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ANALYTICAL STUDY OF THE KALMAN FILTER FOR
STATIONARY DYNAMIC SYSTEMS

PETRO BIDYUK”, VLADIMIR PODLADCHIKOV*, IRYNA PODLADCHIKOVA*

This paper is devoted to development of analytical approach to the Kalman
filter study. This approach is based upon making use of Riccati equation solu-
tion for a class of dynamic systems considered, as well as Kalman and Wiener
filters transition matrices. An example of a moving object state estimation
shows advantages of the method proposed, the main of which are substantial
reduction of computational expenses on modelling of estimation algorithm
and a possibility of analytical study of estimation results. A case of corre-
lated measurement noise is also considered. Optimal and suboptimal filters
are applied to this case, and expressions for filtering errors are derived. The
results obtained can be used to determine a possibility of using suboptimal
instead of optimal filters, and to reduce computational expenses.

1. Introduction

The Kalman filter is nicely fit for computer realization, and is widely used to solve
practical problems of real time data processing in different fields of engineering.
However, recursive nature of the filter and difficulties with nonlinear Riccati equ-
ation solution make it necessary to utilize widely numerical techniques to perform
qualitative analysis of corresponding algorithms, sensitivity analysis, etc.

The quality of state and parameter estimation for a dynamic system is de-
termined by its dynamic properties as well as quality and statistics of measure-
ments. If the speed of measurement data processing is very high (sampling period
is short), then an assumption about statistical independence of measurable coordi-
nates (states) may result in additional estimation errors. The reasons for this are
the following:

o there exists correlation between measurements,

e the true data characterizing dynamic system behavior (e.g. in radar tracking
system) are usually less optimistic than supposed.

On the other hand, optimal filtering of correlated noise puts ahead higher re-
quirements to the computer for realization of corresponding algorithms. It follows
from the above that optimal filtering of correlated noise or utilization of suboptimal
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algorithm, based on the assumption of statistical independence of measurement er-
rors requires a priori analysis and comparative study of their estimating properties.
Usually analysis of the filter characteristics and development of engineering appro-
aches to synthesis of specific filters is fulfilled by numerical techniques (Anderson
and Moor, 1979; Rivkin ef al., 1976). The reason for this is that the Kalman fil-
ter, and solution of Riccati equation, which gives covariance matrix for errors of
filtering, have an explicit recursive form. Such an approach imposes restriction on
qualitative study of filter algorithm, and prevents from finding a solution to the
problem of influence of a set of different conditions on the quality of estimation.

The practical aspects of changing initial conditions to improve quality of esti-
mates, and to reduce transition period of an optimal filter were considered by Ljung
and Kailath (1977). They considered specific conditions, and results of research
were restricted by these conditions. Divergence analysis of an optimal filter is con-
sidered by Bidyuk (1985) who used integral equations of optimal filter that could
be found in (Roitenberg, 1978). An influence study of of the finite word length of
digital computer on the quality of optimal estimates was considered there. Possible
reasons of estimation process divergence were established. A method of equivalent
observation was used by Spencer (1981) to estimate sensitivity of errors to sta-
tistical parameters of measurement noise. Easily calculated partial derivatives of
final error covariances with respect to parameter variances were found. Availability
of the partial derivatives allows for an efficient ranking of error contributions to
determine which error variances should be parametrically varied. The method is
restricted to the white noise case. Discrete Kalman filter stability study by making
use of integral representation of the filter was performed by Korbicz et al., (1988).
Here, transition matrix of the filter was used to analyse the influence of initial
conditions on the quality of estimates including singular and non-singular initial
conditions. The problem of reliable state estimation for linear dynamic systems is
considered by Basin and Orlov (1992).. The authors develop a theory for ellipso-
idal estimation of state vector using continuous and discrete-time measurements.
But this study touches only upon estimation with respect to small variations in
measurements and skips general case. No special attention is devoted to asymp-
totic behavior of filter algorithm. In (Farber, 1992) analysis of filtering errors is
performed from the point of view of finite word length in computer used for filter
implementation. The author derived useful expressions for error estimation and
gave recommendations for computer word length selection. The problem of linear
filtering of stationary random process is considered by Golubev et al., (1992).

