,tl] (2)

Comparison of optimal and suboptimal synthesis ... 375

Cardinality of the co-domain of F,_; thus equals the number of distinct subfunc-
tions of Fy,. . _

In the next step we can similarly find a residual function F,_» to F,_1 with
respect to variable z; _, and so on, until a residual function Fy of 0 variables
results. This process is known as the iterative decomposition of F'.

A partially ordered set of all subfunctions (residual functions) derived from F
may be represented by Haase’s diagram. Such a diagram is shown in Figure 1 for
a sample function of 4 Boolean variables. Each node of this diagram corresponds
to one residual function F,_; of n — k variables or in other words to a certain .
set of distinct subfunctions {fi} of k variables which together describe the
original function F = F,,. The node at the top represents the residual function of 4
variables (i.e. the original function F) associated with the set of subfunctions of 0
variables (i.e. values of F). On the other hand, the node at the bottom represents
the residual function of 0 variables and the associated set of subfunctions of 4
variables has only one element, the original function F.

Fig. 1. Haase’s diagram of all possible decompositions of the Boolean function speci-
fied in Figure 2. ’

Edges in the diagram are labelled with variables. For any node, a residual
function connected with this node depends on the variables along a path from this
node down to the bottom node, whereas subfunctions connected with this node
depend on the variables along a path from this node up to the top node.

376 V. Dvorak

Any path from the top to the bottom node defines an ordering of variables
and implies the iterative decomposition of F with respect to the variables in the
same order. An edge labelled z; between two adjacent nodes represents a single
decomposition step in which a residual function Fj belonging to the upper node
is decomposed with respect to variable z; producing the res1dual function Fp_;
of a lower number of variables.

The process of the iterative decomposition of F can be depicted graphically
in a form of OBDD. Assignments (1) and (2) describe a decision node labelled by -
variable z; with the input edge denoted by the id [t0,t1] (the value of F,_1), and
two outputs denoted by values ¢, and ¢; of F in (1). Clearly, the decision node
can be omitted if ¢o =%, (a constant subfunction). Therefore if we investigate the
size of the OBDD, we are interested only in the number of distinct non—constant
single-variable subfunctions. For this reason we will mark the edges in Haase’s
diagram by the following weights: the weight of the edge FpFi_; labelled with
variable z; will be equal to the number of distinct non—constant z;—subfunctions
of Fy.

The task of the optimum synthesis of OBDD in the sense of a minimum size
can be now formulated as a search for such a path in the Haase’s diagram which has
a minimum total weight. We will analyze three different strategies which address
this goal in the next section.

3. Computational Complexity of Optimum or Near—-Optimum
OBDD Construction

Let us first analyze the time required by the brute—force algorithm for OBDD
construction. Here for each of n! variable orderings two tables of size 2"~! are
worked on to get a table of a residual function F,_;, then similarly two tables
of size 2"~2, etc, until two tables of size 2° are done. Time complexity of this
algorithm reported in (Nair and Brand, 1986) is O(n!2").

Whereas the first algorithm did the exhaustive search among all paths in the
Haase’s diagram (therefore the n! term in the expression for its time complexity),
the second algorithm described in (Friedman and Supowit, 1990) processes all the
nodes — all k—element subsets of n variables for k¥ = 1,...,n are considered. The
time complexity has been derived in (Friedman and Supowit, 1990) as O(n23").
This is still too high for practical applications with Boolean functions of many
variables.

In the third bottom-up algorithm suggested recently (Dvorak, 1992) we select
one variable at a time for a current level of an OBDD and once allocated, this
variable is not reallocated in the following steps. Thus we explore only one path in
the Haase’s diagram step by step according to the criterion of minimum number of
distinct non—constant single variable subfunctions, i.e. on the basis of a minimum
number of decision nodes at the current level of the OBDD (a level minimization

technique). This algorithm in the notation taken from (Friedman and Supowit,
1990) is shown below:

