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A SURVEY OF ROBUSTNESS PROBLEMS IN
QUANTITATIVE MODEL-BASED FAULT DIAGNOSIS

RoN J. PATTON*, J. CHEN*

Quantitative model-based fault diagnosis has become a popular issue in
safety—critical systems, e.g., aircraft, spacecraft, chemical processes and nu-
clear plants. The use of dynamic system model information has been widely
recognized as an important approach to fault detection and isolation for the
case when there are no repeated hardware units. A prerequisite for relia-
bility in model-based fault diagnosis is robust performance with respect to
uncertainties. This paper gives a tutorial discussion of the different problems
in robustness and surveys the state of the art in robust solutions for quan-
titative model-based fault diagnosis. The state observer with disturbance
de-coupling design has been recommended as a good solution for robustness
in fault diagnosis. Further research topics in robust fault diagnosis have also
been outlined.

1. Introduction

Modern systems and equipment are often faced with unexpected changes, such as
component faults and variations in operating conditions, that tend to degrade the
overall system performance. In order to design a reliable, fault—tolerant control
system, or to maintain a high level.of performance for complex processes, e.g.,
spacecraft, aircraft, chemical processes and nuclear plants, etc., it is crucial that
such changes are detected promptly and diagnosed so that corrective action can
be taken to reconfigure the control system and accommodate the change (Frank,
1990; Patton, 1991; Patton et al., 1989; Willsky, 1976).

A monitoring system which has the capability of detecting and locating a fault
and diagnosing its characteristics, is called the fault diagnosis system (Patton,
1991). Such a system must consist of two main tasks — fault detection and
fault isolation (FDI). The fault detection task simply consists of making a binary
decision — either that something has gone wrong or that everything is fine. If
necessary, this is followed by the next step, the fault isolation task — to determine
the source of the fault, e.g., which sensor, actuator or system component has failed.

FDI can be achieved using a replication of hardware (e.g. computers, sensors,
actuators and other components) in wha' is known as hardware redundancy in
which outputs from identical components are compared for consistency (Patton,
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1991; Patton et al., 1989). Alternatively, FDI can be achieved using analytical
or functional information (in quantitative rather than qualitative form) about the
process being monitored, i.e. based on a mathematical model of the system (Patton,
1991; Patton et al., 1989). This latter approach is known as analytical redundancy
which is sometimes also known as quantitative model-based FDI. FDI can also be
achieved by knowledge-based approaches (Patton, 1991; Patton et al., 1989) using
qualitative (deep or shallow) information associated with heuristic reasoning. A
general classification is shown in Figure 1.

Fault Diagnosis
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Fig. 1. Classification of FDI methods.

All model-based approaches to fault diagnosis employ mathematical models
of the monitored system (Patton et al., 1989). If the model is accurate and the
characteristics of all the disturbances are known, FDI can be very straightforward.
For a practical system, uncertainties are inevitable and may interfere seriously
with diagnosis procedures. To improve the reliability and performance of quanti-
tative model-based FDI, the discrimination of faults from uncertainties must be
considered. This is the so—called robustness problem with respect to uncertainty in
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quantitative model-based FDI. As a general definition, the robustness means the
degree to which the detection performance is unaffected by modelling errors and
unknown (unmeasured) disturbances (Frank, 1990; Gertler, 1991; Patton, 1991;
Patton et al., 1989; Patton and Chen, 1991a).

This paper starts with a description and brief review of quantitative model-
based FDI methods, followed by a tutorial discussion of ways in which the observer—
based approach can be made robust against modelling errors and uncertainties.

2. The Basic Principles of Quantitative Model-Based FDI

The quantitative model-based ¥DI approach is based on the comparison of the
actual system behaviour and the anticipated system behaviour which is generated
by the mathematical model of the system being considered (Gertler, 1991; Willsky,
1976). The FDI process can be considered as two stages (see Fig. 2):

e Residual generation: In which, outputs and inputs of the system are pro-
cessed by an appropriate algorithm (a processor) to generate residual signals.

e Decision making: The residuals are examined for the likelihood of faults,
and a decision rule is then applied to determine if any fault has occurred. A
decision process may consist of a simple threshold test on the instantaneous
values or (alternatively) moving averages of the residuals, or methods of sta-
tistical decision theory, e.g., likelihood ratio testing and sequential probability
ratio testing.

