Appl. Math. and Comp. Sci., 1993, vol.3, No.2, 383-392

AUTOMATED REALIZATION OF BOOLEAN ALGEBRA
THEOREMS IN THE SIMPLIFICATION OF
LOGICAL EXPRESSIONS

JANUSZ SZAINA®

This paper presents an approach to the automation of symbolic transforma-
tion and simplification of complex logical expressions. The transformation is
performed with the aid of Prolog — one of the two programming languages
being used for artificial intelligence. Due to the declarative nature of Prolog
the specification of a particular theorem together with its variations becomes
its realization at the same time. Moreover, each predicate is a direct reflec-
tion of a heuristic way of the expressions transformations, written in Prolog
convention.

1. Introduction

The development of artificial intelligence opens new, very promising possibilities
of computer-aided realization of symbolic operations as well as operations based
on heuristic methods. Among others, intensive research is being performed on
construction of translators, pattern analysis, analysis and translation of natural
language etc. (Warren, 1980; Clocksin, Mellish, 1987; Schalkoff, 1990).

A lot of logic circuits design problems can be solved as well, using heuristics
methods and symbolic transformations. A multi logic synthesis can be taken as an
example. On of the purposes of recent research in this field is providing a well-
defined, abstract mathematical model, independent of the implementation tech-
nology, from which multi logic synthesis could be done based on algebraic formal
transformations using the Boolean algebra theorems. This type of approach, based
on symbolic transfomations, recursion and heuristics (factoring, symbolic mini-

mization, restructuring, decompositin) has been proposed for example by Brayton,
(1989) and Hachtel, (1992).

This paper presents an approach to using Prolog (one of two artificial intelli-
gence programming languages) for solving these kind of tasks. Transformation and
simplification of complex logical expressions is given as an example.

The expressions being analysed can be arbitrarily complicated and can contain
multiple nested bracketed subexpressions. Several examples are given below:

* Department of Computer Engineering and Electronics, Higher College of Engineering,
Zielona Géra, Poland

384 J. Szajna

n=a'(b+/c)+d
y2=a"(b+/(z+y) +d
“w=a((p+/rxe)+/(z+y) +d

The transformation of expressions is performed in a heuristic way and is based
on the following theorems of Boolean Algebra:

1. A+1=1 7. A*B=B*A

2. A+/A=1 8. A*1=A

3. A+A=A : 9. A*A=A

4. A+A*B=A 10. A*/A=0

5. /(A+B)=/A*/B 11. A*(B+C)=A*B+ A*C
6. /(A*B)=/A+ /B

2. Representation of Compound Logical Expressions by
Recursive Prolog Terms

Arbitrary compound (nested) logical expressions can be easily represented recur-
sively. For this purpose the following set of Prolog terms can be defined:

expression = sumTerm*

sumTerm = element*

element = variable(symbol);
not_variable(symbol);
exprWithinBrackets(expression);
not_exprWithinBrackets (expression)

In the above definitions it is assumed that a logical expression is written as
a sum of terms (sumTerm*), and every sum term as a product of elements (ele-
ment*). An element is a variable or its complement or any Boolean expression
within brackets (recurrence) — complemented or not.

expression

‘sumTerm sumTerm

[[variable("A"), exprWithinBrackets([[variable("B"), [variable("C"), not_variable("D*)] 1)1, not_variable("E")] }

y A

sumTerm
sumTerm

V4

expression

Fig. 1. Prolog term representing the expression.

Automated realization of Boolean algebra ... 385

Figure 1 presents an example of a Prolog term constructed in this way, and
representing the expression.)

W =A*B+C*/D)+E

where A..E are variables.

3. Realization of General Simplification Strategy

The application of Prolog allows the automation of transformation in a very simple
and natural way despite arbitrary complexity of the expressions. The main predi-
cate of transformation and simplification of expressions can be written as follows:

PREDICATES) .
simplificationOfExpression (expression, expression) % (in, out)

CLAUSES .
SimplificationOfExpression {InputExpression, [[variable("1")11])
:- Thland2_TestOfOne (InputExpression, !.
SimplificationOfExpression (InputExpression, OutputExpression)
:~ Th3and4 ReducedTerms (InputExpression, Exprl),
TransfOfTermsAndBrackets (Exprl, OutputExpression) .

