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PHYSICAL INTERPRETATION OF IMPACT BEND
" TEST BY MEANS OF MATHEMATICAL METHODS

EUGENIUSZ RANATOWSKI*, JAN SADOWSKI*, RYSZARD STRZELECKI**
)

The paper deals with the possibility to apply mathematical methods to pro-
cess dynamic impact bend test diagrams in force-time (F —1t) lay-out. The
paper presents both a methodology of taking off F' —1t characteristics and a
computer—aided testing stand, as well as processing algorithms of diagrams
in the field of mathematical filtration based on averaging random variable
and oscilation in the field of time and frequency. A procedure for defining
characteristic points of the sample impact cracking process has also been de-
fined. As a complement to theoretical consideration, the paper presents an
example of specific processing of F —t diagrams for C — Mn steel sample,
which may be the basis for evaluation of failure process parameters in crack
mechanics bearing.

1. Introduction

The necessity to make provisions for material behavior in case of impact loads
makes it indispensable to seek suitable research methods. The conventional impact
bend test (PN-79/H-04370) is the simplest crack resistance research method. At
present this test is given a more universal character by using it not only for evalua-
tion of impact value (KCV), but also for evaluation of crack resistance parameters:
Kic, Grc, ¢ (COD) and J4. The investigations carned on specially equipped
impact testing machines to register precise data on load variations (F —¢) and
displacement (I —t) curve analysis, within very short time of the impact bend
process. :

With all its simplicity, cracking of a material is a very complicated process
in this test. Interference resulting from wave state of stresses in the ram-sample-
support system, causes distortions in the real diagram taken in that test and that
makes proper interpretation difficult. Therefore, it is difficult to determine charac-
teristic points and parameters of failure of a material being tested. A great number
of various additional factors disturbing the crack process, such as: system free vi-
brations, stress waves, plastic and elastic strains, system inertial action, friction
on supports etc. (Parchanski, 1984; Pogodin, 1970) and no satisfactory, explicit
quantitative premises available about the nature of testing process also make sam-
ple failure process characterized by great influence of stochastic occurences. The
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application of suitable mathematical methods of dynamic run processing is needed
to illustrate this process in a proper, orderly and intelligible form.

At present there is a great chaos in the field of physical interpretation of
dynamic runs received in impact bend test. Only a few authors (Ireland, 1974;
Kobayashi, 1984; Ranatowski, 1980) pay attention to this important problem.
There is no univocal determination and evaluation of process characteristic point
methodology. This results in the fact that crack resistance parameters received are
burdened with serious errors and they are not very useful in further considerations
or structural calculations.

The paper undertakes an attempt of physical interpretation of impact bend
process with application of mathematical processing methods of recorded dynamic
runs. ‘

2. Testing Stand

The testing stand required accessories of impact ram for testing impact value type
PWS-30. The instrumentation diagram of the ram with strain gauges and low
linear displacement sensor is shown in Figure 1. Wiring diagram of these sensors
and equipment for gaining, registration and storage of fast dynamic runs during
impact testing is shown in Figure 2. The following main registration and data
processing problems are connected with this part of the stand:

i) application of suitable sensitivity, transmitted frequency band, as well as
temperature and nonlinear distortion compensation of transducer blocks and
measurement amplifiers;

ii) scaling of sensors and selection of proper digital registration A/C transducer
accuracy as well as suitable sampling frequency;

ili) choosing adequate registered dynamic run filtration algorithm and processing
of filtered runs.

The procedures mentioned above in points i) and ii) are in fact strictly tech-
nical matters and are not taken into further consideration in this paper. Problem
iii) above — choice of suitable dynamic run filtration algorithm and processing of
dynamic runs is considered to be the main problem among the above mentioned.
It is difficult to make proper physical interpretation of impact test fast runs.

3. Dynamic Impact Test Measurement Data Processing

This problem is treated as all-important in dynamic research of material failure
resistance, though it is partly conditioned by instrumentation of the ram. It results
from:



Physical interpretation of impact bend test ... 283

i) importance of methods employed for impulse processing (Max, 1981; Shabatin,
1982; Siebert, 1986) for correct physical interpretation of impact bend test
and,

i1) insufficient a priori information about recorded runs.

Thus, it is required to take the least simplified model of dynamic impact test into
consideration.