Faults ' Faults Faults

Inputs Plant Outputs
| —o-i e
” Actuators Dynamics Sensors Y

L . Fault
Residual Residuals Decision Decision

Generation " making

Fig. 2. Two stages structure of the fault diagnosis process.

The residuals are quantities that represent the inconsistency between the ac-
tual plant measurements and the mathematical model outputs. Multiple faults
may occur and have to be isolated, a set of structured residuals is required, so
that the different faults are reflected in the residuals in distinct ways and can be
discriminated.
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The state space (differential equation) model of the dynamic system to be
diagnosed can be expressed as:

#(t) = Az(t) + Bu(t) + R, £(2) (1)
y(t) = Cz(t) + Du(t) + R f(t) (@)

where =x(t) € IR® is the state vector, y(t) € R™ is the output vector and
u(t) € R" is the input (or control) vector. A, B, C and D are known
matrices with appropriate dimensions, whilst f(t) € IRY is a fault vector. Each
element f;(t)(i =1,2,...,q) corresponds to a special fault mode. From a practical
point of view it is reasonable not to make further assumptions about the fault
modes but consider these as unknown time functions. The matrices R; and R,
are known as fault eniry matrices which represent the effect of faults on the system.
Normally, these matrices are known.

The input-output description of the monitored system is:

y(s) = Gu(s)u(s) + Gy(s)f(s) . (3)
RIS u(s) = C(sT— A)'B+ D | (4)
Gi(s) = C(sI— A)"'R; + Ry ()

A traditional way of detecting faults is to use limit checking (Frank, 1987;
Patton and Chen, 1991a), i.e. to compare plant variables with preset limits, for
which the exceedance of a limit can indicate a fault situation. Whilst very simple,
this method has a serious drawback, the plant variables vary significantly with
different operating states of the plant. The limit thus has to be dependent on the
operating state of the plant. Residual testing is a direct development of the limit
checking method. The aim here is that residuals generated should be indepen-
dent of the system operating state under nominal plant operating conditions. In
the absence of faults, the residuals are only excited by unmodelled effects, such as
parameter errors, noise and disturbances, and are nominally near zero. When a
system fault occurs, the residuals deviate from zero in characteristic ways. Resid-
uals are indicators of faults, and are ideally only affected by faults and not by
other system changes. Hence, it is possible to use a fixed threshold so that when
the residual signal exceeds this threshold a fault can be declared. A typical struc-
ture of a model-based residual generator is shown in Figure 3 which involves the
processing of the input and output data of the system (Patton and Chen, 1991a).

A general mathematical description of the residual generator can now be ex-
pressed as:

r(s) = [Hu(s) Hy(s)] [ 38 } = Ho(syu(s) + Hy(s)y(s)  (6)

Here, H,(s) and H,(s) are transfer matrices which are realizable using stable
linear systems.
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Fig. 3. The general structure of residual generation.

The residual must be independent of the normal operating state of the system.
In the fault—free and case of no uncertainty, the residual is zero (or at least very
small),

r(s) = 0 and y(s) = G(s)u(s) for the fault—free case (7

For satisfying this requirement, the transfer function matrices Hy(s) and Hy(s)
must satisfy the equation:

H(s) + Hy(s)Gu(s) = 0 (8)

Equation (6) is a unified and generalized representation of all residual generators.
The design of the residual generator results simply in the choice of the transfer
function matrices Hy(s) and H,(s) which must satisfy equation (8). Different
residual generation methods correspond to different parameterizations of H, (s)
and Hy(s). Observer and parity space residual structures are two examples of
the parameterization of H,(s) and H,(s). One can obtain different residual
generators using different forms for Hy(s) and Hy(s). The desired residual
performance can be achieved by suitable designs of Hy(s) and Hy(s).

When faults occur in the monitored plant, the response of the residual vector
is:

7(s) = Hy(s)Gy(s)f(s) (9)

In order to detect the i-th fault in the residual r(s), the i-th column
[H,(s) G4(s)]; of the transfer function matrix [H(s) Gy(s)] should be nonzero,
and this is especially true for steady—state values, i.e.

[H,(s) Gs(s)]i # 0 and especially [Hy(0)G;(0)): #0
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The fault detection problem can then be stated in terms of some decision function,
J(r), and threshold Jy, as follows:

J(r) < Jin for f&)=0
J(r) > Jin for F@#£0
Evidently, the ideal case would be Ji, = 0 which is however, normally impossible

because of modelling errors.

