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FRAMES IN DIAGNOSTIC REASONING

Woiciece CHOLEWA*

A frame is a flexible representation of statements and rules. It is especially
attractive for the designing of interfaces with an expert system. It has been
shown in the paper, that frames are a useful tool in the designing of reasoning
systems for technical diagnostics. They can be successfully applied to support
the most difficult part of such a task - ie. to acquire knowledge. The main
features of an expert system shell composed of a frame interpreter and tools
for programmers have been presented, too.

1. Introduction

The detection of changes in the internal state of a machine by means of nonde-
structive tests is one of the main goals in technical diagnostics. Such a detection
is based on the features of interaction between the machine and environment. The
basic diagnostic model of a machine can be built using a set of features. The
methods dealing with the diagnostics of machines are frequently strongly based on
experience. Valuable relationships are established intuitively without knowledge-
able reasoning or study and corresponding phenomenologic models are used for
explanation only.

Technical diagnostics may be supported by expert systems. The basic ele-
ments of an expert system are shown in Figure 1. To be effective, expert systems
must contain a large amount of domain expertises organized appropriately. The
representation of knowledge in expert systems for technical diagnostics differs from
representation in medical applications. In technical diagnostics there is a variety of
objects, but their structure and actions are more clear and easier to describe than
the human body. Most of all, expert systems make use of rules. The designing of
large knowledge-bases containing rules is a hard work. A lot of difficulties are con-
nected with the direct acquisition of rules from experts (Cholewa and Moczulski,
1990). For a large set of independent rules we can lose track of them. It is strongly
inconvenient to check their completeness and consistency. Moreover, although a
lot of guidelines exist instructing how to write the documentation for the programs
in FORTRAN, PASCAL, C and other languages, it is very difficult to write an
effective documentation for the knowledge bases.

* Chair of Fundamentals of Machine Design, Silesian Technical University, 18A Konarskiego
Str., 44-100 Gliwice, Poland
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Fig. 1. Basic elements of an expert system.

2. Knowledge Representation in Expert Systems

The process of knowledge acquisition may be supported by special forms of logs
made by experts. Such logs (records) are then processed by a knowledge engineer
(or by a special program) to obtain an appropriate set of rules. Among others,
such forms as fault trees, test trees, diagnostic graphs and decision tables ought to
be recommended. It is necessary to stress that it does not mean that an expert
system has to be designed in this way, e.g. as a decision table. From experience it
follows only that such approaches are very useful tools for knowledge acquisition.

2.1. Fault Trees

If one element or unit of a machine does not operate correctly, it causes further
abnormal actions of some other elements. Finally, failure propagation may result
in a general failure of the machine. The simplest way to find out the source of
failure is to trace back the cause—effect pathway, which may be effectively achieved
by means of fault trees.

The fault tree is a well known and widely used tool in the area of reliability
analysis and troubleshooting (Brown et al., 1975; Lapp and Powers, 1977; Pau,
1981). To define a fault tree we should identify

e a list of the main elements and/or functional units (subsystems) constituting
the machine,

and for each element or unit as well as for the whole machine:

e the expected actions which ought to be performed,

o the failures causing that the machine or unit or element does not perform its
actions, ' ‘
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o the conditions causing the failures,
o the elements and/or units contributing to the failure.

Failures and their conditions are interpreted as events. They may be represented
in a graph model as nodes, which are connected by cause—effect links. The links
can be clustered by means of AND, OR, XOR gates. We should distinguish (Innis
and Hammond, 1977) the following kinds of nodes (see Fig. 2)

e a primal (basic) event which shows the failure of an element or unit where no
further development is needed,

e an undeveloped event which could be developed further on if more information
was available and might be used to show the failure of the given subsystem,

® an intermediate event, which is a condition or event caused by other events.

o]
[ox |

||
| OR |

[Foa]  [[os]| [Fos | [[For]]

@ primal event ﬂ:ﬂ intermediate event
E undeveloped event [:l gate

Fig. 2. Shape of a fault tree (an example).

