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KNOWLEDGE-BASED FAULT DETECTION

AND ISOLATION SYSTEM FOR POWER
PLANT SIMULATOR'

J6zeFr KORBICZ*, DARIUSZ UCINSKI*,
ANDRZEJ PIECZYNSKI*, GRAZYNA MARCZEWSKA*

A knowledge-based fault detection and isolation computer system for the
power plant simulator in which the power boiler with 380t/h capacity col-
laborates with 125MW power turbine has been developed and implemented
with the use of the expert system shell EXSYS. This system is designed to as-
sist the operator during the power plant nominal work and is fully separated
from the model of the process to be diagnosed. The set of rules (heuristic
knowledge of the plant, operator’s knowledge) as well as mathematical mod-
els and algorithms (analytical knowledge) create two—part coupled knowledge
base of the computer system regarding the power plant processes. Such a
combined knowledge of the power plant on one hand increases the complex-
ity of the knowledge base, but on the other hand it gives possibilities for a
more efficient process of inference and making a decision by the system. The
efficiency of the proposed fault detection and isolation computer system is
shown for a few typical faults occuring in the power plant.

1. Introduction

The growing complexity of many contemporary technological processes in the
power, chemical and steel industries as well as their computer control systems
increase considerably the reliability and safety demands. Traditionally, a solution
of the reliability problems can be achieved through the use of hardware redun-
dancy, i.e. the repeated hardware elements and systems should be then spatially
distributed around the system to provide protection against possible damage. This
approach to fault-tolerance is simple and reasonably straightforward to apply in
many cases but for more complex processes the reliability problems should be solved
by the computer fault detection and diagnosis systems (Patton et al., 1989). Such
systems base on analytical redundancy and artificial intelligence methods and their
operation consists in the appropriate processing of measurement data without any
additional equipment.
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So far analytical redundancy problems for technical processes have been con-
sidered in the literature by many authors and among them there are the excellent
book edited by Patton et al., (1989) and several survey papers (Willsky, 1976;
Isermann, 1984; Frank, 1990 and 1992; Korbicz et al.,, 1991; Patton and Chen,
1991; Gertler, 1991). More comprehensive sources of the state—of-the—art in the
fault detection and diagnosis area are the preprints of the IFAC/IMACS sympo-
sium SAFEPROCESS’91 (Isermann, 1991) and the IFAC symposium (Dhurjati,
1992). In general, various known approaches and techniques to the fault detec-
tion and isolation (FDI) problems for technical processes can be divided into three
groups:

i) statistical methods based on modern signal processing methods (Young and
Clarke, 1989; Cempel, 1991; Neumann, 1991; Bokor et al., 1991),

ii) model-based methods including parity equations (Gertler and Singer, 1990;
Gertler, 1991; Gertler and Anderson, 1992), diagnostic observers (Frank, 1991;
Ding and Frank, 1992), Kalman filtering (Yoshimura et al., 1979; Wallace and
Clarke, 1983; Tylee, 1983; Patton et al., 1989; Korbicz et al, 1993; Fathi
et al., 1992; Frank, 1992) and parameter identification (Isermann, 1984;
Gomm et al., 1992),

ili) artificial intelligence approaches including expert systems (Kramer and
Palowitch, 1987; Finch et al., 1990; Tzafestas, 1989 and 1991; Milne, 1991;
Bokor et al, 1991; Fathi et al, 1992), and artificial neural networks
(Venkatasubramanian and Chan, 1989; Kramer and Leonard, 1990; Ungar
et al., 1990; Sorsa et al., 1991; Koshijima and Niida, 1992).

Among the above mentioned groups of methods and algorithms the artificial intelli-
gence approach becomes more and more important in applications. This approach
provides the means and flexibility in gathering and organizing the types of knowl-
edge related to the process operation as well as symbolic and numeric processing
of information. The expert system approach to solving technical diagnostic prob-
lems is discussed in books edited by Tzafestas (1989) and Patton et al., (1989).
In turn the second generation diagnostic expert systems in comparison with first—
generation expert systems are considered by Tzafestas (1991) and Milne (1991). So
far many of the diagnostic expert systems have been implemented, for example in
chemical industry (Terpstra et al., 1992) and power engineering (Bokor et al., 1991;
Fathi et al., 1992). In most of applications the knowledge base is created with the
use of the heuristic knowledge (i.e. operator’s knowledge) regarding technological
process under consideration.

This paper deals with the computer diagnostic system for the power plant
simulator which is designed to help the operator in fault detection and isolation
during the work of the power plant. To increase the efficiency and flexibility of
knowledge-based diagnostic system the two—part knowledge base was created. This
base consists of heuristic knowledge (set of rules and principles of system behavior)
and analytical knowledge (set of mathematical models, Kalman filter algorithms
and tests of random sequences). In fact, an integrated approach based on combin-
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ing the analitycally-redundant FDI schemes and the knowledge-based techniques
is considered. The task of the diagnostic system is to determine the true fault and
its source. Both a state and the parameter estimator and a statistical analyzer are
included in the loop of diagnostic reasoning. The design methodology is a hierar-
chical knowledge structure with compiled knowledge at higher levels of abstraction
and analytical redundancy at lower ones. Such an integrated approach reduces the
computational complexity associated with functionally-redundant schemes and in-
creases the effectiveness of the knowledge-based approach.

