Appl. Math. and Comp. Sci., 1993, vol.3, No.2, 341-355

PROGRAM CHANGE ANALYSIS

BogpaN KoOREL*

Software maintenance involves making changes to a program to correct er-
rors, to improve efficiency, or to extend the program functionality. For large
programs, understanding the influence of program changes can be very ag-
gravating. Program change analysis is a method of analyzing the differences
between the original program and its modified version in order to determine
the scope and effect of a modification. The goal of program change analysis
is to provide support for programers to understand program modifications
(e.g., the influence of a modification on the selected program outputs) or to
understand possible unintended influences introduced by the modification.
In addition, the change analysis is used to automatically detect anomalies or
errors related to the modification in order to indicate possible problems with
the modification. The program change analysis presented in this paper is
based on the program dependence analysis. First, different classes of possible
modifications that are made to the program are identified. Then, based on
the type of modification, program dependence analysis is used to determine
the affected parts of the program and possible unintended influences. A pro-
totype of the change analysis tool has been recently implemented for Pascal
programs.

1. Introduction

The maintenance phase of the Systems Life Cycle has been estimated to consume
60 to 80 percent of the total life cycle cost of the typical system (Schneidewind,
1987). Therefore, developing techniques and tools that enhance the software main-
tenance phase could be very cost effective. Using proper maintenance techniques
can increase the effectiveness of detecting a greater percentage of errors leading to
a higher quality of the software product. Software maintenance involves making
changes to a program to correct errors, to improve efficiency, or to extend the
program functionality. For large programs, understanding the influence of program
changes can be very aggravating. It is almost impossible for a programer to trace
possible affects of a modification in large programs. Program change analysis is a
method of analyzing the differences between the original program and its modified
version in order to determine the scope and effect of a modification. The goal of
program change analysis is to provide support for programers to understand the

* Department of Computer Science, Wayne State University, Detroit, MI 48202, USA,
E-mail: bmk@cs.wayne.edu

342 B. Korel

effects of program modifications (e.g., the influence of a modification on program
output or other parts of the program), to understand possible unintended influences
introduced by the modification, etc. In addition, the change analysis is used to
automatically detect anomalies or errors related to the modification in order to
indicate possible problems with the modification. For example, the change analysis
may determine that the modification does not influence an output variable that
was incorrect in the original program on some program input. This is, obviously,
an indication of an erroneous modification since the modification was supposed
to change the value of the output variable on this input. The intention of change
analysis is to draw the programer’s attention to anomalies in the modified program.
While these are not necessarily erroneous conditions, it is possible that many of
these anomalies are the result of erroneous modifications.

In the related research mainly (backward) program slicing (Weiser, 1984) has been
used for software maintenance (Gallagher and Lyle, 1991; Schneidewind, 1987;
Yau and Kishimoto, 1987). We believe, however, that for the change analysis in
software maintenance this type of program slicing is of limited use. In addition,
formal approach for change analysis has been proposed in (Moriconi and Winkler,
1990). However, because of serious limitations of this approach (e.g., difficulty of
automatic analysis for realistic programs), the approach does not seem to be of
practical value.

In this paper we propose to use the notion of forward slicing and input—output
relation analysis for program change analysis. The program change analysis pre-
sented in this paper is based on the program dependence analysis. First, different
classes of possible modifications that may be made to the program are identified.
Then, based on the type of modification, program dependence analysis is used to
determine the affected parts of the program (and possible unintended influences)
or to detect potential anomalies related to modifications.

An experimental prototype of the change analysis tool which supports software
maintenance has been recently implemented. This tool automatically identifies
types of modification by comparing the modified program and its old version. De-
pending on the modification type, the tool computes the influenced areas of the
program based on static analysis (Ferrante et al., 1987; Horowitz et al., 1990;
Korel, 1987). Users can query the tool to perform different types of analysis in
order to better understand the possible effect of modifications and to detect possi-
ble anomalies. This tool allows programers to concentrate only on those parts of
the program that relate to the modification. The tool has been implemented for a
subset of Pascal programming language.

In the next section, we present program dependence concepts. Section 3 discusses
types of program modifications and their influence on the program. In section 4, we
introduce forward slicing and input—output analysis and show how they are used
in change analysis. Finally, in conclusions future research is presented.