In a way similar to typical manual realization, the analysis starts from the search
for terms equal to 1 or complementary elements (like A and /A) within one
product term. This task is realized by the first clause of the predicate Simplifica-
tionOfEzpression (a call to the predicate Thiand2_ TestOfOne). If it returns true,
the analysis is finished, as the whole expression equals 1, represented here as {[vari-
able(”1”)]]. In the other case (second clause) the theorems 3 and 4 are checked in
order to eliminate repeated and reduced product terms. Next, due to the fact, that
the transformation of the expression may not proceed without earlier transforma-
tion of its terms, the analysis of individual terms has to be done. In general, this
part forms a crucial step of the simplification of the expression as it is connected
with the analysis of nested subexpressions seized by brackets. Respective Prolog
declaration can have the following form: ’

PREDICATES
TransfOfTerms ({expression, expression) © (in,out)
CLAUSES
TransfOfTerms ([], []) :- !.
TransfOfTerms ([Term | Tail], OutputExpression)
t= Th10_AandNotA (Term), !,
TransfOfTerms (Tail, OutputExpression).
TransfOfTerms {[Term | Tail], OutputExpression)
;- TransfOfBrackets and_Products (Term, Terml),
TransfOfTerms (Tail, Terml),
append ([Terml), Exprl, Expr2),
PassingOverSuperfluonsBrackets (Expr2, Expr3),
Theoremsl_2 3 4 (Expr3, OutputExpression).

If the analyzed product term fulfills the conditions of theorem 10, then it is elim-
inated. In the other case it has to be transformed in a proper way (predicate
TransfOf-Brackets_. and_ Producis), and then appended to the rest of the expres-
sion. The mentioned part of the expression is transformed earlier by recursively

386 J. Szajna

calling predicate TransfOrTerms. When these operations are finished, superfluous
brackets are eliminated and theorems 1-4 are applied.

The transformation of arbitrarily nested products of terms seized by brackets
can be done by the following predicate:

PREDICATES

TransfOfBrackets_and Products (sumTerm, sumTerm) % (in,out)
Product_and_Th7toll (element, element, sumTerm) % (in,in,out)
SimplificationOfExpression (expression, expression) % (in,out)
CLAUSES

TransfOfBrackets and Products ([exprWithinBrackets (InExpression) I,

) [exprWithinBrackets (OutExpression) J})
:~ !, SimplificationOfExpression (InExpression, OutExpression).

TransfOfBrackets_and_Products ([not_exprWithinBrackets (InExpression) },
[exprWithinBrackets (OutExpression)])
i~ !, ThS5and6_deMorgan (InExpression, Exprl),
SimplificationOfExpression (Exprl, OutExpression).

TransfOfBrackets_and Products ([Variable], [Variable]) :- !.

TransfOfBrackets_and Products ([Head | Tail], OutTerm)
:- TransfOfBrackets and Products ([Head), [X1]),
TransfOfBrackets_and Products (Tail, [X2}),
Product_and Th7toll (X1, X2, OutTerm).

The first clause of the predicate defines the sequence of actions when the
input term is seized by brackets. In such a case the bracketed expression should
be simplified by the predicate SimplificationOfEzpression discussed earlier. The
second clause relates to the ccmplemented expression within brackets product.
In this case the simplification is preceded by application of de Morgan theorems.
The third clause is used when the input term is a single literal. Such a term
remain unchanged. The last clause describes the method of analysis, when the
input is a simple product (i.e. the list can be divided into head and tail). In this
case subsequent literals are sequentially taken and transformed (through recursive
execution of the predicates for head and tail), and then the product is formed again.

The formulation of the product is connected with the application of theorems
7-11, whose Prolog realization is described in section 4.

4. Prolog-Based Realization of Boolean Algebra Theorems

Due to the declarative character of Prolog a theorem’s specification itself (including
cases) is a realization of the theorem. It will be illustrated by the example of
theorems 1 and 2, which define conditions necessary for an expression to be equal
to 1.

Theorems 1 and 2. Theorems I and 2 have the following form:
A+l=1 1)

A+/A=1)

Automated realization of Boolean algebra ... 387

This means, that the result is equal to 1, denoted as
[variable(”17)]]

if theorem 1 is applied to a list:

[[...], [variable(”17)], [...]]

or theorem 2 to a list:
[[...], [variable(” A”)], [..], [not_variable(” A”)]

Obviously, theorems 1 and 2 can be presented by the following verbal descrip-
tion: analyzed expression tends to 1, when at least one of its components equals 1
or when it contains complementary components (A and /A).