The purpose of this paper is to determine analytical representation for the
principal characteristics of the Kalman filter, that allow for a study of potential
possibilities of filtering algorithms for a class of dynamic systems such as mo-
ving objects or targets. Application of the proposed analytical approach leads to
substantial shortage of the computer simulation time during the process of filter
design, and sometimes permits to exclude simulation at all. Here we also develop
an analytical representation for variances of actual optimal and suboptimal errors
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of filtering for the case of correlated measurement noise. These analytical expres-
sions are used to analyse possibilities of suboptimal algorithm application without
substantial loss of estimation quality.

2. Kalman Filter Transition Matrix and Covariance Matrices
for Estimation Error

2.1. Analytical Representation of the Kalman Filter

Consider a linear stationary dynamic system described by equations

d:;gt) = Fz(t) + Guw(t) (1)
z(t) = He(t) + v(t) (2)-

where x is n—vector of dynamic system states, F — (nxn) matrix of system
dynamics, G - (nxm) matrix of inputs, H — (pxn) matrix of observation,
w(t) and wv(t) are white noise random processes with zero mean and covariance
matrices @, and R, respectively.

Continuous optimal filter equation for system (1), (2) is as follows
(Anderson and Moor, 1979)

dz(t)
dt
where Z is an optimal estimate of state vector, K (t) = P(t)HTR™* is optimal

filter gain, P(t) denotes covariance matrix of estimate errors, and is described by
a differential Riccati equation

= F3(t) + K (t)[2(t) — HZ(?)]

51%@ = FP(t)—- PA)FT - P(()HTR*HP(t) + GQG", (3)
P(0)= Py

Most often the solution of equation (3) is determined be making use of nu-
merical techniques (Andreyev, 1976). But for some class of models it is possible
to find an explicit solution of Riccati equation. Using results given by Andreyev
(1976) analytical solution of Riccati equation for stationary systems can be found
as follows

P(t) = P, + {exp(—ATt)(Po — P,)~ ! exp(—At)
+ /0 t [exp(AT(r — t))HT R™' H exp(A(7 — t))dr}~* (4)

where A = F — PaHTR‘lH is a matrix of dynamics for the Wiener filter
designed for system (1), (2); P, is a solution of algebraic Riccati equation.
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2.2. Transition Matrix for Optimal Filter

Explicit form of transition matrix for optimal filter can be found for the following
free dynamic system

de*(t) _ . .
5 = F=' @) | (5)
z(t) = Hz" () + v(t) (6)

If A=F—-P,HTR 'H is a transition matrix for the Wiener filter con-
structed for system (1), and covariance matrix Pj = Py — P,, where Py is a
covariance matrix for initial estimate of state g, and P, is a steady-state solu-
tion for equation (3), then transition matrices of optimal Kalman filter for system
(1), (2), and for a free dynamic system (5), (6) are identical.

It is shown by Roytenberg (1978) that transition matrix of the Kalman filter
for the free dynamic system (5), (6) is as follows:

o' (t,7) = P*(t) exp(AT('r - ))(P*(1))!

The Kalman filter transition matrix ®(t,7) for dynamic system (1), (2)
satisfies the following differential equation

9.’?% =[F-P@t)HTR'H|®(t,1)
Transition matrix ¥*(¢,7) also satisfies equation
dldﬁtt-’ﬂ = [A-P*HTR'H)&"(t,7)

It follows from the equality [F — P*HTR'H] = [A— P*HTR 'H] that
¥(t,7) = ¥*(t,7). Thus, we have

@(t,7) = [P(t) - Po]exp[(F — P, HT R H)T(r - t)][P(1) = P,]™" (7)