Program change analysis. 343

2. Program Dependence Concepts

To facilitate the presentation, we define some of the terminology that will be used
in this paper. For the sake of simplicity, we restrict our analysis to a subset
of structured Pascal-like programming language constructs, namely: sequencing,
" if-then—else and while statements. These restrictions are merely to simplify the
presentation, and the general theory can be extended to complete programs written -
in any procedural language. A flow graph of program @ is a directed graph C =
(N,E,s,e) where (1) N is a set of nodes, (2) E is a binary relation on
N (a subset of N x N), referred to as a set of edges, and (3) s and e are,
respectively, unique entry and nnique exit nodes, s, ¢ € N. A node in N
corresponds to the smallest single-entry, single—exit executable part of a statement
in Q that cannot be further decomposed; such a part is referred to as a node. A
single node corresponds to an assignment statement, an input or output statement,
or the <expression> part of an if-then—else or while statement, in which case it
is called a conditional node. An edge (n;, n;) € E corresponds to a possible
transfer of control from node n; to node nj. For instance, (3,4), (7,8), and
(7,13) are edges in the program of Figure 1. A path P in a control flow graph
is a sequence P = <ng,,nk,,...,nk,> of nodes, such that ng, = s, and for all
i, 1<i<gq, (ng,nk,,) € E. A use of variable y is a node n in which this
variable is referenced. A use can be a conditional node, an assignment node, or an
output node. A definition of variable y is a node n which assigns a value to that
variable. A definition can be an assignment node or an input node. Let USE(n)
be a set of variables whose values are used in node n and let DEF(n) be a'set of
variables whose values are defined in n. The sets USE and DEF for each node in
a program can be identified by static analysis. An input variable of a program is
a variable that appears in an input statement, e.g., read(z). Similarly, an output
variable is a variable that appears in an output statement, e.g., write(z).

Program dependence concepts. The program dependences (Bergeretti and
Carre, 1985; Ferrante et al., 1987; Horowitz et al., 1990; Korel, 1987) are broken
into two kinds of dependences namely the data dependence and control dependence.

Data Dependence. The data dependence is represented by data flow (definition—
use chain). More formally, given nodes n; and nj, n; is data dependent on n;
by variable v iff (1) v € USE(n;), (2) v € DEF(n;), and (3) there exists a control
path from n; to n; along which v is not modified. For instance, in the program
of Figure 1, node 11 is data dependent on node 6 because variable i is defined
in node 6 and used in node 11 and there exists a control path from 6 to 11 along
which 7 is not modified.

Control Dependence. The control dependence is defined between conditional
nodes and the nodes which can be chosen to execute by the conditional nodes. For
the sake of presentation, we define control dependence only for if-then—else and
while-statements (a method for finding control dependences for arbitrary programs
is given in (Ferrante et al., 1987)).

344) B. Korel

1. program Main 17. procedure init(z,y,z) 26. procedure min(z,y)
2. read(A); 18. £:=0; 27. if £ <y then

3. read(B); 19. y:=0; 28. Y :=1I;

4. read(n); 20. z:=0; 29. return;

5. call init(mn,mz,s); 21. return;

6. i:=1; 30. procedure sum(z, y)
7. while i <=n do 22. procedure max(z, y) 31. z:=z+vy;

8. call max(A[:],mz); 23. if >y then 32. return;

9. call min(B[i],mn); 24. y = 1;

10. call sum(s, B[i]); 25. return;

1. i=i+1;

12. endwhile;
13. write(mn);
14. write(mz);
15. write(s);
16. end;

The program is supposed to compute the minimal element (represented by output variable
mn) in input array B, the sum of all elements (represented by output variable s) of input
array B, and the maximal element (represented by ontput variable mz) ininput array A.

Fig. 1. A sample program with procedures.

a) if n; then B; else By _
n; is control dependent on n; iff n; appears in the control subgraph of B,
or Bs. '

b) while Z do B;
nj is control dependent on n; iff n; appears in the control subgraph of B,

The control dependences capture the dependence between conditional nodes and
nodes which can be chosen to execute or not execute by these conditional nodes.
For instance, nodes 9 and 10 in the program of Figure 1 are control dependent on
node 7, but node 13 is not control dependent on node 7.