The generation of residual quantities is a central issue in quantitative model
based FDI schemes. A rich variety of methods proposed for residual generation
can be classified as observer or filter based approaches (Frank, 1987), parity rela-
tions approaches (Chow and Willsky, 1984) and parameter estimation approaches
(Isermann, 1984), as appropriate.

Outputs Inputs

Estimated
Outputs

Residuals

Fig. 4. General structure of observer~based residual generator.

The underlying idea in using observer or filter based approaches (as illustrated in
Figure 4) is to estimate the outputs of the system from the measurements (or a
subset of measurements) by using either the Luenberger observers in a deterministic
setting (Frank, 1987) or the Kalman filter in a stochastic setting (Frank, 1987;
Willsky, 1976). Then, the (weighted) output estimation error (or innovations) is
used as aresidual. The flexibility in selecting observer gains has been fully exploited
in the literature yielding a rich variety of FDI schemes (Frank, 1987).

A
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The residual generator based on the observer is described by the following:

#(t) = (A — KC)Z(t) + (B — KD)u(t) + Ky(t) (10)
#(t) = CZ(t) + Du(t) (11)
r(t) = Wey(t) = W(y(t) — (1)) (12)

where Z(t) € R" is the state estimation vector, y(t) € R™ the output estimation
vector, r(t) € IR? is a residual vector and W € IRP*™ is a weighting matrix.

According to the residual generator structure of Figure 3, the transfer functions
H,(s) and H(s) for observer based approaches are:

H,(s)=WC[sI - (A-KC)"'K +W (13)
H,(s)=WC[sI-(A- KC)"Y(B-KD)+WD (14)

3. Robustness Problems in the Quantitative
Model-Based Method

Clearly, the reliability of the FDI scheme must be higher than that of the monitored
system. However, a model-based approach to FDI will require knowledge (i.e. a
model) of the dynamics of the monitored system. The better the model used as a
representation of the dynamic behaviour of the system, the better will be the FDI
performance; this will be true up to a reasonable limit. The interesting question
is just what is a reasonable model to enable good performance in FDI (Frank,
1990; Patton, 1991; Patton et al., 1989; Patton and Chen, 1991a)? Furthermore,
when this balance is reached, just what benefits can be gained by using analytical
compared with hardware redundancy? These are amongst the most important
challenges to be addressed.

It is clear that the main problem which can obstruct the progress and improve-
ment in reliability of FDI schemes is that of robustness. All model-based methods
for FDI involve a residual generation procedure (Frank, 1990; Patton, 1991; Patton
et al., 1989; Patton and Chen, 1991a), the residual being a fault indicator signal
which is zero-valued for the fault—free situation when no uncertainty acts upon the
detection system. Both faults and uncertainties affect the residual, and discrimina-
tion between these two effects is difficult. The main task in the design of a robust
FDI system is thus to generate residuals which are insensitive to uncertainties,
whilst at the same time sensitive to faults, and therefore robust.

3.1. The Robustness Problem with Respect to Parameter Uncertainties

A major problem in the field of FDI schemes is caused by uncertainties in the
values of physical parameters of the monitored system. In general, model-based
methods of FDI are essentially based on the goodness of fit of mathematical models

»
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for the menitored system. They therefore depend critically upon the values of the
many physical characteristics of the system, such as properties of mass, moments
of inertia, electric circuit parameters, aerodynamic or hydrodynamic forces and
moments, heat transfer properties, etc. If these are all known with precision the
residuals will be accurate and the FDI scheme may display remarkable sensitivity
to soft or incipient faults and immunity to false alarm. However, in most systems,
even those that are modelled accurately as linear and time invariant (the simplest
case of a dynamic system), some physical parameter values are only known approx-
imately. Consequently, the state or parameter estimators must be designed using
only nominal values for the uncertain parameters or using some accommodation
mechanism to compensate for uncertainty. The resulting residuals are always in
error, the severity of the errors depending upon the manoeuvres of the monitored
system in ways which are not easily determined.