Taking into consideration that the transition matrix can be represented as a
product of two matrices, i.e. ¥(t,7) = S(t)S~1(r), we find that

5(t) = [P(t) — P,)exp{[~(F - P.HT R"1H)|Tt}

2.3. Sensitivity Analysis of the Kalman Filter

If an optimal filter processes data with poorly defined statistics, there usually
appear extra errors of estimation, which are studied by making use of numerical
techniques. Using transition matrix of the Kalman filter an explicit expression for
covariance matrices of extra filtering errors is derived for the case when state noise
model does not fit exactly the process noise. Suppose dynamic system is influenced
by two noise processes £1(t), and &5(t), then its model can be written as follows
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dz(t)
Cat
z(t) = Ha(t) + (1),

where cov{6,(t)} = @1, cov{€ ()} = @y cov{v(t)} = R

Let us not take into consideration during the process of filter design the other
noise component £,(t) i.e. the process model looks as follows

dz(t)
Tdt
z(t) = Hxz(t) + v(t)

= Fz(t) + G¢,(t) + G&(t) (8)

= Fa(t) + G&,(t)

Optimal filter for this model is described by equations

K(t)= P,(t)H"R™".

Here P,(t) denotes a covariance matrix that corresponds to an approximate
model (without €,(t)), and satisfies the following Riccati equation

dPy(t)
dt
Denoting actual estimation error as = = @ — z, and subtracting expression
(9) from expression (8) we get
dz(t)
Tdt

A solution for the differential equation (10) can be found in the form

= FP,(t) + Po()F7 + P,(t)H R HP,(t) + GQ,G"

= (F - K(t)HT)&(t) + K(t)v(t) + £,(8) + (1) (10)

z(t) = ¥(¢,0)%0 + [ P(t, 7)(GE () + Géo(r) — K (r)v(7))dT

Now the covariance matrix for the actual error of estimation is described by
equation

Py(t) = cov{z(t)} =
= b 0P (0) + [ B DKORKT(7)+ Q1+ Quly” (4,7

In the same way the covariance matrix can be found for the case of an appro-
ximate system model

P,(t) = (¢, 0)Poyp” (t,0) + / t ¥(t, ) K(T)RKT (1) + Q19" (t,7)dr
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Thus, additional filtering error generated during the filter run is defined by
equation

t
AP = Pot) - Py(t) = [ $(,1)Qu¥7(t,7)ar (11)
as the state noise term §,(t) was omitted. |

2.4. Example of Estimation of Moving Object States

Dynamic System Model. Using equation (1) characteristics of the Kalman filter
that is used for estimation of position and velocity of a moving object is determined.
Only position is measured, and velocity is disturbed by random, non-correlated in
time, acceleration.

Dynamic system matrices are defined as follows

F:Ol
0 0

G=[01)" H=[10], Q=¢), R=02

r

, @(T,t) — eF(-r—t)*: 1 7-1
0 1

Riccati Equation. A matrix Riccati equation for the model under consideration
can be replaced by the following system of first order equations

2p120 — Pi1a/07 = 0
P22a = P11aP12a/07 =0 (12)
~Plia/07 +05=0
where pi11a4, P12, P22¢ are elements of matrix P,
P, = [ P11a P12a :‘
P21a  P22a
Solving equations (12), we get the following formula
P, =} [ @0 " ]
K x(2K)12
where & =o,/0,

Matrix of Dynamics and Transition Matrix for the Wiener Filter. Matrix
of dynamics for the Wiener filter is defined in this case as follows

(2,112
A=F—-P,HTR = [ (26)"% 1 ]
—-K O
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Hamilton-Cayley theorem allows us to find the Wiener filter transition matrix

—(26)2a(t) + B(t) o(t)

A= ) A0

(13)

where
a(t) = (sin((k/2)/%t)/(k/2)/?) exp(—(x/2)*/?)
B(t) = exp(—(x/2)"/2t) (cos((k/2)*/t) + sin((x/2)'/?t))