3.1 Models of Impact Bend Tests

With measurement of forces by means of tensometric gauges, the items where
sensors are placed, are subject to elastic strain. Thus, for measurements of force
FP from each side and force F from ram by means of tensometric gauges Rl
and Rl as well as R2, R2' (Figure 1) the ram and supports must be fully
elastic. The sample itself which undergoes the impact test is an elastic item. The
sample is simulated by infinitesimal elements of sample and elementary springs
which link them. Therefore, an adequate mathematical description of the model
impact test, which is shown in Figure 3 (where springs S1 and S2 simulate
strained parts of the supports and ram with strain gauges placed on these parts),
requires partial differential equations. However, such a quite multiplex model is not
necessary, when you want to obtain certain premises about selection of algorithm
for processing and filtration of measured data of impact test. In this case, the most
convenient solution is to use two mathematical models shown in Figure 4. The
figure has the following descriptions: SP - springs simulating strained sample
with their mass 4m,; ki, k2, k, — elastic coefficients of springs S1, 52, SP;
a1, as, ap - attenuation constants of springs S1, S2, SP; mp — 1/4 of
sample mass; 2FX - sample straining (fracturing) force. The models differ in
this way that in the first model (Figure 4a) the sample elasticity has been omitted
(no springs SP), whereas, in the other (Figure 4b) elasticity is centred in two
points.

The simplified dynamic models of impact tests are characterized according to
force measurement location of the following transmittances:
2FP(s)
2FX(s)’

Fs(s)

Wa(o) = gpaisi We() = 5expy ()

T 2FX(s)’

where: Fyx(s) = [2FP(s) + F(s)]/2 — resultant force, which is a mean from two
supports and ram forces; s — complex frequency (Shabatin, 1982).

WP(S) =

" Assumming that the supports and ram (or their relevant parts, on which sensors
R1, Rl' and R2, R2' arelocated) have the same properties (i.e. ay = a3, k1 =
ks), transmittances (1) are as follows:

e for a model with rigid sample (Figure 4a):
k1

Wa = —
. 5(5) mps? + ays + ky
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2m,s? + a;s + ky

WB(S) = mp82 + 2(118 + kl ) (2)

2m,s% + ays + 2k,

Wa(s) =
z(s) 2mps? + 2a;s + 2k,

o for a model with elastic sample (Figure 4b):
k1

b . S
We(s) = mps? +a1s+ ky

2
A7b () — ap My 2 mps :
Wg(s) = 1+k—p-s+gs + mns® ¥ ays + 2k

®3)

mf,s4.+ mp(a1 + ap)s® + (kymp + 2kpymy + a1ap)s?

bre) —
Ws(s) = 2(mys% + ays + ky)ky

(apkl + lep)s + 2k1kp
2(mps? + ays + ky)k,
The following three primary inferences which concern filtration arise from the
above formulas:

i) time runs of forces ' and FP rmeasured on the supports and ram, respectively,
oscilate around the run of real 2FX force straining (fracturing) the tested
sample;

ii) time run of force 2FX is delayed in relation to force run F, however, it gets
ahead of the FP run;

iii) force Fs mean measurement allows partly to compensate phase displacements
and oscilations of the measured forces F and FP in relation to force 2FX.

Among the inferences mentioned above, the third conclusion is especially useful
for filtration and processing of measured data. It should be stressed, however,
that the advantage resulting from determining the mean force Fs (estimated by
compensation rate of phase displacements and oscilations) will considerably depend
on the testing machine (supports and ram) parameters and the tested sample.
Thus, as it follows from formula (2) and required transmittance Wg(s) = 1, the
vibration damping in hammer parts with strain gauges fixed on them, should be
nearly zero (i.e. a; = 0). Their elastic constant k; should also be much greater
than the tested sample elastic constant k, (k1 > k,). These requirements are
generally guaranteed by standard impact testing machine constructions. Thus,
despite tested sample properties, on the basis of dependence (3), it can be assumed
that mean value of transmittance W{(s) is as follows:
ap

Wh(s) =1+ s+ %32. (4)
4 4
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Thus, the mean force Fy specified on the measurement stand (Figure 2) should
be additionally filtered by a low—pass filter of the following transmittance, e.g.:

Ry ky/m
We(®) = Fols) ™ 5 (apfmp)s + kyfrmg ® -

where Fg(s)is filtered mean force in the field of complex frequency.

In this case, taking the expressions (1), (4) and (5) into account the following is
obtained:

We(s)Wr(s) ~#1 and. Fg =~ 2FX

Filtration on the basis of expression (5) is not a technical problem and it is the
easier, the greater the own oscilation frequency of the tested sample is. However,
this kind of filtration is not useful in research of impact tests of fast dynamic runs,
since it is difficult to define each time parameters m,, a,, kp, of a new sample and
apart from that parasitical outer interference would have to be filtered. Therefore
the low—pass filtration (pre—processing) of registrated runs on the stand illustrated
in Figure 2 will be conducted.