Keeping in mind that the symbol A which appears in theorem 2 can denote:
a variable; a complement of a variable; a subexpression within brackets; a comple-
ment of a subexpression, the above verbal description can be represented in Prolog
as follows:

CLAUSES
simplificationOfExpression (InExpression, [[variable("1")]1])
:~- Thland2_TestOfOne (InExpression), !.

Thland2_TestOfOne(([[variable("1")) D DI
Thlandz_TestOfOne([[variable(A)] |Tail]) :- member .
([not_variable(A)],
Tail), 1.
ThlandZ_TestOfOne([[not_variable(h)] jTail]) :- member
([variable(A)],
Tail), !.
ThlandZ_TestOfOne([[exprwithinBrackets(X)] |Tail]) :- member
([not_exprWithinBrackets(X)],
i - Tail), !.
ThlandZ“TestOfOne([[not_exprwithinBrackets(X)]!Tail]) :~ member
' ([exprWithinBrackets({)],
Tail), !. -
Thland2_TestOfOne([_ {Tail]) :- Thland2_TestOfOne (Tail).

Therefore, this specification of theorems 1 and 2 is their realization at the same
time.

For example, the first clause of the predicate denotes that the expression tends
to one if the very first component (the head of the list) is equal to one. The second
clause reflects the fact that the expression will evaluate to one if the first component
is A and there exists A’s complement among its other components, etc. The
meaning of the last clause is that when none of the preceding clauses succeeds,
then during the analysis the first component should be omitted and the rest of the
expression should be re-analyzed (recursive call to the same predicate for the tail
of the list).

Theorems 3 and 4. The theorems:

A+A=A 3)

A+A*B=A ' (4)

388 J. Szajna

The Prolog realization is done as search of the expressions components and
proper reductions whenever identical or absorbed components are found. Both

theorems are realized by the same predicate, as theorem 3 is a special case of
theorem 4.

A reduction of absorbed components according to the formula
A+A*B=A

does not require any analysis of B. For example, if B is a subexpression delimited
by brackets:

B = exprWithinBrackets([[...],[..],..])

then the reduction takes place without any analysis of the subexpression B.
The Prolog notation of theorems 3 and 4 can be written as follows:

PREDICATES

Th3and4 ReducedTerms (expression, expression)
RemovinESuperfluonsTerm (sumTerm, expression, expression)
ContainingOfTerms (sumTerm, sumTerm)

CLAUSES

Th3and4_ReducedTerms ([}, [1).

Th3and4_ReducedTerms ({Term | RestOfSum], [Term | Tail]))
:- RemovingSuperfluonsTerm (Term, RestOfSum, RestAfterRemoving) ,!,
Th3and4_ReducedTerms (RestAfterRemoving, Tail).

Th3and4_ReducedTerms ({_ | Taill, L)
:- Th3and4_ReducedTerms (Tail, L.

RemovingSuperfluonsTerm (_, (), (1).

RemovingSuperfluonsTerm (Term0, [Terml | RestOfSum]}, R)
:- ContainingOfTerms (Term0, Terml), !,
RemovingSuperfluonsTerm (Term0, RestOfSum, R)

RemovingSuperfluonsTerm (TermO, [Terml | RestOfSum], [Terml | Taill)
1~ not (ContainingOfTerms (Term0O, Terml)),)
RemovingSuperfluonsTerm (Term0, RestOfSum, Tail)

ContainingOfTerms ([}, _).

ContainingOfTerms ([Head | Tail), Terml)
:- member {Head, Terml)
ContainingOfTerms (Tail, Terml)

Theorems 5 and 6 (De Morgan’s). The theorems: »
/(A+B)=/A"/B (5)
[(A"B)=[A+/B (6)

Similarly to other theorems, the realization of these theorems in Prolog is very
simple. The crucial point is to keep in mind that the symbols A and B can

Automated realization of Boolean algebra ... 4 389

represent complex objects. Moreover, according to our declaration of terms, there

exists a difference in the way how the product terms and literals are transferred to
respective lists.