Program Dependence Graph. The dependence relations can be represented
as a directed graph, where vertices represent nodes, and edges represent data and
control dependences. This graph will be called the program dependence graph
(Ferrante et al., 1987; Horowitz et al., 1990; Korel, 1987). More formally we
give its definition as follows: A Program Dependence Graph of a program P
is a graph G = (N, A), such that N is a set of nodes in program P, and
A = {(ni,n;) € N x N| n; is Data or Control dependent on n;}.

System Dependence Graph. The system dependence graph (Horowitz et al.,
1990) is an extension of the program dependence graph used to represent programs
with procedures. The system dependence graph combines the dependence graphs
for the individual procedures with additional edges and nodes representing proce-
dure calls. Procedures introduce new types of nodes into the dependence graph.

Program change analysis. 345

For each procedure definition, an ”entry” node and a ”return” node are introduced.
These nodes represent an entry to the procedure and exit from the procedure, re-
spectively. In addition, special types of nodes are introduced that represent formal
and actual parameters. With each procedure calling node associated are nodes cal-
. led actual-in and actual-out nodes. These nodes represent actual input and output
parameters of the procedure call. Similarly, with each procedure entry node as-
sociated are nodes called formal-in and formal-out nodes. These nodes represent
formal input and output parameters of the procedure. Directed edges in the system
dependence graph are added that connect actual-in nodes with formal-in nodes .
and edges that connect formal-out nodes with actual-out nodes. Those edges mo-
del the process of passing parameters (input data) from the procedure call into the
procedure and passing output data from the procedure to the procedure call. Addi-
tionally, new control edges are introduced that model control dependence between
(1) a calling node and the procedure entry node, (2) a calling node and formal-
in/formal-out nodes, and (3) a procedure entry node and all nodes inside of the
procedure (including actual-in/actual- out nodes). A sample system dependence
subgraph for the program of Figure 1 is given in Figure 2.

We say that node n; has influence on node n; iff there exists a path in the
system dependence graph from n; to n;. For example, from the dependence
subgraph of Figure 2, it is easy to see that node 3 has influence on node 13.

3. Program Change Analysis

Program change analysis is a method of analyzing the differences between the ori-
ginal program and its modified version in order to determine the scope and effect
of a modification. The goal of program change analysis is to provide support for
programers to understand the effects of program modifications (e.g., the influence
of a modification on program output or other parts of the program), to understand
possible unintended influences introduced by the modification, etc. Let P be an
original program and ¢ be its modified version. Intuitively, a program modifica-
tion has influence on output variable y if there exists a program input for which
the final value of y computed by P is different from the final value computed by
Q. Although it is undecidable whether a program modification actually leads to a
change in behavior, it is possible to determine a safe approximation of the set of
changed computations. To compute this information, we use a dependence—graph
representation of programs (Ferrante et al., 1987; Horowitz et al., 1990).

In addition, the change analysis can be used -to automatically detect anomalies
or errors related to the modification in order to indicate possible problems with
the modification. The intention of the change analysis is to draw the programer’s
attention to anomalies in the modified program. While these are not necessary
erroneous conditions, it is possible that many of these anomalies are the result of
erroneous modifications.

346 B. Korel

——Pp Data dependence
..... P> Control dependence

—_ Parameter-in
Parameter-out

Fig. 2. System dependence subgraph of the program in Figure 1. Square nodes
represent formal-in/formal-out nodes, circle nodes represent actual-
in/actual-out nodes.

Depending on the different types of maintenance (perfective maintenance, cor-
rective maintenance, or adaptive maintenance) different types of analysis can be
performed. In perfective maintenance changes are made to the program because
those changes should change, for example, the effectiveness of the program; in this
type of maintenance, the functional behavior of the program should not change. In
corrective maintenance the major reason for making changes to the program is to
correct detected faults. In this type of maintenance, the behavior of the program is
expected to be different, especially the incorrect output. In adaptive maintenance,
changes are required because of changes in the environment of the program; in
adaptive maintenance, the specification of the program is usually changed.

Modifications can be identified on different level of granuality, for example, modifi-
cations can be done on an assignment statement level, a predicate level, if-then—else

Program change analysis. 347

and while-statement level, procedure level, variable level, etc. Each modification
may affect directly either a value of a variable or a flow of control at some point
in the program. The first step is to identify for each modification the influenced
variables or flow of control. This is a starting point of the change analysis. When
the influenced variables (or control flow) for each modification are identified, we
can determine, in the next step, those parts of the program which are influenced by
those variables or modified test predicates. For this purpose, program dependence
analysis is applied. Different modifications for different type of maintenance may
require different types of change analysis because each modification can introduce
new influences between program elements or cause the removal of others influences.