From the fault tree we may infer which primal events or combination of primal
events cause the root event. To construct the fault tree we should have a thorough
knowledge and experience about the design of the machine and its environment.

The fault tree can be extended to a weighted fault tree. The weightings are
assigned to the nodes and/or links. They are understood as probabilities or con-
ditional probabilities of occurrence and may be used for reliability calculations.
The main difficulty in the designing of weighted fault trees is caused by the lack of
sources of probability values.
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| Turn on the POWER switch. ]

Does the carriage move to the left?
YES | NO

Is lamp indication on the switch panel OK?
YES | NO

“ GO TO execution of the initial program. }l

M GO TO carriage control. Jl

Is lamp indication on the switch panel OK?

YES i NO

!

“ GO TO display control. li

Fig. 3. Example of a test tree (selected part of the Technical Manual
for an Epson printer).

2.2. Test Trees

Fault trees are tools for failure localization. To locate a basic failure we ought to
follow a given set of cause—effect links. Test trees result from fault trees, but they
don’t represent directly the causal links between the failures (see Fig. 3). Their
nodes contain descriptions of procedures or tests which have to be made. They may
be written as weighted graphs. Weights give the measures of cost or time necessary
for the diagnosis. The sequence of diagnostic or check tasks may be optimized. For
a review of related techniques see (Pau, 1981).

2.3. Diagnostic Graphs

The basic problems concerning the designing of diagnostic tests are connected with
methods of concluding about the relations between signal features and the state of
the object.

A fault tree represents causal dependencies between the faults. A test tree can
be designed for a selected group of machines. Both kinds of trees don’t include
explicit information about the relations between the state of the object and the
features of diagnostic signals.

A diagnostic graph contains nodes representing the classes of values of the
signals. These classes are related to the faults on the fault tree (see Fig. 4) basing
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on our experience. The links of nodes in the fault tree are then plotted in a
diagnostic graph. In general, a diagnostic graph is not a tree. Selected nodes from
this graph form a set of features that are continuously monitored.

Fig. 4. The idea of the diagnostic graphs. A: fault tree,
B: diagnostic graph, C: monitored features.

The diagnostic process may be carried out in the following two steps:
o unexpected values of monitored signals are detected,

e from the diagnostic graph we can obtain the necessary paths between different
features of signals which ought to be taken into account in discovering the
faults.

2.4. Decision Tables

A decision table is a very useful tool for the designing of reasoning systems for
technical diagnostics. A basic worksheet for the decision table consists of three
main parts (see Fig. 5)

e rows C1, C2, ...: conditions, questions, tests,

e rows Al, A2, ...: actions and/or conclusions,

e rows F1, E2, ...: exits.

Each column on the right-hand side of the table contains the definition of a rule.
Entries of conditions for these rules consist of answers to questions or test results.
It has to be assumed (Hurley, 1983), that:
e The execution order of actions is given by numbers, where actions marked by
the same numbers (or by X ) are executed in top-to—bottom order.
o Rules are tested from left to right, until all the conditions are fulfiled. It means
that not all rules will be tested.
e For a decision table to be complete each possible combination of entries for the
given conditions has to be included once and only once.

e Missing rules, redundant rules and conflicting rules are not accepted.



600 W. Cholewa

For a given table it is possible to have several different exits but only one exit

in each rule. There are several sorting and optimizing criteria for decision tables
which can be defined.

Rules
112]3J4[5]6]7
C1 | Self-excited vortex vibration with a frequency of || Y | N| - [N[NJY[Y
about one-half the speed of the rotating shaft are

encountered.
C2 | Temperature of the oil is too high. YIY|YIN|-|-

N
C3 | Temperature of the oil is too low. -[~-1YIN|YI|Y|N
N

C4 | Bearing has a lemon-shaped working surface of || - | - |- | -] -1 -
the sleeve.