In the presence of process parameter variations, the state equations of the
process can be written as:

z(t) = (A+ AA)z(t) + (B + AB)u(t) + Ri f(t) (15)
y(t) = (C + AC)z(t) + (D + AD)u(t) + Ry f(t) (16)
where AA, AB, AC and AD represent modelling errors in the form of matrix

parameter perturbations.
When the residual generator (10)-(12) is applied to the system of equations

(15) and (16), the state estimation error and residual equations are:
e(t) = (A—- KC)e(t)+ R1f(t) — KRy f(t) + AAx(t)

+ABu(t) - KACz(t) — KADu(t) (17)

7(t) = WCe(t) + WR; f(t) + WACx(t) + WADu(t) (18)

Now, the terms AAz(t), ABu(t), ACz(t) and ADu(t) will force the residual
vector 7(t) to wander away from, zero even if no faults occur in the system.
Indeed, the effects of parameter uncertainties and faults are mixed up together
and it is difficult to distinguish their separate effects on the residual. Clearly, as
the perturbation terms are usually not known for a real application, it may be
difficult to solve this robustness problem completely. However, it is possible to
minimize the effect of the unwanted terms in residuals to yield predominantly the
fault information.

3.2. The Robustness Problem with Respect to Estimator
Initial Conditions

From equations (10)-(12), we can get the residual
7(s) = WC(sI — A.)"'[R1f(s) — K Ry £(s)]

+W R, f(s) + WC(sI — A.) te(0) (19)
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where A, = A — KC. If a fault occurs during the transient phase, nonzero initial
conditions e(0) will cause the residual to be non—zero. If e(0) is known, the
residual generation problem becomes trivial. However, in general e(0) is unknown
so that this is also a difficult robustness problem to solve.

3.3. The Robustness Problem with Respeect to Nonlinearities

Most dynamic plants are nonlinear, whilst many behave almost linearly, provided
that they are not required to deviate from a narrow region around a nominal oper-
ating condition. An FDI scheme based on linear models might be quite satisfactory
for these conditions. However, outside of this region of operation the nonlinearities
of the plant produce signals which are not modelled accurately by the FDI scheme,
and these may then be mis—interpreted as faults. Hence, a fault monitoring system
must be tested over the entire operating range of the plant being monitored.

A linear representation is often used to model a non-linear system for

small perturbations around the operating point. Consider a linearization error
Af(x,u) as follows:

z(t) = Az(t) + Bu(t) + Ri f(t) + Af(z,u) (20)

y(t) = C=(t) + Du(t) + Rz f(t) (21)
Thus

é(t) = (A - KC)e(t) + Ry f(t) — KR f(t) + Af(z,u) {22)

r(t) = WCe(t) + WR3f(t) (23)

The linearization error will affect the residuals which may cause false alarm.

3.4. The Robustness Problem with Respect to Disturbances and Noise

Dynamic systems are normally subjected to inputs other than those intended by the
system designer. These inputs, called disturbances, are usually random functions
originating in the environment, such as fluctuations in the wind. Furthermore, the
sensors usually have electronic noise superimposed on their signals. This noise is
also random, but originates from a different source and is usually uncorrelated with
the disturbances. Most signal processing techniques used by designers to account
for random fluctuations assume that noise and (sometimes) disturbances are sta-
tionary Gaussian processes having known parameters. If the actual disturbances
and noise are non-stationary, non—-Gaussian or correlated, then this stochastic ap-
proach to FDI will not perform well.

Consider the system:
z(t) = Az(t) + Bu(t) + G¢(t) + R1 f(t) (24)

y(t) = Caz(t) + Du(t) + €(t) + R2 £(2) (25)
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where §(t) is a disturbance vector and €(t) represents additive noise on the
sensors. Thus, the estimation error and residual equation are:

&(t) = (A - KO)elt) + Ry £(t) - KRof(t) + GE(t) — Ke(t)  (26)
Dr(t) =WCe(t)+ WRyf(t) + We(t) 27)

The Kalman filter can be used to estimate the state in an optimal way when
the noise statistics are known (in the case of stationary, Gaussian process and
measurement noise), this will then minimize the effect of the noise on the residuals.
Also, by applying signal-averaging to the residuals, the effect of the noise can be
decreased.

3.5. The Robustness Problem with Respect to Unmodelled Dynamics

Most systems can have significantly higher order dynamics than their models. In
the design of an FDI scheme, we only use a low order model to approximate the
high order system. Hence, the dynamic errors appear in the model.