In what follows we present sample modifications on an assignment-statement level
and test—predicate level, and, then, illustrate directly influenced program elements
(variables or control flow). Let P be an original program and @ its modified
version.

Modifications of an Assignment Statement:

a) Right—hand side is modified.

In this type of modification the right hand side of an assignment statement is
modified. In this modification, a variable on the left-hand side of the assignment
statement is influenced. For example, for the following modification

Initial Modified

y:=z+z Yy =x—2z

variable y is directly influenced, i.e., each time when the modified assignment
statement is executed in @ the value of y may be different from the value of y
in the original program P.

b) Left—-hand side is modified.
In this type of modification the left hand side of an assignment statement is modi-

fied. In here two variables are influenced. For example, for the following modifica-
tion:

Initial Modified

y=z+z v:=z+2

variables y and v are directly influenced, i.e., values of those variables in the
modified program (@ may be different from values in the original program P.
Although both variables y and v are influenced by this type of modification,
they are influenced differently. Variable v is directly influenced by the modified
statement in @. On the other hand, variable y is not influenced any more by this
assignment statement in Q.

348 B. Korel

Modification of a Test Predicate:

Initial Modified
if <y then z:=1 if z<=y then z:=1

In this type of modification, a flow of control is directly influenced, i.e., all nodes
that are control dependent on the modified conditional node are influenced by this
modification. In the above example, the execution of ”z := 1” statement is
influenced. A more extensive list of possible modifications and influenced variables
(and control flow) are presented in Appendix A. '

In summary, each modification can affect directly either variables or a flow of
control at some point in the program. If the modification affects variables in the
program, we distinguish three sets of variables associated with this modification.
Let n be a node before modification and n’ be its modified version.

A set V = DEF(n) |J DEF(n') represents all influenced variablés by the
modification. . :

A set Vi=DEF(n’) — DEF(n) represents newly influenced variables, i.e., variables
that were not influenced by node n (before the modification) but are influenced
by modified node n'.

A set V2,=DEF(n) — DEF(n’) represents variables not influenced any more by the
modified node, i.e., variables that are not influenced by modified node n’ but were
influenced by node n (before modification).

These sets are used in the change analysis presented in the next section.

4. Program Dependence—Oriented Change Analysis

We now review a concept of forward slicing and input—out relation that are used
in our change analysis.

Forward Slicing. A program slice (Weiser, 1984) with respect to a program point
p and variable v consists of all statements and predicates of the program that
might affect the value of v at point p. Program slicing has extensively been used
for debugging, testing, reverse engineering, and software maintenance. We believe,
however; that for the change analysis in software maintenance program slicing
is of limited use. In this paper we propose to use the notion of forward slicing
(Horowitz et al., 1990) for program change analysis. The forward slice FS(p,v)
of a program with respect to a program point p and variable v consists of all
statements and predicates of the program that might be influenced by the value of
z at point p. For a given program modification at point p that directly affects
variable v, forward slice FS(p, v) represents all statements that are influenced by
this modification, i.e., those statements that might manifest different behavior.

In order to find forward slice we use program dependence analysis, i.e., a system
dependence graph. More formally we find this forward slice as follows:

Program change analysis. 349

FS(p,v) = USE'(p,v) U {n € N| there exists Z€ USE'(p,v) such that
there exists a path in the system
dependence graph from Z to n}

where USE'(p,v) = {n € N|v € USE(n) and there exists a control path in the
program s control flow graph from point p to n along which v is not modified},
and |J is a set union.

For example, for the program of Figure 1, a forward slice for variable B at point
3 can be derived from the system dependance subgraph of Figure 2:

FS(3,B) = {9, 10,13, 15,26, 27,28, 30, 31}.

Let X be a conditional node. Similarly for forward slicing, we introduce a set
INF(X) of nodes that might be influenced by X. More formally, we find this set
as follows:

INF(X) = {n € N| there exists a path_in the system dependence
graph from X ‘to n}.

This set is used to determine the influenced parts of the program for modification
affecting flow of control, e.g., modification in a test predicate.