3.2 Filtration Algorithms

Algorithms have the form of complete program modules provided for computer
processing of measured data. Filtration — pre—processing of data — executed in
this way includes:

o cleaning off registered runs of incidental fast variable interference, so—called
smoothing,

e determination of Fy mean force,

o decreasing influence of vibration at the bases of supports onto force Fy,

e final filtration—correction (post-equalization) of mean force Fy.

Smoothing - carried out by actual value change of each filtered run f(t) : FP(t)
~ from sensors located on supports; F(¢) — from sensors located on ram; w(t)
~ from gauges of supports free vibrations, into values of the so—called zero-rank
moments (mean values), generally determined by Strzelecki et al., (1984)

t+T/2
mo(t) = (/T [ ftoa, (©

where: T - length of averaging interval.

In the performed programme module the values mg(t) are calculated for every
discrete time k =t/A; (A: = 2us sampling time of recorded runs) on the basis
of the following dependence:
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1 k+1/2

mo(k)= 77 2 F) =mo(k—1)- —-——[f(k— 1-1/2) - f(k+1/2)] (6a)

i=k-I/2

where k = 0,1,...,M; M +1 is general number of each registered run data;
I'+1=T/A¢:+1 - number of averaging data estimated aproximately from
inequality I < M/50. '

At the same time: if i < 0, then f(i) = —f(—i), and if i > M, then f(z) =
—f(2M — 7). Thus runs FP(k), F(k) and w(k), cleaned off fast variation
interference are marked further as FP’'(k), F'(k) and w/(k).

Determination of mean force Fg(k) —followsin a selected programme module
generally from the following dependence:

Fe(k) = %[aw2FP’(k) +(2- aw)F'(kj] () -

where a, denotes weight factor taking into account non-uniform fraction of
respective components of expression (7).

In the applied module the parameter a,, w1ll be calculated from the following
formula: '

M M
6y =2 F'(k) / > (2FP'(k) + F'(k)) . | | 8)
k=0 k=0

However, in the final version of the module, it is projected to take additionally into

account other alternative values of the parameter a,,, determined on the grounds
of

e dependence
aw = 2/(KE +1) _ -~ (8a)

where: K¥ ~ correlation coefficient between run 2FP'(k) and F'(k), defined
according to. (Shabatin 1982), as

KL= E(?FP’(k)F (k) Z(F’(k))2

k=0
e expression
_ 205 VPR (z:io [VFH) | il |2VFP'(k)|)
k=0 F'(k) Mo Fi(k) M 2FP!(k)

where VF'(k) = F'(k+1)~F'(k), VFP'(k)=FP'(k+1)—FP'(k), F'(M+1) =
~F'(M -1), FP'(M+1)=-FP'(M - 1);

(8b)
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e optimization algorithm (taking into account that the value of a, € (0, 2)
parameter is only slightly different from 1), which minimizes the following index
in relation to a, parameter:

M M . .

Ja=Y |V?Fz(k)| / D _IVFs(k) 9)
) k=0 k=0

“where: V2F5(k) = Fg(k+1)—2Fg(k)+Fg(k—-1), VFz(k) = Fs(k+1)-Fy(k),

Fz(—l) = —Fg(1), FE(M +1)= —Fs(M — 1).

Reduction of vibration effect from support bases on force Fy(k) - will
be carried out when the operator decides about it on the basis of visual estimation
of run- Fy(k) and w'(k). To objectify this estimation the operator may use
standardized correlation coefficient, determined according (Shabatin, 1982), as:

Ky =KVYKY, (10)
where:
k¥ = DieoVEMVIVE) g Theo(V2Fs(k) V2w'(k))
ThLo(V2Fs(k)? Yoreo (V2w (k))?

whereas V2w’ (k) = w' (k4 1) — 2w/ (k) + w'(k — 1), and w'(=1) = —w'(1), w'(M+
1) = —uw/(M -1).