&(t) = Az(t) + Bu(t) + A1z (t) + R f(2) (28)

y(t) = C=(t) + Du(t) + Ry f(2) (29)
where Ajz(t) is a model reduction error term.

e(t)=(A— KC)e(t) + Rif(t) — KRy f(t) + A1z1(t) (30)

r(t) = WCe(t) + W R, f(t) (31)

This robustness problem is valid in model-based approaches in which observers are
used as a part of the residual-generation mechanism, particularly when reduced-
order models are used (In practice, a reduced—order model of some forms is always
in use for a real application).

3.6. The Robustness Problem with Respect to Fault Types

A component in a process can malfunction in many ways according to the following
Classification of faults:

(i) According to the location at which each fault affects the system:
e sensor fault e computer fault
e actuator fault e communication fault
e a fault in a component other than a sensor or actuator (e.g. a fault in a
feed—pump or valve)
(ii) According to the type of fault signals:
¢ bias ¢ abrupt changes
o drift o stochastic faults
e slow varying fault

N,
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For example, a sensor can suffer a change of scale factor, a bias which may
not be constant, a nonlinearity due to wear or friction, a measured value stuck at
a particular level within its dynamic range, excess noise, or hysteresis. Some FDI
schemes are designed to detect only specific types of faults, and these become more
cumbersome as the number of faults in the fault repertoire is increased. Clearly, ifa
malfunction should occur which is not in this repertoire or fault diagnosis knowledge
base, then the FDI scheme will not recognise it. It is better to have a scherne which
detects any fault and identifies the faulty component, even though the specific type
of fault is not identified. It is, however, still important to isolate a fault event from
events caused by internal process uncertainties or external disturbances.

Fault types mainly affect the decision making process, and this is especially
true for stochastic systems. A fault monitor which is robust to fault types can
include hypothesis—generation and hypothesis—testing (Basseville and Benveniste,
1986; Patton et al., 1989). The hypothesis generation procedure is to build up
a repertoire of known or hypothesised possible malfunctions or faults in system
components or instruments (sensors). The most powerful approaches to hypothesis
generation should be based on the combination of qualitative and quantitative
reasoning to enhance the advantages of each approach, whilst minimizing their
disadvantages:

4. Robustness Solutions for Quantitative Model-Based FDI
4.1. Structured Uncertainty

Up to now, the most powerful and successful ways to achieve robustness in FDI
make use of disturbance de—coupling ideas (Frank, 1991; Frank and Wiinnenberg,
1989; Gertler, 1991; Patton et al., 1987; Patton et al., 1989; Patton and Chen,
1991a; Patton and Chen, 1991b; Patton and Chen, 1992; Watanabe and Himmel-
blau, 1982). In these approaches, all uncertainties are summarized as disturbance
terms acting on the dynamic model. The effect of this uncertainty, on the system
can be illustrated as follows.

The state space form:

#(t) = Az(t) + Bu(t) + Ed(t) + R. £(t) (32)

y(t) = Cz(t) + Du(t) + Ry £(t) (33)
The input—output form: |

Y(s) = Gu(s)u(s) + Ga(s)d(s) + G(s)f(s) (34)
and

Gu(s)=C(sI— A)'E (35)

where the term Ed(k) is used to represent uncertainties acting upon the system.
The disturbance d(t) is unknown, but its distribution matrix E is assumed
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to be known (i.e. the directions represented by the columns of these matrices are
known); this is an example of structured uncertainty. On substituting equation
(34) into equation (6), the s—domain residual vector is:

v(s) = Hy(s)Gy(s)f(s) + Hy(s)Ga(s)d(s) (36)
If the residual generator has been designed to satisfy:
H,(s)Ga(s) = 0 (37)

the disturbance is totally de—coupled from the residual. That is to say, the resid-
ual-can be made independent of all disturbances to enable robust FDI. This is
the principle of disturbance de—coupling. Disturbance de—coupling designs can be
achieved by using the unknown input observer (Frank and Wiinnenberg, 1982, 1989;
Watanabe and Himmelblau, 1982) or alternatively, eigenstructure assignment
(Gertler, 1991; Patton and Chen, 1991a, 1991b, 1992; Patton et al., 1987) ap-
proaches. As far as the design of robust residuals is concerned, these methods are
formally equivalent and use different mathematical tools to achieve the same goal
in robustness (Gertler, 1991).