Input—Output Relation Analysis. In this section we present an input—output
relation analysis (Korel, 1987) that may be effective in detection of some types
of anomalies or errors related to the modification. The main idea is to derive a
relationship between program inputs and program outputs. Clearly, the goal is to
identify the specific input elements of the program that might influence the specific
output elements. This information may be helpful in providing better understan-
ding of the program, and it can be used to check for possible discrepancies. Since in
many programs the same input variables may appear in different input statements,
each input element will be identified by a variable name and an input node in which
the variable appears. Similarly, output elements are identified by a variable name
and an output node in which this variable appears. For the sake of presentation
we assume that only one input variable is specified in each input statement and
similarly, only one output variable is specified in each output statement.

The following specifies a method of finding whether a particular input element may
influence a particular output element, by using system dependence graph: We say
that an input variable z at input node I may influence an output variable y at
output statement O iff O € FS(I,z).

For example, it can be determined from the system dependence graph of Figure 2
that input variables n and B have influence on output variables mn and s.
The following is the complete input—output relation for the program of Figure 1.

Qutput variable Input variables

mn B,
s B,
A

mz

S 33

350 B. Korel

Program Change Analysis. Let P be an original program and Q its modified
version, and let n be anode in P and n’ be its modified version in Q. With
this modification three sets are associated: set V that represents all influenced
variables by the modification, set V; that represents newly influenced variables,
and set V, that represents variables not influenced any more by the modified
node. For example, suppose that statement 28 in the program of Figure 1 has
been modified from "y := z” to "z := y”. Based on this modification, we can
determine that V = {z,y}, Vi = {z}, V2 = {y}.

In order to evaluate the effect of the modification on the program, programers may
need to have different types of information related to this modification. In what
follows we present a list of possible analyses that can be performed to support
programers in this evaluation process.

1. Influenced nodes

In order to determine the influence of the modification on the other parts of the
program, forward slicing is used for all influenced variables:

U FS(n’,v)
veV

The influenced program parts are represented by a union of all forward slices of
variables influenced by the particular modification at node n. This union repre-
sents all nodes that may manifest different behavior in Q. For instance, for our
example,

FS(28,z) UFS(28,y) = {9,10,13,15,26,27,30,31}.
Notice that [
FS(28,z) = {9,10,13,15,26, 30,31}
FS(28,y) = {9,13,26,27}.
Those slices are derived from the system dependence graph presented in Figure 3.

2. Newly influenced nodes

In change analysis it is important to isolate newly influenced parts of the program.
This is important for programers to determine the scope of influence and possible
unintended influences, i.e., whether the “right” parts of the program are influenced,
and that unexpected parts are not influenced. Newly influenced nodes can be found
as follows:

U FS(n',v) — U FS(n',v)
veV, veEV,

Clearly, this set represents all nodes that were not influenced by node n in the
original program P but are now influenced by n’ in the modified program Q.

Program change analysis. 351

——JP Data dependence
----- P Control dependence

read(B) _ Parameter-in

Parameter-out

Fig. 3. System dependence subgraph of the modified program of Figure 1.
For our example, newly influenced area is computed as:
FS(28,z) — FS(28,y) = {10,15,30,31}

This information may help a programer to determine possible unintended influences
introduced by this modification, i.e., in this case the modification has a ” suspicious”
influence on procedure sum and ”write(s)”. Careful analysis by the programer
may determine an erroneous modification. In the change analysis tool that has
been developed, this information is displayed in the program text by highlighting
statements corresponding to the newly influenced nodes (see Figure 4).

3. Not influenced nodes

Similarly to the newly influenced nodes, it is important to isolate those nodes that
are no longer influenced by the modified node. This information is computed as
follows:

352 B. Korel

U FS(n',v) — U FS(n',v)

veV, veVy

Clearly, this set represents all nodes that were influenced in node n in the original
program P but are not influenced any more by n’ in the modified program Q.

For our example, those nodes are computed as
FS(28,y) — FS(28,z) = {13,27}.

This information helps a programer to understand that the output node ” write(mn)”
is not influenced any more by the modified node 28.

4. Input—Output relation

When the input-output relation analysis is applied to the modified program in our
example, it is determined that there is a change in the input-output relation with
respect to output variable mn.

Before Modification After modification
Output Input Output Input
mn B,n mn n

The change in the program functionality indicates to the programer a possible
erroneous modification.