If factor Ky < 1/2, then it should be assumed that vibration run w’(k) at
support bases has no over—effect on function Fg(k) run. Thus, in this case it is
advisable to omit a given filtration stage of force Fy(k) run. Otherwise, if the
operator has decided to perform a given stage, the run Fy(k) compensation by
run w' (k) will be carried out. Adapted for this, the programmme module executes
the following dependence:

FIE(’C) = Fg(k) - bw(w'(k) - Sw) (11)
where S, is mean value of w'(k) run defined by the following dependence
M
Sw = (1/M) ) ' (k),
k=0

FL(k) — mean force run compensated by vibration registered at support base, b,
— weight factor taking into account several components of expression (1.

Two different parameters b, are calculated in the existing module:

M M :
bor = 1/KY or bua= Y |VFs(k)| / ) IV2W'(k)].
k=0 k=0



288 E. Ranatowski, J. Sadowski and R. Strzelecki

On the basis of formula (11) two runs, Fy,(k) or Fg,(k), are determined respec-
tively for the above parameters and their adequate index

M M
Jy =Y IVFL(R)| [ Y IVEL(R) (12)
k=0 k=0

The calculated index values (the smaller the better) help the operator to undertake
decisions about the correct run of mean force, i.e. Fy(k) = Fg (k) or Fi(k) =
Fg,(k). Another option is also projected to determine parameter b, - through
minimization of index Jj.

Final filtration—correction of mean force — is made when it is impossible to
make explicit results interpretation of dynamic tests on the basis of Fg(k) (or
Fs(k)). This may be carried out both in the field of discrete time as well as discrete
frequency.

Final filtration of run F{(k) in the field of discrete time is executed in the
same way as ”“smoothing”, on the basis of formula (6a), however, unlike this stage,
values Fg(k) are usually averaged repeatedly and in longer interval (for greater
number of averaged data I+ 1). This interval is determined by the operator and
he decides about the repetition of averaging. Therefore, the result of this filtration
—run F§, (k) - is largely subjective, conditioned by the operator’s knowledge of
several impact process runs.

In the case of final filtration by averaging it may be difficult to separate char-
acteristic run ranges or to evaluate sharp variations of final force run Fy, (k).
Differentiation of that run (Parchanski, 1984) seems to be helpful. The difficul-

ties mentioned above may be partially avoided by final filtration in the field of
frequency.

Filtration in the field of frequency by separation will be carried out on the basis

of frequency discrete spectrum (determined by use of Fast Fourier Transformation
algorithm — FFT), defined for run Fg(k) by the following formula (Max, 1981)

M
Fy(jm Aw) = > Fy(k) exp(—jmAw kA,) (13)
k=0

where Aw = 27/(M + 1) - sampling interval in the field of frequency, m -
number of following sampling in the field of frequency.

However, since Fy(jmAw) is a product of spectrum 2F X (jmAw) of the searched
run 2FX(k) and unknown transmittance Wyg(jmAw) - (see dependence (1)),
then a logarithm is found from the transform F§(jmAw) before making filtration.
As a result -we obtain a new spectrum described by the following formula

FE(jmAw) = log F§(jmAw) = log 2F X (jmAw) + log Wi(jimAw) (13a)
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In the above formula undesirable changes involved in transmittance
log 2Wx(jmAw) are additive in relation to log2FX(jmAw). These changes
usually take place in high frequencies and the operator may evaluate them visually
and relatively easily. On this basis he decides about omitting suitable parts of the
specttum FE(jmAw) in frequency intervals [(mq + 1)Aw, (my — 1)Aw], where:
mg+ 1, my — 1 — the lower and upper number of sample from the cut frequency
interval. In the cut intervals spectrum FE(jmAw)is interpolated by a polynomial,
independently of the operator. Omission of this usually leads to essential differ-
ences between real force 2FX (k) straining the tested sample and force Fgi,(k)
obtained by filtration of spectrum F§(jmAw). This may be essential for physical
interpretation of test results.

In the programme module for final filtration of run Fy(k) in frequency range,
the spectrum FE(jmAw) in cut frequency intervals will be interpolated by the
following complex polynomial:

Guw(imAw) = R(mAw) + jQ(jmAw), (14)

where
R(jmAw) = —[gs(mAw)® — ga(mAw)* + ga(mAw)? — go]
Q(imAw) = —[g7(mAw)7 — gs(mAw)® + ga(mAw)?® — g1 (mAw))
and where m = mg+1,mq +2,....,my —1;  go,92,...,g6, 97 — real coeflicients,

calculated on the basis of complex variables of spectrum Fé‘ (jmAw) for m =
mg — 1,mq, mg, my + 1.