Sleeve bearing

Al | Radial clearance of the sleeve bearing ought to be X
reduced.
A2 | Radial clearance of the sleeve bearing ought to be X
increased.
A3 | The amount of oil that must be pumped through X
the bearing ought to be decreased.
A4 | Thermal calculations of the bearing ought to be || X
performed.

A5 | Lemon-shaped working surface of the sleeve ought X
to be introduced.

E1 | Error, RUN_AGAIN X
E2 | QUIT XX XXX |X

Fig. 5. Limited entry decision table.

2.5. Frames

A frame is a description of a real or an abstract object and can be used as a flexible
representation of conditions and actions in decision tables. The notion of frames
was introduced by Minsky (1975) (see also Bartlett, 1932; Goffman, 1974). His
basic goal was concerned with the designing of a data—base containing encyclopedic
knowledge, needed in commonsense reasoning.

A frame contains slots representing attributes of the object (Fig. 6). Slots con-
tain facets connected with values, default values and/or procedures (called demons)
by which the values may be obtalned It is important to point out that each facet
can contain values or demons.- Such an inclusion of demons in frames joins pro-
cedural and declarative representations. Some systems distinguish between frames
for classes and frames for 1nd1v1duals

Frames may be arranged i in hierarchical structures (see Fig. 7) which make it
possible to develop and process the idea about classes without being disturbed by
details of any particular object. Such structures are expressed by links, called AKO
(a kind of), between superframes (parent frames) and subframes (derived frames).
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CONTEXT ctz_name
FRAME fra_name
SLOT slo_name
FACET fac_name = (value
FACET fac_name = (value

demon

édemon;

SLOT slo_name
FACET fac.name = (value)|{demon)

FRAME fra_naeme

Fig. 6. Elements of a frame.

SuperFrame

AKO

Frame

i

AKO| © AKO |

Gormet] [t

Fig. 7. Simple hierrarchies (there exists only one superframe for each frame).

Searching for a slot value for a frame is the basic task in frame systems. Special
properties are assigned to the facets: value, if_needed, if_added and if_removed.
The slot value is assigned to the facet value. When we are looking for the value
of the slot, the content of the facet value is returned. If such a facet is missing,
the facet if_needed points to the value or to a demon returning the value. Slots
that are not present in a frame are inherited from superframes. Searching returns
alternatively:

e a list containing values of the same slots in all superframes,

e only the first value that is found; this value overrides the values in other su-
perframes.

Inheritance is the most important feature of frames, which makes it possible to
eliminate a redundancy of data and to handle exceptions. It can also be used to
" generate reasonable default data or assumptions in case of incomplete information.
Special facets, such as if.added and if_needed may be applied for forward and
backward chaining, respectively. Simple hierarchy results in a tree structure of
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frames (Fig. 7). For such structures a search path is given by the AKO links,
starting from the selected node upwards and the search time grows, at worst,
linearly with the number of nodes. More advanced multiple inheritance (Fig. 8)
results in a directed acyclic graph, for which the strategies for depth first or breadth
first searching ought to be applied, where:

e the results depend strongly on the arrangement of superframes,

e the search time grows, at worst, exponentially with the number of nodes,

e redundant searches may be expected (for depth—first search).

ISuperFra.me_l I ‘ SuperFrame_2 ] [ SuperFrame._3 I
Ako | AKO AKO |
1 [

Fig. 8. Multiple inheritance (each frame can possess a few superframes).

Encapsulation is a property postulated by object—oriented—programming. It states
that the data structures and procedures dedicated to manipulate the data ought
to coupled together and ought to be isolated in some degree from the direct access
by other procedures. Frames allow us to control the degree of encapsulation.

Frames are an example of object-oriented programming, which makes it pos-
sible to generalize, classify and generate abstractions. Frames offer high computa-
tional efficiency. They are an interesting tool for the designing of interfaces with
users and with external sources of data (e.g. measuring devices).