Comparison of optimal and suboptimal synthesis ... ’ . 377

MinCostyg =0 ;
{70} = ¢ ; a set of elements in the intial ordering is empty -
FOR k—1. TO n DO
MinCostj « oo ; .
FOR each v € I ={1,2,..,n} — {m-1} DO
[[Compute 7%, TABLEg, MinCost;]
BEGIN '
([Evaluate cost; with the ordering (v,m—1)]
id(tg,t1) « nil for each pair (to,t1) ;
count — MinCosti_1 ; '
Let 11,12,...,45—1 denote elements of I — {v};
FOR each b€ {0,1}"* DO
BEGIN o
to — TABLEg_;(zi, = b1,...,%in_, = bn—p,zy =0);
ty « TABLE;_(zi, = b1,...,%i,_, = bn_k, 2y =1);
IF to =1t;. ’
THEN TempTable(z;, = b1,...,2i._, = bn—t) — 1o

ELSE BEGIN
IF id(¢,?1) = nil THEN BEGIN
count «— count + 1;°
id(to,t1) « count
END ; v
" TempTable(x; = by, ..., z; = by_i) — id(to, t1)
END
END [[for each &]] ;
IF count < MinCost; THEN BEGIN
' MinCostz — count ;
T — (v, Tk-1) ;
TABLE; — TempTable
END ;
END ([for each v]
Return w,, MinCost,,

The algorithm picks up the first variable with the minimum number of nodes at
the current level of the OBDD. If there are more variables with the same number
of decision nodes, we can choose one of them in a more sophisticated decision
process. In the real program we select a variable with the smallest number of
constant subfunctions to minimize the number of edges to the upper level of the
OBDD. If there are still many variables to choose from, we should do the next step
for all and decide then (or choose any one among them).

378 V. Dvorak

The heuristics involved in our algorithm relies on the fact that for the given
number of V values of a residual function of binary variables, the number of
eligible subfunctions, i.e.pairs of different values, in the set of randomly created
subfunctions (pairs) will be most probably lower for a lower value V.

We will illustrate the algorithm by a small example in Figure 2. The Boolean
function F of 4 Boolean variables z1,z3,z3, and z4 is specified by the map in
the upper left corner. The number of eligible (non—constant) single-variable sub-
functions of F' is two for every variable. Also the number of constant subfunctions
is the same. Therefore if we don’t want to select randomly one variable, we have
to continue with four tables TABLE; and see if the choice is unique in the next
step. In the Haase’s diagram we can see that indeed when variable z4 is removed
in the first step, then the residual function has the least number of subfunctions of
z2 and therefore the variable s is chosen in the second step. Only this choice
is shown in Figure 2. The order of last two variables is arbitrary, since always 3
decision nodes will be needed. The sequence of maps of residual functions in the
synthesis process and the resulting OBDD are shown in Figure 2. Let us note that
maps were used for illustration only, the real program accepts the lists of vertices
with defined values or logic expressions.

Table,
XXy _—

xx, [07111
11010
1101] TT
0000
| 4

x,[T323

12020
Xy 2

Xy 11 3
20 1

Xa[g

1

Table,

Fig. 2. Suboptimal OBDD synthesis for a sample Boolean function of four variables.

Comparison of optimal and suboptimal synthesis ... , 379

The time complexity of our algorithm for level k is determined by table
look~ups and creation of a subfunction table for each of n—k+1 variables. These
operations with table size 2"~* may take time O(n — k + 1) (Friedman and
Supowit, 1990), so that the total time complexity is of the order

Sn= (n—k+1)? 2°7F,
k=1

If weput n—k+ 1= h, then

S,,_Zh2 2h-1 = Z{Zh(h-—l) P2 4 p 2 1}—

h=1
dx{ dx ’gz + Zz }
. =2
Because
m+1 - 1
Ez -1

h=0
by evaluating derivatives and by substitution = =2 we get
Sp =2"(n2 —2n+3)—3 for every integer n > 1
or
— 0(2" 2)

Thls is much better than time complexity of 0(3" 2) of the exact method (Fried-
man and Supowit, 1990), but still quite high. However, this heuristic level-by—level
minimization technique has low complexity for partial functions and a suboptimal

solution is thus suitable for real engineering applications. Construction of OBDDs
for partial functions has been investigated in (Dvorak).