1. program Main 17. procedure init(z,y,z) 26. procedure min(z,y)
2. read(A); 18. z:=0; 27. if £ <y then

3. read(B);] 19. y:=0; 28. y:i=1x;

4. read(n); 20. z:=0; 29. return;

5. call init(mn,mz, s); 21. return;

6. 1:=1; 30. procedure sum(e, y)
7. while i<=n do 22. procedure max(z, y) 31, z:==z+u;

8. call max(A[i),mz); 23. if z>y then 32. return;

9. call min(B[{],mn); 24. y ==z :

10. call sum(s, B[¢]); 25. return;

11. =141

12. endwhile;
13. write(mn);
14. write(mz);

15. write(s);

16. end;

Fig. 4. Highlighted newly influenced program statements.

5. Conclusions

The goal of change analysis presented in this paper is to analyze the possible
difference in behavior between the original program and its modified version, i.e.,
this analysis tries to answer the question as to whether a program modification

Program change analysis. 353

leads to the desired change in program behavior, and, at the same time, it does
not cause an undesirable change in behavior in other parts of the program. The
purpose of program change analysis presented in this paper is twofold: (1) to detect
possible erroneous modifications or anomalies related to those modifications, and
(2) to support programers in the process of understanding the overall effect of
modifications on the program. An experimental prototype of the change analysis
tool which supports change analysis has been recently implemented for Pascal
programs.

References

Bergeretti J.F. and Carre B.A. (1985): Information—flow and data-flow analysis
of while—programs. — ACM Trans. Program. Languages and Systems, v.7, No.1,
pp.37-61.

Ferrante J., Ottenstein K. and Warren J. (1987): The program dependence graph
and its use in optimization. — ACM Trans. Program. Languages and Systems v.9,
No.3, pp.319-349.

Gallagher K. and Lyle J. (1991): Using program slicing in software maintenance. —
IEEE Trans. Software Engineering, v.SE-17, No.8, pp.751-761.

Horowitz S., Reps T. and Binkley D. (1990): Interprocedural slicing using depen-
dence graphs. — ACM Trans. Programming Languages and Systems, v.12, No.1,
Pp.26-60.

Korel B. (1987): The program dependence graph in static program testing. — Informa-
tion Processing Letters, v.24, No.2, pp.103-108.

Moriconi M. and Winkler T. (1990): Approrimate reasoning about the semantic
effects of program change. — IEEE Trans. Software Engineering, v.SE-16, No.9,
pp.980-992.

Schneidewind N. (1987): The state of software Maintenance. — IEEE Trans. Software
Engineering, v.SE-13, No.3, pp.303-310.

Weiser M. (1984): Program slicing. — IEEE Tran. on Software Engineering, v.SE-10,
pp-352-357.

Yau S.S. and Kishimoto Z. (1987): A Method for Revalidating Modified Programs in
the Maintenance Phase. — Proc. COMPSAC-87 Conference, pp.272-277.

Received December 7, 1992
Revised March 19, 1993

354

B. Korel

APPENDIX A

Sample Program Modifications

Influenced
1. Assignment Statement
a. Modification of the right-hand-side.

Initial Modified
yi=z+z yi=z—z; V={y}, i=Va={}
b. Modification of the left—hand side.

yi=z+z; vI=2T+ 2z V= {y,v}, Vi{v}, Va={y}

c. Insertion

z:=1; z:=1;
s:=1z+4; y:i=z+z V=Wi={y}, a={}
si=z+4,
d. Deletion
z:=1; z:=1;
yi=z+z; 5=z +4; V=Va={y}, i={}
s:=1z+4;
2. Test Node

if z<y then 2:=1; if =y then z:=1; flow of control

3. If-statement

a. Insertion

if z<y then z:=1; flow of control

b. Deletion
vi=1;
if <y then 2:=1; w:=g; V=V,={z}, i={}

w = g;

Program change analysis. 355

4. Procedure call
a. Insertion
empty statement {n'} call sum(z1,22) V = V; = {DEF(n")}, V2 = {}
b. Deletion
{n} call sum(z1,z2) empty statement V =V, = {DEF(n)}, i = { }
Where, set V' represents all influenced variables by the modification, seti Vi re-

presents newly influenced variables, and set V3 represents variables not influenced
any more by the modified node.