3. Statements and Rules

Most expert systems use a knowledge base. It may be assumed that a knowledge
base is a collection of statements describing relationships between entities of the real
world as well as abstract concepts. Such statements are variously called sentences,
clauses, formulas and most often facts. Of course, from the direct use of the notion
fact there may result a lot of misinterpretations, because the particular statements
(describing the real world) are not independent, real existing facts. They are only
some belief that something has happened or has been done.

A common way to represent statements is an object-atiribute—value triple, used
e.g. in the well known pattern expert system MYCIN (Shortliffe, 1976). Attributes
are general characteristics of properties possessed by objects. The value specifies
the particular nature of a property in a given situation. Of course, the sets of such
triples are flat (they contain no underlying structure) and the maintenance of great
sets is extremely difficult. A dozen of different ideas of structuring the knowledge

base has been proposed and implemented (see e.g. Jackson, 1986). Very important
is the idea of frames.
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3.1. Rules

Mathematical logic was one of the first formalism that was proposed as a knowledge
representation. The inference in logic is connected with the notion of implication.
I p and ¢ are given statements, then the implication p — ¢ 1is true when ¢ is
true or p is false. Implication p — ¢ is often written as the following rule:

if p then ¢ 1)

To allow an appropriate explanation facility the knowledge base ought to contain
the rules in an extended form

if p then ¢ because explanation (2)

The classical logic uses two basic patterns for the deduction in propositional cal-

culus:
e modus ponens (rule of detachment) — for statements p and ¢, if the rule
p — ¢ is true and p istrue, then ¢ is true; we can write this in the following

form
p—q rule
P premise 3)
q conclusion

e modus tollens (rule of contrapositive) — for statements p and g, if the rule
p — q is true and ¢ is false, then p is false; we can write this in the following

form
p—q rule
-q premise , 4)
-q conclusion
Example.
1) if it is raining then roads are wet

it is raining

roads are wet

(2) if it is raining then roads are wet
roads are not wet

it 1s not raining -

If we know only that p is false (or respectively that ¢ is true) we are not able
to arrange a reliable inference about the logical value of ¢ (or respectively p). A
lot of misunderstandings are connected with the interpretation of the implication.
It is necessary to point out that the implication p — ¢ doesn’t state that g¢
follows from p; e.g. the both implications

2>1)—>(3>0) and (2<1)—@3>1)
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are true. Moreover, it is important that we are able to draw reasonable conclusions
only when the implication is true because from the assumption that an implication
p — ¢ is false it follows only that p has to be true and ¢ has to be false. From
the last remark it follows that the knowledge base ought not to contain the rules
in a form

It is not true that if p then gq.

The conditional part (left-hand side) of a rule may include the composed state-
ments. In pure logic it is enough to consider only two kinds of such composition,
namely conjunction (p = p1 AND p;) and disjunction (p = p OR p;). In
each real application we can easily obtain the situation where the logical value of a
statement results independently from few statements (e.g. opinions from different
experts). Although it seems to be a case of redundancy in expert systems, we are
not allowed to reduce this kind of overloading because designing the knowledge
base we don’t know which sources of information will be available for the user. In
such circumstances the conjunction and disjunction are irrelevant operators and we
have to introduce the next one called aggregate (p = p; AGG p,). The properties
of such operator are discussed e.g. by Cholewa (1985).

The rules contained in the knowledge base can be driven (activated) forward
from those statements that we know to be true towards unknown statements or they
can be driven backward from the statements (hypothesis) that we wish to establish
the statements necessary for their truth. It is important to make a clear distinc-
tion between forward/backward chaining of rules and forward/backward solving
strategies used by the expert system (forward/backward reasoning). In addition
to distinguishing between forward/backward chaining and reasoning, we also need
to distinguish between depth-first and breadth—first search of rules in a knowledge
base. :

It seems today that experts can express most of their problem-solving tech-
niques as a set of condition-action rules. Rules if premise then conclusion can
be very easily extended into production rules if condition then action. Such rules
provides an extremely powerful model for human thought and allow to represent
the knowledge about how to carry out the reasoning. For more details see e.g.
(Brownston et al., 1985; Hayes-Roth et al., 1983; Jackson, 1986).