To calculate the coefficients of complex interpolating polynomial (14), it is possible
to use the function moments of Fg(k) with weight k" exp(—w,k), which are
determined for w, = myAw and w, = myAw and n =0, 1,2,3 according to
(Solodnikov, 1968). A new spectrum Fgi(jmAw) received in this way finds the
antilogarithm and finally reversal Fourier transform.

The run FY,(k) received as a result of filtration in frequency domain will

be thus compared with the similar result of final filtration in time range — the run
% (k). This will allow us to choose one of them as a final result of operation. The -
run chosen in this way is defined as 2F X" (k).

3.3. Final process

The final processing of the filtrated run 2F X" (k) will comprise the following steps

o determination of force 2F X" (k) by ram transformation,
e normalizing-scaling the force run 2FX"(k) in absolute values,
e approximation of FX"(k) run by linear spliced function with free knots,

e calculation of parameters characterizing crack resistance of material of the sam-
ple being tested.
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Determination of dependence 2F X" (k) on ram tramsformation:

i) the purpose of testing is to determine areas of elastic and plastic strains as well
as the begining of stable and unstable sample crack depending on its bend,

ii) normal scaling of force 2FX"(k) in absolute values is performed on the basis
of gauge pointer swings, where the gauge is scaled in operating units of sample
failure.

The programme module used in this way utilizes a simple assigning procedure of
run 2FX"(k) value and linear ram transformation ! = PI(k), where PI(k) -
ram displacement at discrete time measured by a suitable sensor (Figure 1) and
registered from the moment of ram stroke in the sample. The exchange of ”k”
argument into argument ”I”, carried out in this way for 2F X" (k) run, is reduced
to determine the following dependence:

2FX"(l) = 2F X" (PL™Y(1)), (15)

where PL~1(l) = k - an inverse function to PL(k) = I.

Normalization consistsin calculating proper proportionality factor Ky and
multiplying it by the runs FX'(I) as well as FX"(k). The programme module
separated for this purpose defines Ky factor from the following formula

M

Kn=An | Y (/2RFX"() + 2PX " Uer)](h — i) (16)
k=1

where Ay is the whole work of tested sample failure taken of a proper scale (the
scale is a standard equipment of the ram), the work may also be dynamometrically
defined and entered to computer by the operator; Iz —ram displacement (sample
bend) for discrete k—time. '

As a result we obtain absolute values of filtered force runs, and the whole failure
work calculated on their basis is equal to readings from the ram scale. Therefore,
from these runs we may determine failure parameters which characterize tested
samples at the time of their impact bend. It is advisable to do this after approxi-
mation of obtained runs.

Approximation of runs 2FX"(l) and/or 2FX"(k) may be carried out both
before and after normalization and even omitting final filtration step (due to its
good filtration characteristics). Analysed runs are approximaied here by spliced
functions FS with free knots (Suchomski, 1990), in particular cases ~ by linear
intervals in the following form
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o for 2FX"(k)

FS(k) = an_1 + (k — kn_l)H:% (17a)
e for 2FX"(I)
_ _ (an — an-1)
FS() = an-1 + (1= ln1) 227 (17b)

where k,,l, denote discrete time and ram displacement corresponding to the end
of ”n” and start of ”n + 1” approximation interval (points of splicing), a, - value
of FS function at splicing points, ko =0, ky = M, a9 =any =0, N - number
of approximation intervals.

In the approximation module the parameters ai, az, ..., an—1 and
ki,ko, ..., kn—1 andfor Ij,ls,...,IN.1 from function (17) are determined as a
result of minimization of the following indices

* for run 2F X" (k)

N & | (b — kpo1)2FX"(k) — ap(k — kn_1) — an_1(kn — k)

(bn = Ea1)? l (18a)

* for run 2FX"(1)

In

(18b)

(ln = 1,_1)2FX"(1) = an(I = lu1) = @n_q(ln = 1)
(ln - In—l)2 ‘

The optimization algorithm for random research (with modification) will be used
to reach this aim (Novosielcev et al., 1990).

Calculation of parameters characterizing crack resistance is the simplest
among the steps described in paragraph 3.2 — 3.3. The programme module used
for this purpose will calculate values Krc, Gre, Ji and others based on formulae
known from common literature, on the basis of strictly determined characteristic
points of approximated or filtrated runs. This module also contains all options of
test documentation print-outs, including runs of recorded forces before and after
filtration (selected by the operator).