4. Conclusions

A comparison of time complexities of the above three approaches to OBDD con-
struction is presented in Table 1. Also the performance of the last two algorithms
has been tested on a set of benchmarks shown in Table 2. It is seen that the subopti-
mal algorithm gives optimal results for almost all examples which could be solved in

Tabl.1. Time complexities of three methods for some values of n.
n ni2" n23" n22"
8 1x 107 419 904 16 384

10| 3.7x10° | 5.9x10° | 102 400
12 | 2x1012 7.6x 107 | 589 824

380

V. Dvorak

Tabl. 2. Comparison of the suboptimal and exact algorithms for OBDD synthesis.

Legend:

logic Subopt. alg. | Exact alg.
function nodes/time | nodes/time
ALU/M 804 /293 / OFF
ALU /S 648 / 109 / OFF
PLA1 /S/* 73 /12 / OFF
PLA2 /S/* 209 / 20 / OFF
PLA1 /S/0 131 / 27 / OFF
PLA2 /S/0 243 / 23 / OFF
MH7442 /S 11/2 11/5
MH3205 /S 7/1 7/30
MHB4015 /S 17/1 17 / 47
MH84151 /S 16 /7 / OFF
MH4311 /S 18/2 18 / 124
AC11286 /S 17/ 2 -/ OFF
MH3003 /S 145 / 31 / OFF
MH3003 /M 13 / 69 / OFF
F1/S 10/1 10/4
F2 /S 10/1 10/ 4
F3 /M 12/1 12/ 2
F4 /M 9/1 8/2

a) Time is measured in seconds
b) Used abbreviations:

OFF: time too long
/M: multiple Boolean functions (OBDD with several inputs)

/S: single Boolean function
/*: don’t care used outside the function domain
/0: 0 value used outside the function domain

a reasonable amount of time. Therefore for engineering applications a suboptimal
solution is satisfactory and even more so in case of partial functions. The time
complexity of suboptimal OBDD synthesis for partial functions depends not so
much on the number of variables as on the cardinality of the domain of a partial
function. Suboptimal OBDDs can be designed for complete as well as partial
functions of up to 20 or more variables which are common in applications. The

Comparison of optimal and suboptimal synthesis ... 381

future research will try to explore parallel computation of suboptimal OBDDs for
logic functions of even more variables.

References

Bryant R.E. (1985): Symbolic manipulation of Boolean functions using graphical
representation. — Proc. 22nd Design Automation Conference, pp.688-694.

Coraor L.D., Hulina P.T. and Morean O.A. (1987): A general model for memory-
based finite-state machines. — IEEE Trans. Computers, v.C-36, No.2, pp.175-184.

Cerny E., Mange D. and Sanchez F. (1979): Synthesis of minimal binary decision
trees. — IEEE Trans. Computers, v.C-28, No.7, pp.472-482.

Davio M., Deschamps J.P. and Thayse A. (1983): Digital Systems With Algorithm
Implementation. — New York: J.Wiley & Sons.

Dvorak V. (1992): An optimization technique for ordered (binary) decision diagrams.
— Proc. 6th Annual European Computer Conference CompEuro’92, Hague, -
Netherlands, pp.1-4.

Dvorak V. : Bounds on size of decision .diagmms. — IEEE Trans. Computers,
(accepted for publication).

Friedman S.J. and Supowit K.J. (1990); Finding the optimal variable ordering for
binary decision diagrams. — IEEE Trans. Computers, v.39, No.5, pp.710-713.

Moret B.M.E. (1982): Decision trees and diagrams. — Computing Surveys, v.14,
No.4, pp.593-623.

Murgai R. et al. (1990): Logic synthesis for programmable gate arrays. — Proc. 27th
ACM/IEEE Design Automation Conference, pp.620-625.

Nair R. and Brand D. (1986): Construction of optimal DCVS trees. — IBM Res.Rep.
RC-11863, IBM Thomas J. Watson Research Center.

Zsombor-Murray P.J.A. et al. (1983): Binary-decision-based programmable control-
lers. — Part I-III, IEEE Micro, v.3, pp.67-83, Aug. 1983, pp.16-26, Oct.1983, and
prp-24-39, Dec. 1983.

Received October, 1992
Revised May 11, 1993