3.2. Approximate Rules

Diagnostic knowledge results from the experiences of experts. It is not given in an
rigorous form and we often have to deal with rules which are true in most (but not
in all) cases. It means that the statements and rules in such applications are often
uncertain and/or unprecise. Approximate statements can be represented in a lot
of different ways, where certain rules and certain statements can be always taken
into account as a special case of approximate one. Several ad hoc, empirical and
theoretically based approaches to represent approximate statements and rules are

known (see e.g. Dubois and Prade, 1988; Zadeh, 1983; Shortliffe, 1976; Kruse and
Meyer, 1987).
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T(p—q)
T(q)
1 ¢

) T(p)

Fig. 9. Two-valued implications.

The simplest approach is the direct application of probability theory and standard
Bayesian model. A modification of the probability theory results in the truth values
T(s) from the range [0,1] (or [-1,1]), assigned to each of the statements. They
are interpreted as an extension of two logical values NO=0 and YES=1, onto the
ordered set [0,1] of real numbers. Particular implementations differ mainly in the
interpretation of the value T(s) = 0, which can point statements that are false or
which can point only the statements for which we haven’t any source of information
that they are true. The last case doesn’t mean that there exist some reasons to
interpret such statements as false.

For the reasoning by means of truth values we need an extension of implication.
The two—valued implication is shown in Figure 9. To extend the definition into a
definition of continuous implication which is necessary for dealing with truth values
T(s) € [0,1] we have to define a surface (a function) spanned on the points shown
in Figure 9. Some examples are (see Fig. 10):

_J 1 if T(p) < T(q)
Te—a)= {T(q) otherwise ®)
T(p— ) = max(1 - T(p), T(q)) (6)
T(p— ¢) = min(1-T(p) + T(q), 1) (7)

On the basis of such implications we can generalize modus ponens and modus
tollens (see e.g. Dubois and Prade, 1988).

The first well known expert system (designed for medical applications about
1972) which uses the uncertain statements and uncertain rules is MYCIN. For a
given evidence e (reference statement) and a hypothesis h (statement to be
evaluated) MYCIN introduces the following three measures:

e measure MB(h,e) of belief in the hypothesis k,

e measure MD(h,e) of disbelief in the hypothesis A,
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e certainty factor CF(h,e) considered as a truth value of the hypothesis h, and
indicating a predominance of confirming (positive value) or predominance of
opposing (negative value) evidence.

T(p—9q)
A T(q) A
1
0 T(p)
a) 1 b)
<)

Fig. 10. Examples of implication: a) (5), b) (6), ) (7).

Measures of belief and disbelief are interpreted as some Finds of conditional prob-
ability, where
MB(~h,e) = MD(h,e) _ 8)
CF(h,e) = MB(h,e) — MD(h,e) (9)
MYCIN uses the following formulas
MD(hy A hy, e) = max(MD(hy,e), MD(hy,¢))
MB(hy A hy, €) = min(MB(hy,e), M B(h, ¢))
MD(hl v h2, 6) = min(MD(hl,e), MD(hz, B))
MB(hy V hy, €) = max(MB(hy,e), MB(ho,€))

(10)

The most interesting is that M B(h,e) and MD(h,e) allow us to take into ac-
count separately all premises pro and contra and we are able to distinguish between
the two cases:
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o we haven’t any sources of information about the logical value of hypothesis,
e known premises pro are compensated by known premises contra.

We are not able to make such distinctions when we use only the single value (e.g.
truth value) assigned to the statement, because the value T'(s) = 0.5 maps the
both cases.