For observer—based residual generaﬁon approach, it can be shown that:
H,(s)G4(s) = WC[sI - (A- KC)|"'E (38)

In order to make the residual »(t) to be independent of the uncertainty, it is
necessary that:

WC[sI-(A-KC)| E=0 (39)

This is a special case of the ouput-zeroing problem (Patton et al., 1989). Once
E is known, the remaining problem is to choose the matrices K and W to
satisfy (39), in addition to choosing the suitable eigenvalues to optimize the FDI
performance. The eigenstructure assignment is a direct way to design disturbance
de—coupled residual generators. By suitable assignment of the eigenstructure of the
observer, the residual can be designed to provide disturbance de-coupling (Gertler,
1991; Patton and Chen, 1991a, 1991b, 1992; Patton et al., 1987).

Theorem 1. If WCE = 0, and all rows of the mairicr H = WCE arc left
eigenvectors of (A — KC) corresponding to any eigenvalues, equation (39) holds
true.

Theorem 2. If WCE =0, and all columns ~f the matriz E are right eigenvec-
tors of (A — KC) corresponding to any eigenvalues, equation (39) holds true.

If condition (37) does not hold, perfect (accurate) de—coupling cannot be obtained.
One can consider approximate de—coupling. The best that can be done is to find
an optimal solution by minimizing a performance index containing a measure of
the effects of both disturbances and faults. An appropriate choice of performance
index can thus be defined as:
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_ 1Hy(0)Ga(iw)]

|Hy(jw) Gy ()l
By minimizing the performance index J for a specified frequency range, an ap-
proximate de—coupling design can be achieved (Ding and Frank, 1991; Frank, 1991).

J

(40)

4.2. Unstructured Uncertainty

Clearly, a necessary assumption for disturbance de—coupling is that the disturbance
distribution matrix must be known a priori. In more general problems, the uncer-
tainty structure is unknown (i.e. the unstructured uncertainty) and for such cases,
the robustness problems are more difficult to solve. In this case, the system can be
described as: '

Y(s) = (Gu(s) + AGu())u(s) + (Gy(s) + AG; () £(s) (41)
And, the residual is:
r(6) = Hy()(G1(s) + AG ()F(s) + Hy()AG()uls) (42

For unstructured uncertainties as defined by AGy(s) and AGy(s), it is very
difficult to achieve robust residual generation. One way of achieving this is to obtain
an approximate structure for the uncertainties. As this approximate structure is
used to design disturbance de—coupling residual generators, the a suitably robust
FDI is achievable. Within the framework of International Research on robust
fault detection, a generalised approach to obtain the structure of uncertainties has
hitherto been lacking. Recent work by Patton and Chen (1991a, 1991c, 1992) shows
that, even for a system as complex as a jet engine, the uncertainty distribution
can be estimated either for one operating point or over a wide dynamic range
of operation of the engine. The results show that, for a complex and very non-
linear thermodynamic engine system, a simple estimation procedure can be used to
estimate the uncertainty distribution at some operating points in demanded high
compressor shaft speed (and hence thrust). Once the matrix E corresponding to
individual operating points is known, an optimization procedure can then yield the
optirmumi uncertainty distribution to enable a robust FDI design. This approximate
structured description is considered an optimal description of the uncertainty in
the jet engine system and can even be updated on-line. Patton and Chen (1991a,
1991c, 1992) have demonstrated that this powerful approach works well over a wide
range of operation of a simulated non-linear engine system.

Robust fault diagnosis by robust design of residuals is defined as the class of
active methods (Gertler, 1991; Patton and Chen, 1991a). By this, we mean that
the effect of uncertainties on residuals has been minimized, or on the other hand
the effect of faults on residuals has been maximized.

4.3. Adaptive Threshold

Efforts to enhance the robustness of FDI can also be made at the decision-making
stage and we call this the passive approach (Gertler, 1991; Patton and Chen, 1991a).
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Due to the great number of parameter uncertainties, disturbances and noise encoun-
tered in practical application, one will rarely find a situation where the conditions
for perfect robust residual generation are met. This is especially true for unstruc-
tured uncertainties. It is therefore necessary to provide sufficient robustness not
only in the residual generation stage but also in the stage of residual evaluation
(a step in decision-making). The goal of robust residual evaluation is to enable
reliable decision-making in the sense that the false alarm and missing alarm rate
due to uncertainties of residuals become satisfactorily small. This can be achieved
in several ways, e.g. by statistical data processing, averaging, correction, or by
finding and using the most effective threshold.