The Prolog notation for De Morgan’s theorems can have the following form (in
the realization of theorem 5 the last clause of the predicate Complement is used):

PREDICATES
Th5and6_deMorgan (expression, expression)
Complement (sumTerm, element)
ComplementProduct (sumTerm, expression)
ComplementElement (element, element)
CLAUSES
Th5andé_deMorgan ([], {nn.
Th5and6_deMorgan ([Head | Tail], {[Headl | Taill}l])
:- Complement (Head, Headl),
Th5andé_deMorgan (Tail, Taill).

not_variable (A)
variable(A)

Complement (([variable(A)] ;
not_exerithinBrackets (W)) :-
)
)

Complement ([not_variable(A)]
Complement ([exprWithinBrackets (W)]
Complement ([not_exerithinBrackets(W)]
Complement (X

ComplementProduct™ ({, (7).

exprWithinBrackets (W)
exprWithinBrackets(X1)

R

§ ——————— .
ComplementProduct ([1, []).
ComplementProduct ([Head | Tail], -((Headl] | Tailll])
:- ComplementElement (Head, Headl),
ComplementProduct (Tail, Taill).

ComplementElement (variable(A) , not_variable(A)).
ComplementElement (not_variable(A) , variable(A)).
ComplementElement (exprWithinBrackets (X) , not_exprWithinBrackets(X}).
ComplementElement (not_exprWithinBrackets(X) , exprWithinBrackets (X)).

Theorems 7, 8 and 9. Theorems 7, 8 and 9, as well as 10 and 11, which all deal
with product of components, are realized by the following predicates:

PREDICATES

Product_and_Th7toll (element, element, sumTerm) $ (in,in,out)
Product_and_Th8toll (element, element, sumTerm) $ (in,in,out)
Th10_AandNotA (sumTerm) % (in)

Theorems 7, 8 and 9 are formulated as follows:

A*B=B'A (7)
A*1=A . (8)
A*A=A (9)

Their realization is straightforward and does not require any comments.

390 J. Szajna

Realization of theorem 7 A*B = B*A :

Product_and _Th7toll (A, B, C)
i~ Product_and Th8toll (A, B, C), !
or
Product_and_Th8toll (B, A, C).

Realization of theorem 8 A*1 = A :

Product_and_Th8toll (A, variable("1"), [A)) := !.

Realization of theorem 9 A*A = A:

Product_and_Th8toll (A, A, [A]) :- !

Theorem 10. Theorem 10 relates to a product of complements and is formulated
as follows: '

A*'/A=0 (10)

It is realized in a way very similar to theorem 2 relating to a sum of comple-
ments (simple Prolog notation of heuristic realization):

Product_and_ThB8toll (A, B, ({])
:= Th10_AandNotA (A, B), !.

Th10_AandNotA (-[variable(A),

Tail]) :- member
(not_variable(A),
’ Tail), !.
Taill) :- member
(variable(A),
Tail), !.
Th10 AandNotA ([exprWithinBrackets(X) | Taill]) :- member
- (not_exprWithinBrackets({),
Tail), !.
Th10 AandNotA ([not exprWithinBrackets(X) | Tail]) :- member
- - (exprWithinBrackets (X),
Tail), !.
Tail)) :- Th1l0_AandNotA (Tail).

Th10_AandNotA ((not_variable(A),

Th10_AandNotA ([_

Theorem 11. Theorem 11 is formulated as follows:
A*(B+C)=A"B+ A'C . (11)

It’s realization comprises three cases depending on the form of A.

Automated realization of Boolean algebra ... A 391

Theorem 11 — case A*(B+ C)=A*B+ A*C :

Product_and Th8toll (variable(A),
- exprWithinBrackets (InExpression),
[exprWithinBrackets(OutExpression)})
:- ProductOfExpressions ([[variable(A)}), InExpression, OutExpression).

Theorem 11 — case /A*(B+ C)= /A*B + [A*C:

Product_and_Th8toll (not_variable(A),
exprWithinBrackets (InExpression),
[exprWithinBrackets (OutExpression)])
:- ProductOfExpressions (((not_variable(A)]], InExpression, OutExpression).

Theorem 11 — case (A + B)*(C + D) = A*C + A*D + B*C + B*D:

Product_and Th8toll (exerithinBrackets(InExpression_l),
exprWithinBrackets(InExpression_2},
[exprWithinBrackets (OutExpression)})

:~ ProductOfExpressions- (InExpression_1, InExpression_2, OutExpression).