Estimation Error Covariances. Suppose that a priori information characteri-
zing the initial system state is not available, i.e. Py 1 = 0. Substituting matrix
(13) into equation (4), and taking integral we get '

(P(t) — Pa)™" =

1 [ [(2 + sin((2)1/2t) — cos((2)*/2t)) exp((2x)"/2¢)] (26) 1/
2| [exp((28)!/72) (cos((26)M/2t) — 1)]

[exp((26)1/24) (cos((2w)1/2t) — 1)] K™ |

14
[(2 — sin((26)1/22) — cos((26)/21)) (exp((2x)/t) — 1)] (26)~/2

Calculating inverse for the matrix determines an explicit expression for the

covariances of filtering errors in transition mode of the filter as an explicit function
of time and variances of state and measurement noise

_ | puu(®) p12(?)
P = [le(t) pn(t)] 1

where
p11(t) = (02(2k)Y/2/D)(exp(2(2£) /2t) — 2 exp((2x)/2¢) sin((2x)1/ %) + 1)

P12(t) = pa1(t) = (c2k/D)(exp(2(2x)1/2t) — 2exp((2k)Y/%t) cos((2k)M/2t) + 1)
paz(t) = (026(26)Y/2/ D) (exp(2(2k)1/%t) + 2exp((2x)*/?t) sin((2c)1/ %) — 1)
D = exp(2(2x)*/%t) — 2 exp((2x)/%t)(2 — cos((2n)?/2t) +1

For the special case of elimination of the state noise, and with & — 0, we find
the following result

P = 4/t 6/t
T e/t 12/e3

Optimal Kalman Filter Transition Matrix. Now determine matrix §~'(7)
for the system model under consideration. Substituting expression (14) for (P(7)—
P,)~! intoequation (7), and exp(A) = exp(F—PaHTR_lH), after appropriate
transformations we get
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$~Y(r) = [511(") b12(7) ]

b21(T) b22(T)

wher
:11 = (2k)~1/2(cos((x/2)?t)sh((x/2)"/?t) + sin((x/2) /?t)ch((x/2)"/2t)

biz = — [(ein((x/2)/2))x="] sh((x/2)/2¢)

ba1 = [(sin((:c/2)1/2t))n"1] sh((x/2)'/?t)

bay = (k(2x)~2/?)(cos((x/2)"/?t)sh((x/2)*/?t) — sin((x/2)"/?t)ch((k/2)"/?t))

Now explicit form for the optimal filter transition matrix is as follows

= -1 b22(®)  —bia(?) || bua(7)  bra(7)
vt 7) = (de) [ =bn(t) bu(t) ] [ bar(7)  baa(r) } 9

where '

d(t) = (8x%)~1(ch(2x)Y/2t) + cos((2x)'/%t) — 2)

Kalman Filter Sensitivity to State Noise Model Errors. Define additional
error of filtering for the class of models (1), (2). Substituting expression (16) for
¥(t,7) into formula (11), and taking integral we have

A Axg
Az Ap

AP(@) = [

where
An = o3 (4((26) /MDY y = A+ 7 x
x [4((26)1/2t)(sin((2k)/t) — 1) + 2 cos((2x)/?t) — 2sin((2¢)/2t) — 4] +
+X [—4(2x)1/2t(sin((26) /%) + 1) — 2sin((26)1/2t) — 2 cos((2x)/2t) + 4] +
+ 8sin((2x)1/2t) — 4sin((2x)/2t) cos((2x)1/2t) + 8(2k)1/%t cos((2k)1/2¢) }