The common approach to fault decision-making is to define the non-zerc
threshold, at which the decision functions are compared. Normally, fixed thresh-
olds are used. If a decision signal exceeds the threshold, the occurrence of a fault
. 1s assumed. If, on the other hand, the decision function remains below the thresh-
old, the monitored process is considered free of faults. The problem with the fixed
threshold approach is that the sensitivity to faults will be intolerably reduced if the
threshold is chosen too high, whereas the rate of false alarms will be too large when
the threshold is chosen too low. The proper choice of the threshold is a delicate
problem. The idea is based on the perception that in the case of system uncer-
tainties, the residual fluctuates with the changing system inputs even if no fault
occurs. Walker (1989) has proposed the determination of the optimal threshold
via Markov theory. In the case of large manoeuvres these changes might be large
enough so that there is no fized threshold giving satisfactorily fault detection at
a tolerable false alarm rate. In order to increase the robustness in such a situa-
tion it is possible to use adaptive thresholds (Clark, 1989; Ding and Frank, 1991;
Emami-Naeini et al., 1988; Frank, 1991), where thresholds are varied according to
the control activity of the plant.

adaptive threshold

J fixed threshold

residual
\ =

false alarm T

fault

—

Fig. 5. The adaptive threshold and the residual.
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Figure 5 shows the typical shape of an adaptive threshold for direct residual
evaluation. The question is how to determine the threshold adaptive law? Clark
(1989) used an empirical adaptive law. Emami-Naeini et al., (1988) proposed the
threshold selector method, by which the adaptive threshold can be obtained in a
systematic way. The threshold selector presents a new and innovative tool for
analysis and synthesis of FDI algorithms. The optimal threshold is shown to be a
function of the bound on modelling errors, the noise properties, the speed of the
FDI observers, and the types (classes) of reference and fault signals. This approach
was generalized by Ding and Frank (1991) and this is shown in Figure 6.

....................................................

y(t)

Residual Decision

Generator r (t) Mechanism

u(t)

Threshold
Adaptor

(Selector) T(¢)

Fig. 6. FDI scheme with threshold adaptor (or selector).

The basis of determining the adaptive threshold is to assume that:
IGL(s)]l < 6 (43)

From this assumption and equation (42), we can see that the bound of the fault—free
residual is:

lIr(s)ll = | Hy(s)AGu(s)u(s)l| < [|6H y(s)u(s)l| ({14)
Hence, the adaptive threshold is defined as:
T(s) = 6H ,(s)u(s) (45)

We call the adaptive threshold approach a passive method for robust FDI (Patton
and Chen, 1991a). By this we mean that the reliable decision-making under un-
certain residuals situation. The passive approaches to robust FDI design, by their
very nature deal with a problem of bounds on uncertainty; bounds are expressed
in terms of the thresholds for; these detection required to maintain robustness.
Hence, a combination of active and passive approaches can offer potential for real
robustness, especially when considering practical applications.

It is believed that the success of an FDI scheme depends on the accurate and
appropriate modelling of the monitored process. Hence, some attention to the field
and issues of robustness must be paid to ensure that sufficient modelling of the
monitored process is achieved.
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5. Conclusion

In this paper the robustness problem in quantitative model-based FDI has been
discussed. It has been pointed out that the critical issue of FDI is the robustness
with respect to uncertainties.

So far the majority of studies in robustness for model-based FDI have focused
on Robust Residual-Generation problems. Observer-based approaches to residual
generation have stimulated a significant interest in the development of methods
related to the robust control problem; this is possible as the observer is the dual
of the controller design problem. These active approaches tackle the robustness
problem in a more direct way, by considering the real mechanisms of uncertainty
(structured or unstructured). De—coupling ideas are used whenever the uncertainty
can be considered as structured and this can be achieved for example, by using
either eigenstructure design or the so—called unknown input observer.

It is important to stress that most effective robustness methods work well even
when the uncertainty structure (e.g. directions of disturbances or unknown inputs)
is not known. However, even for these methods some knowledge of uncertainty e.g.
in terms of frequency distribution or likely magnitudes and point of excitation in
the system must be known a priori. For the case of unstructured uncertainty, some
authors have used knowledge of the bounds of uncertainty to solve the robustness
design problem via frequency domain methods, which are well known in robust
control (e.g. H* and related methods). In some cases robustness design methods
for structured uncertainty have been applied to systems with unstructured uncer-
tainty using the time-domain technique, for example by estimating the disturbance
model through state estimation.
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