4. The Practical Example

Precise knowledge of force changes in time, or force and displacement provides
comprehensive information about the behaviour of material in fracture process
during impact bend and it is the primary condition for estimation of tested material
crack resistance. )
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Several programme modules and algorithms described above (paragraph 3)
form one comprehensive data process programme of tested samples according to
the block diagram shown in Figure 5. This programme, as it has already been
mentioned, employs different algorithms of correction-filtration with the possibility
of the operator interference. Below, find practical results of selected filtration—
correction stages and measured data processing in time field, obtained for tested
sample of Charpy’s type, impact bend and made of C-Mn steel. Resulting force
runs are shown in Figures 6-9

o recorded directly from strain gauges placed on the ram — Figure 6,

e cleaned off fast-varying random interference (”smoothing” for I = 11)
— Figure 7,
e after final filtration of F’(k) run in time field (excluding force from supports)

carried out by tripple ”smoothing” for I = 21, and also after differentiation of
this run — Figure 8,

e after aproximation of run F"(k) by linear splicing function with free knots for
N =7 — Figure 9.

The appropriate values are recorded in M = 710 time points with sampling
frequency of 500 kH =.

It is clearly seen from the received force-time diagram of impact bending of
C-Mn steel sample (Figure 6) that it is extremely distorted and noised, and thus
a correct physical interpretation appears to be difficult. In this case it becomes
difficult to determine accurately both the dynamic elastic limit and the beginning
of fracture initiation, both stable and unstable, and their corresponding forces.
Determinaticn of maximal fracture force and division of fracture complete work
area (An) intoindividual components, i.e. the component of beginning of fracture
work in the plastic area (A,), the component of failure expansion work in the
unstable cracking area (A,), and the component of brake cracking work (A4),
seems to form a problem. As a result of the above, that diagram makes it very
difficult to evaluate the characteristic points as well as to calculate precisely the
parameters of tested material sample fracture based on these points.

Correction—filtration stages of real force diagram during impact sample bend
test, described in this paper, carried out by mathematical methods, provide more
precise interpretation of received final diagrams (Figures 8 and 9) than the output
diagram (Figure 6). On the basis of these final diagrams it is therefore possible to
determine precisely the characteristic points of failure sample runs during impact
bend sample test. The accurate valules of force and time (Figures 8 and 9) have
been determined on the basis of these points. The values concern

plastic limit — F, and T,
start of stable fracture — F, and T,

e start of unstable fracture — F,, and T,

e maximal value — F,, and T,,.
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The above values also make it possible to divide the whole failure work of tested
sample (Ap) into individual failure work areas A,, A, and Aj. Knowing these
parameters it is also possible to evaluate correctly the failure parameters of tested
sample as: Kjc, Grc, J4 and others, and also to collect additional information
about mechanism of the complete process of C—Mn steel tested material failure in
the given conditions.

5. Conclusions
Finally the following may be stated:

e it is possible to improve fast dynamic signals registration and processing in
impact bend test by means of special instrumentation of an impact testing
machine;

e mathematical processing — correction—filtration of fast dynamic runs by means
of proper algorithms may be the basis for correct physical interpretation and
precise evaluation of failure parameters of tested samples during impact bend;

e mathematical processing of fast—variable signals extends technical possibilities
of the impact test itself, and may also be helpful for the analysis of material be-
haviour during failure process, especially for complicated heterogeneous systems
like e.g. bond joint.
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Fig. 1. Simplified diagram of instrumented impact testing machine for dynamic
impact tests:

1 — basic strain gauges R1 and R1' on each support,

2 — basic strain gauges R2 and R2' on each side of linear ram,

3 — multi-rotary potentiometric sensor for determination of linear ram displacement,
4 - auxiliary strain gauges R4 and R4' for compensation of support free vibration,
5 — sample, 6 — supports, 7 — microswitch.
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Fig. 2. Measuring position block diagram for dynamic impact tests.
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Support 1

Support 2

11T

b)

Fig. 3. General diagram of impact bend process:

a) dynamic model of impact test (B—ram, P—sample element).

b) dependence of force Fr straining the spring between the two nearest elements of
the sample (I - elastic strain; II — plastic strain; III - spring rapture).
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Fig. 4. Simplified dynamic models of impact test.
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Fig. 6. Real diagram F = f(t) recorded directly from the sensors on the ram.
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Fig. 7. Pre-cleaned dependence from Fig. 6 by means of zero-moments method
(smoothing for I = 11).
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Fig. 8. Filtration final result of the run from Fig. 7 for I = 21, K = 3 by
means of zero-moments method and after differentiation in order to
determine characteristic points.
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Fig. 9. Approximation of the diagram from Fig. 8 by means of spliced function
method (method of linear function) for N = 7.