Ay = Agy = 02,(8((26)/2)1°D3) 1 {2y + 2X + 71 x
x [~4(2k)1/2t(—sin((26)"/%t) — cos((2x)M/?t + 1) — 8] +
+X1 [4(2K)Y/2t(sin((2x)1/%t) — cos((2x)Y/2t) + 1) — 8] +
+ 16 cos((2r)'/2t) — 4 + 8sin?((2x)/%t) — 8(2x) /%t sin((2x)/%t)}
Anz = 03,(8((2)/%)° D})~" {37 = 32 +m x
x [6sin((2x)1/2t) + 6 cos((2k)/2t) — 12 — 4(2k)M/24(1 — cos((26)'/%t))] +
+X1 [6sin((2K)1/2¢t) — 6 cos((2)/2t) + 12 — 4(2k)2t(1 — cos((2x)Y/%t))] +
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+8(2x)/2t(1 — cos((2x)1/2t)) — 24sin((2k)*/%t)+
+12 sin((2n)1/2t) cos((2n)1/2t)}

D? = (8x%)~Y(y1 + A1 — 4+ 2cos((2k)1/2t))
k=o0afor, 1= exp(2(2n)1/2t)’ "= exp((?n)llzt)
A= exp(—2(2¢)M%t), A1 = exp(—(2x)1/2t)

If t is going to infinity, steady-state estimation errors caused by modeling
errors of the state noise have the following covariances

(2K(2K2)1/2)— (2¢)71 »
lim AP(t) = [ (26)-1 3(2(2¢)1/%)~1 }

Thus, additional error of a position signal estimation is bounded by the value
02,(26(26)/?)~1, and for the velocity signal error we have the following limit:
302,(2(2¢)Y/%)1,

If o041 tends to zero we will find an explicit expression for additional errors
of estimation for the special case when noise term £; is not present

lim AP(t) =

0qa1—0

£3/105  11£2/210
11¢2/210  13t/35

This expression shows that additional errors of estimation verge to infinity
with t — oo, i.e. the Kalman filter estimates diverge. This is true for the case
when the actual system is disturbed by the state noise, but the filter is built for a
free dynamic system.

3. Error of Filtering for a Case of Correlated
Measurement Noise

3.1. Mathematical Problem Statement

Let system dynamics be described by a differential equation as follows (free dynamic
system)

de(t) :
2(t) = Hz(t) + v(2) (18)

where z is a state vector, and F denotes a matrix of system dynamics.

Assuming that the components of the state vector are measured at the presence
of additive noise, a linear measurement equation will be like (2). In this equation
v(t) is a random noise process with known statistics
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E{v(t)} =0

E{v(t)vT (1)} = Rexp[-A(t — 7)] = e* T exp[-A(t — 7)] = L(¢, ) (19)
where o2 is a variance of measurement error for the component of state vector,
A = 1/7 is an inverse value with respect to the correlation time, and I is a unity
matrix.

Generalization of the optimal filtering j)roblem for the errors correlated in
time is based on the filter design that establishes a link between the vector of
measurement errors v(t), and the white noise vector #(t)

9 = o) +n0t) (20)

The optimal filtering algorithm for the case of a coloured measurement noise
is represented by the modified Kalman filter with the following observation matrix
(Sage and Melsa, 1971)

BY L meFY-2HE (21)

H'(t) =
with measurements

)= E0 (22)
The filtering algorithm is defined by the equation (Rivkin et al., 1976)

%l =F@#)z"(t) + K*(t)v(t) (23)

where 2*(t) is an optimal estimate of state vector, and innovation () is defined
by the equation

dz(t)

v(t) = = Az(t) - H*(t)7" (2) (24)
The filter gain is computed using a known equation
K*(t) = P*()H* " ()R- (?) : (25)

where R*(t) = cov{n(t)} = 20?AI. The covariance matrix of filtering errors
(argument ¢ is dropped to simplify writing) is given by

dP*(t)
at

with the following initial conditions

=FP'+P'F' - PPH*"R'-‘H"P*-! (26)

= [HT(O) H(O)]—laz, z3(0) = [H"(0) H(O)]‘1 [HT(O)z(O)] @7)
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The problem is to determine the covariance matrix of estimate error as an
explicit function of time for the cases of optimal and suboptimal filtering, and
then to use these expressions to develop recommendations on the possibilities of
application of suboptimal algorithms.