3.3. Possibility and Necessity

An interesting modification of reasoning patterns was obtained by means of modal
logic. The notions of possibility and necessity form concept for the measures of
possibility IT(s) and necessity N(s), assigned to statements. Leaving out the
rigorous explanation we can interpret the values of these measures as boundaries
of a hypothetical range for the unknown truth value

0< N(s) <T(s) < M(s) <1 (11)

By means of N(s) and I7(s) we can distinguish the case of compensated premises
pro and contra N(s) = II(s) = 0.5 from the case with a lack of information
N(s) =0 and II(s) = 1. Some extensions of modus ponens and modus tollens
were proposed (see Dubois and Prade, 1988):

Np—g 2a
N(p)>b (12)
N(q) > min(a,b)

Npp—g)2a
I(p)<b (13)
II(p) < max(1l —a,b)

Fig. 11. Plot of an approximate statement:
a) certainly NO, b) perhaps NO, ¢) maybe NO,
d) maybe YES, e) perhaps YES, f) certainly YES.
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The result of reasoning carried out with the use of possibility and necessity may be
mapped on the diagram in the form of a triangle (see Fig. 11). Such diagram allows
to introduce the linguistic descriptions for the selected pairs of values (N, IT). This
simplifies the dialogue with users because the verbal descriptions of certainty are
more user—friendly than numbers.

3.4. Bilateral Implication

There exist a lot of examples of dependences between the state of an object and
features of diagnostic signals. They can be interpreted as the following ordered
relations:

from the known state it follows a special property of the signal.

Of course, we are not able to use such relation directly for the robust reasoning
in the diagnostics because it is highly possible that the same special property of
a signal follows from an another state of the object. Moreover, we have often no
reasons for assuming that the discussed relation is a causal relation. To represent
correctly all cross-dependences we ought to write the relations in such a form that
both modus ponens and modus tollens may be applied together. It can be done by
means of bilateral implication (Cholewa, 1986). The bilateral implication p Sgq is
simply a pair of both underlaying implications p — ¢ and ¢ — p. The implication
has to be symmetric for modus ponens and tollens because the result of reasoning
ought to be independent from the particular forms of basic statements:

e statement 1: object X has the property A,
e statement 2: object X has the property —-A,
and questions sent to the user.
The notion of necessity and possibility and the concept of bilateral implication

can be used together. It results in the following joint (generalized) modus ponens
and tollens

T(p—9q)
T(g—p) (14)
N(p), 11(p) such that N(p) < T(p) < II(p)
N(g) < T(q) < M(q)
where e.g. for the Lukasiewicz’s implication (7) we have
N(g) = max(0, N(p) + T(p — ¢) — 1) < N(p)

. (15)
1I(q) = min(1, I (p) — T(qg — p) + 1) > H(p) ,

The reasoning process can be mapped on the diagram (Fig. 11), as a sequence of
vectors going up. It is easy to see that the certainty of the conclusion can not be
better then the certainty of the premise. To improve this situation, that means to
obtain conclusions that are more certain than the premises, we ought to have some
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set of independent rules resulting in the same conclusion obtained as an aggregate
of partial conclusions.

3.5. Compound Decision Tables

Decision tables can be used directly to model systems with forward chaining. Af-
ter slight modifications of exits, i.e. assuming that each table ought to return a
value (e.g. YES or NO) we can speak about such tables as about special cases of
conditions. Return values have to be assigned to all columns on the right—hand
side of the table (which are terminated with RETURN). Moreover, a default value
ought to be assigned to the whole table in case of incomplete sets of rules. The
table returning a value can be used as a condition in another table. It is very useful
to write such a table as a special case of a frame. The table entries ought to be
written as frames, too (see Fig. 12).

Rules

tabler (object, attributex, valuey)
R1 | R2 |

C; | statement; (object;, attribute;, value;)

C; table; (object;, attribute;, value;)

L | RETURN  max(Cy,..,Cj,...,Cj,...) * [ vi [ va | |

Fig. 12. Compound decision table.

Such modifications allow us to:
¢ simulate some kinds of backward chaining,
e write the rules dealing with the knowledge (about the diagnosed objects) and

with the meta-knowledge (about the reasoning process) in a similar, uniform
way.