The Prolog notation of theorem 11 contains predicates productOfEzpressions
and indirectly, productOfTermAndEzpression. Both predicates realize symbolic
logical multiplication.

Product of Expressions:

ProductOfExpressions ([}, _, (]).
ProductOfExpressions ([Head | Tail), Expression, OutExpression)
i~ ProductOfTermAndExpression (Head, Expression, Exprl),
ProductOfExpressions (Tail, Expression, Expr2),
append (Exprl, Expr2, Expr3),
Theoremsl 2 3 4 (Expr3, OutExpression).

Product of Term and Expression:

ProductOfTermAndExpression (_, (1, (]).
ProductOfTermAndExpression (Term, [Head | Tail), OutExpression)
:- append (Term, Head, X),
Th10_AandNotA (X), !,
ProductOfTermAndExpression (Term, Tail, OutExpression).
ProductOfTermAndExpression (Term, [Head | Tail), {X1 | Taill])
:- append (Term, Head, X),
PassingOverBracketsOfSumTerm (X, X1),
ProductOfTermAndExpression (Term, Tail, Taill).

Realization of symbolic logical multiplication in Prolog language is very sim-
ple and is performed by proper application of a predicate append. In the above
predicates the multiplication operations are additionally tied with application of
theorems 1, 2, 3, 4 and 10 as well as with reduction of superfluous brackets.

392 J. Szajna

5. Conclusions

In the paper we have tried to show the simplicity of automation of logical expres-
sions symbolic transformation with the aid of declarative programming (Prolog).

" The problem specification itself is practically equivalent to its implementation and
every predicate is a set of clauses, each of which represents one rule of heuristic
transformation of an expression. The presented method does not depend on the
complexity of the expression.

References

Bratko I. (1986): Prolog Programming for Artificial Intelligence. — Addison Wesley,
Reading (MA).

Brayton R.K., Rudell R., Sangiovani-Vincentelli A.L. and Wang A.R.R.
(1989): Multi—Level Logic Synthesis. — Oxford/Berkeley summer Engineering Pro-
grame, University of California, Berkeley.

Chang C. and Lee R.C. (1973): Symbolic Logic and Mechanical Theorem Proving.
— New York: Academic Press.)

Clocksin W.F. and Mellish C.S. (1987): Programming in Prolog. — Berlin:
Springer—Verlag.

Hachtel G. Jacoby R.M., Keutzer K. and Morrison C.R. (1992): On properties
of algebraic transformations and the synthesis of multifault-irredundant circuits.
— IEEE Trans Computer—Aided Design of Integrated Circuits and Systems, v.11,
No.3, pp.313-321.

Kowalski R. (1989): Logic for Problem Solving. — Warszawa: WNT Press, (in Polish).

Lloyd J.W. (1987): Foundations of Logic Programming. -— Berlin: Springer—Verlag.

Malpas J. (1987): Prolog. A Relational Language and its Application. — Engelwood
Cliffs (NJ): Prentice Hall.

Schalkoff R.J. (1990): Artificial Intelligence: An Engineering Approach. — London:
McGraw-Hill Publishing Company.

Szajna J., Adamski M. and Kozlowski T. (1991): Programming in Logic. Turbo
Prolog. — Warszawa: WNT Press (in Polish).

Szajna J. and Kozlowski T. (1991): Application of Prolog to digital systems de-
sign. — Scientific Notes, Higher College of Engineering in Zielona Goéra, (Zeszyty
Naukowe WSInz., Zielona Géra, No.95, pp.5-16, (in Polish)).

Thayse A. (Ed.) (1988): From Standard Logic to Logic Programming. — Introducing a
Logic Based Approach to Artificial Intelligence. —Chichester: John Wiley & Sons.

Towsend C. (1987): Advanced Technigues in Turbo Prolog. — San Francisco: Sybex.

~Warren D.H.D. (1980): Logic programing and compiler writing. — Software — Practice
and Experience, v.10, pp.97-125.

Weskamp K. and Hengl T. (1988): Artificial Intelligence Programming with Turbo
Prolog. — New York: John Wiley & Sons.

Received March 23, 1993
Revised June 3, 1993