3.2. Derivation of Covariance Matrices for Estimate Error for a Case
of Coloured Measurement Noise

An integral representation of the Kalman filter will be used to analyse the quality
of estimation. It is shown by Roitenberg (1979) that for continuous—time systems
in the absence of state noise an optimal estimate of the system state vector can be
found as an explicit function of time and model parameters.

As in the case of white measurement noise an optimal estimate of state vector
for a system with coloured errors is determined by the equation

z'(t) = P*(1) /0 &" (1, O[H* ()] [R" (7)) 2(r)dr (28)

where

Pr(t) = {fot ch(T,t)[H*]T[R"]‘lH*d)(T,t)dr+¢T(0,t)[PB]'1¢(0,t)} (29)

The suboptimal estimate of a state vector, with assumption that measurement
noise is non—correlated, can be calculated using the equation

3(t) = P(t) /0 &7 (r, ) HT (r)R™ () z(r)dr (30)

where P(t) is defined by expression

1

‘ -
P(t)= [ / ¢ (7, t)HTR‘lHqS(r,t)dr] (31)
0
Now constructing the relation

z(t) = P)P~ (t)z(t) =

= P(t) [ /0 t ¢T(r,t)HTR‘1H¢(r,t)dr] x(t) (32)

and using (19), (30), and the property of transition matrix that ¢(7,t) =
&(1,0)¢(0,t) the estimate error can be determined as follows

2(t) — =(1) = P(t)'/0 ¢” (r,)H" (1) R™}(r)v(r)dr (33)
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3.3. Illustrative Example

Let dynamic system matrices be defined as in section 2.4 and measurement noise
statistics correspond to (19). Thus H*(t) = [A 1]T. Initial conditions correspond
to (27). Such a model can be used to describe moving object tracking process,
with state vector z = [:c %}T, where the first element is object position, and
the other is its velocity.

Substituting components of matrices #*, H*, R*, and Pj into equation (29)
we have

eomg—1 1
(1) 1—2,,”[

A2 (2t — A%t2) /2
(2Xt — A%t2) /2 (A%t3 - 3At3 4-3t)/3

1 [ 1 —t } 1 [ 222 4+ 2) —(A22 + 2)t)/2

- = — 34
—t 42 202X [ —(A22 4 221)/2 (,\3t3+3,\t2+3t)/3] (34)

o2

Finding an inverse for matrix (34) we can write the optimal estimate error
covariance matrix in the form

» _ 24t p{l PI2
P't) = 3o + 8A313 4 24222 4 24Xt l P Pl |’ (35)
where p}; = (A2243Mt+3)/3; pi, = py; = (A2242X1)/2t; p3, = (A224+2X8)/t2

In fact, pj; is a variance of position estimate error, p3, is a variance of velocity
estimate error, and pj, is a correlation moment for the position and velocity
estimate errors.

Let the measurement model used by the optimal filter not contain information
about correlation of measurement errors. In such a case the covariance matrix
of actual estimate errors P, will have distinctions with respect to the nominal
one. By making use of equation (31), and matrices &, H, R, defined previously,
covariance matrix P(t) can be found

4t 6/t ]

6/t2 12/t3 (36)

P(t) = o? [

Actual covariance of estimate error P,4(t) for considered suboptimal case can
be found using the following integral equation (Brown, 1983)

P.(t) = P(t) {/[; /0 QT(T,t)HT(T)R_l(T)L(T, J)R'I(J)H(U) x

x @(o,t)drdo }P(t) (37)
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Substitution of P(t), defined by (36), and @, R, H, L(r,t) into equation (37)
yields the actual covariance '

P.(t) = Pa11  Pa12 , (38)
Pa21 Pa22

where
Pa11 = 4 [18 — 5A%2 — 2exp(—At)(9 + 9t + 22%t2) 4 2233]