3.6. Rule-Based or Case—-Based

Decision tables have been proposed as a special tool for writing rules. It is known,
that a direct acquisition of rules from a human expert is quite difficult and con-
nected with the possibility of erroneous constraints. More convenient (and more
easy) for the designer of an expert system, as well as for the final user, is the ac-
quisition of rules not by direct specification but indirectly (in a hidden form) by
means of examples. Such examples result from case studies and point out the pairs
connecting the evaluations of technical states with symptoms. Examples may be
written in a decision table in a similar way as rules.
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To apply such an extension of decision tables it is necessary to change some
assumptions about the tables, namely:

e rules ought to be tested from left to right and all rules have to be tested,

o for a decision table a combination of entries for the given conditions can be
repeated many times,

e missing rules, redundant rules and conflicting rules are allowed.

4. System MAS

Frames and decision tables may be realized by means of many tools, where
object oriented programming is most important. Maintenance Aid Shell MAS
(Cholewa, 1992) is an expert system shell (an extension of VV_SHELL (Cholewa
et al.,, 1991)) containing the production system, frame interpreter, frame editor,
browser/debugger, reference data base and an interface for extracting the diagnos-
tically useful statements from the data in the data base. The interface isolates the
actual knowledge base of MAS from any paticular machinery data base and can
easily be changed to process the data derived from virtually any condition mon-
itoring system provided by the data base. The reference data base contains the
information required by the reasoning system and concerning the configuration of
the machine train.

MAS runs on the IBM PC family of computers under MS Windows. The
frame interpreter of MAS is a processing unit specially designated to handle the
different types of statement structures, represented by means of frames. It can
also handle so called approximate statements and cooperate with other reasoning
systems (Cholewa and Czogala, 1991; Czogala and Cholewa, 1991). LISP-like
frame description language allows to take into account different kinds of inheritance
of frames. E.g. hierarchical links between frames can be listed as follows:

FRAME SubFrame. 1 /* see Figure 7 */
SLOT ako
value = (Frame)
FRAME Frame /* see Figure 8 */
SLOT ako

value = (SuperFrame_1 SuperFrame_2 SuperFrame_3)

Examples of special functions included in the frame interpreter of MAS:
e frame-processing functions
(DEL fac), (DEL_CON ctz), (DEL_FRA fra), (DEL slo), (FACET ..),
(FACET.V ..), (GET slo), (GET-INH slo), (SET fac wal), (SLOT ..),
(SLOT_V ...), (VIEW slo), (VIEW_INH slo), . . .
e task—arranging functions

(BREAK), (EVAL IstA IstB IstC), (IF cond vall val2), (RUN ctz), (WHILE
cond val), . . .



Frames in diagnostic reasoning 611

e list—processing functions
(HEAD lIst), (SEL Ist pos), (TAIL Ist), . . .

e uncertainty processing functions
(F-AGR fuzl fuz2), (F-AND fuzl fuz2), (F_IMP fuzl fuz2), (F_NOT fuz1),
(F-OR fuzl fuz2), . . .

e user’s interface functions (CONFIRM tzt), (DISPLAY wvall val2 ...), (MENU
topic default (strl vall) (str2 val2) ...), (PROMPT default ask topic), . . .

All the elements of frames in MAS are identified by their names (see Fig. 6).
The names ought to be locally unique. It means, e.g., that all slots in a given
frame ought to possess individual, different names. Global uniqueness of names is
not required, i.e. we can use the same name for slots in different frames. Such an
assumnption results in a polymorphism —~ the names are shared and their meaning
depends on the given context.

The frame interpreter of MAS enables us to control the degree of encapsulation.
This is achieved by the using of demons (making no difference between data and a
description of data ie. code) and by one of the following two possibilities to point
out a slot: . ’

e slot may be pointed out by its name,

o slot may be pointed out by its qualified name, i.e. by the pair composed of the
name of the slot and the name of a frame to which this slot belongs.

In the first case we obtain an access to the slot (for which we are looking) in the
current frame. In the second case an access is obtained to a particular slot in a
given frame. This allows us to use some slots as global and some slots as local
(private) ones. In both cases all‘assumptions about the inheritance are valued.
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