Pa12 = Paz1 = 12 [12 — 3A%t2 — 3exp(—At)(2 + At?) + A3¢3] ¢~1

Pazz = 24 [12 — 3022 — exp(—At)(2 + At)? + A3¢3] t—2

3.4. Comparative Study of Optimal and Suboptimal Filters

Figures 1 and 2 illustrate time history of normalized variances of position and
velocity estimates for optimal and suboptimal filtering found by making use of (37)
and (31) for the values of correlation interval 7 = 0.1s and = 0.5s. Figure 2 a
has different time scale for the time interval t > 4s.

pu/o’
11
0.9 -
0.7 -
0.5 —

0.3 —

0.1

Fig. 1. Variance of filtering error versus observation time:
ter, — _ _ suboptimal filter (position estimation).

optimal fil-
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p22f0” 4
2.2 - ‘
7 = 0.53
1.8
14 - - r=0.1s
p2a/o?
1.0 — 01—\ r=0.5s
7=0.1s
0.6 — 0.06 —
~.
0.2 - ~ 0.02 - —
——
0 T T 0 1 ) I
2 4 6 8 10 t(s)

Fig. 2. Variance of filtering error for velocity estimation (ordinate axis scale
was increased 10 times).

4
pfo?

2.0

1.2

0.4 -

0 1 ] I I 1 t(s)
2 4 6 8 10
Fig. 3. Variance of extrapolation error for position versus observation time:
1—-At=0.5s, r=0.5s
2 — At =0.25s, 7 = 0.53
3—-At=0.5s T=0.1s
4 — At = 0.25s, T =0.1s
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It can be seen from the figures that the larger is correlation interval 7, the slower
is the convergence of variances of filtered position and velocity with respect to
their steady-state values. Additional errors of filtering (in suboptimal case) are
substantial at the beginning of the observation interval only (¢t < 2s) for velocity
estimates. But they are quickly decreasing to zero with extension of the observation
interval.

Figure 3 illustrates normalized values of variances of estimate errors for extra-
polation on an interval of time At of the moving object position for optimal and
suboptimal cases. These variances were computed from expression

%1 = P11 + 2Atp1s + (At)2pas,

with At =0.25s, 0.5s, and 7 = 0.1s, 0.5s.

It can be seen from Figure 3 that with correlation interval ¢ = 0.5s the
suboptimal filter requires 1< 0.3s more of observation time to reach the same
estimation quality as optimal filter. If the correlation interval decreases to 7 =
0.1s, the maximum extra observation time for subaptimal filter does not exceed
0.3 +0.35s at the beginning of the observation period.

It can be concluded that processing of measurements can be performed without
taking into account correlation of measurements if correlation interval = < 0.1s.
If 7> 0.1s, correlation of measurement errors should be taken into consideration
to avoid a substantial decrease of filtering quality.

4, Conclusions

Analytical representations for the covariance matrices of estimation errors and
Kalman filter transition matrix were derived in the paper. These expressions can
be useful for the study of applied problems via analytical techniques, e.g. for
determining observation time necessary for dynamic system state estimation.

Using analytical representation for the Kalman filter transition matrix, expres-
sions for covariances of additional errors were derived, caused by a priori statistical
ambiguities. Usefulness of analytical results was illustrated by an example of state
estimation for the moving object. Thus, an approach was proposed for estimation
of the Kalman filter characteristics by making use of analytical techniques. The
approach allows us to calculate losses of quality of estimation due to application of
suboptimal algorithms used in practice.

Using integral representation of the Kalman filter a comparative study of opti-
mal and suboptimal filtering errors for the case of correlated measurement noise
was performed. Expressions for actual errors of optimal and suboptimal filters were
derived as explicit functions of correlation interval 7, and observation time ¢. The
comparative study of filters showed that additional errors of estimation caused by
correlation of measurement noise are increasing with the increase of correlation
interval. It was shown that a less time consuming suboptimal filter can be used
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without a substantial loss of estimation quality if correlation interval ¢ is less or
equal- 0.1s.
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