We will start the main body of the paper with a brief description of a physical
boiler-turbine control subsystem of a power plant and some mathematical models.
Next, the overall structure of our computer diagnostic system is presented. Then,
based on this structure the main modules will be described in detail. First, the sig-
nal pre—processing module is discussed and then, the analytical redundancy and the
design of local filters for state and parameter estimation are presented. Questions
related to the knowledge base and system implementation are then considered.
Finally, we examine a few diagnosis examples which complete the paper.

2. Process Description

The simplified schematic diagram of power boiler capacity of 380t/h and cou-
pled with it 125MW power turbine is shown in Figure 1. The basic physical
processes taking place in the boiler-turbine unit can be described in the following
way. As you can see steam is generated from water pumped by the feedwater
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Fig. 1. Simplified schematic diagram of the boiler-turbine unit.
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pump to the drum. Before reaching the pump, water is preliminary preheated
in the regenerative heater and heater. Mass—flow rate of feedwater F, is
controlled by a dumper value. Saturated vapour from the drum with pressure
Dw is then overheated in a superheater and transported to the turbine driving
unit. After leaving the turbine, steam is led to a condenser. Vapour super-
heaters are usually multisection heat exchangers of furnace gases—metal-vapour
type with individual sections located in a radiant and convectional zones of the
superheater. The steam overheated to the temperature level of 520°C — 540°C
results in growing steam enthalpy which has a positive impact on the thermody-
namic efficiency of the turbine. Temperature control of the overheated steam is
done by attemperator spray which is fed by water controller using the attemperator
spray valve.

The steam is generated with desired the characterics (pressure pg, tempera-
ture Tj, mass flow rate F}) due to energy from the burning process of fuel-air
mixture. In most cases the amount of transported fuel F, is controlled by pres-
sure stabilization system of steam in the boiler. In turn, the amount of transported
air Fj to the burning process is controlled using a fan for a mill ventilation and
it depends on amount of transported fuel as well as on its calorific value. In the
control system of flows ratio fuel-air important for economical burning, apart from
measurement of air mass flow rate, Fj, an output from the controller steam pres-
sure is used. This controller intermediately defines the amount of transported fuel,
F,. During the process operation of the cascade fuel-air ratio control system, the
ratio value is changed using the output from an oxygen content controller Oz in
furnace gases. From balancing investigation it was concluded that the content of
oxygen is an intermediate index of economical burnig.

During collaborating of generator with power system, frequency of electric
signal output as a function of variable power consumption is a very important
parameter. From technical point of view this frequency should be constant which
is to be assured by a control system. In the computer simulator of the boiler-
turbine unit it was assumed that the following variables were controlled:

— water level in the drum h
— steam pressure in the boiler Pk
— temperature of overheated steam T

— content of free oxygen in furnace gases O,

~ rotations of the turbine n

Mathematical models of particular units and modules used in the computer sim-
ulator implementation according to the diagram presented in Figure 1, have been
discussed in detail by Pieczyniski and Korbicz (1993). Below, only the mathematical
model of the boiler as a control object of water level in the drum will be considered.
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3. Expert System Structure

The global scheme of the diagnostic expert system for the computer simmlator of
the boiler~turbine unit is shown in Figure 2.

Expert System Shell

Inference Engine

Knowledge Base

Fig. 2. The structure of the expert system.

Here, the knowledge base is divided into two parts: a rule knowledge base and a
procedural one. As it was noticed by many authors (Fathi et al., 1992; Milne, 1991)
such an integrated knowledge regarding to real plant is more complete and makes
it possible to design a more flexible and efficient diagnostic system. For knowledge
representation the most popular (and at the same time the most natural) approach
based on the rules of IF-THEN type was accepted. The rules describe principles
of operation and relations between different processes in the boiler-turbine unit.
It is a very clear, simple and concise way of knowledge representation regarding
power plant processes. Our expert system can operate on-line while monitoring
the power plant or only when operator needs assistance of the diagnostic system.
All the modules of the diagnostic system showen in Figure 2 will be described in
detail below."

3.1. Preliminary Signal Processing

During the simulator operation of the boiler—turbine unit data are gathered from
the sensors installed in several unit plants. The following quantities are measured:
mass flow rate of fuel, Fy; mass flow rate of air, Fj; content of oxygen in furnace
gases, Op; steam pressure in boiler, pz; amount of used steam, Fy; mass flow rate
of feedwater, (in front of the feedwater valve), F,; mass flow rate of feedwater
(behind of the feedwater valve), Fy; level of water in drum, h; mass flow rate
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of spraywater, F,;; final temperature of overheated water, T}; rotations of the
turbine, n; opening degree of the release valve, s. It is assumed that most of them
are noised and therefore the measured signals should be preliminary processed. The
signal processing module contains algorithms of meaning, normalization, digital
filtering, smoothing by aproximated polynomials and parameter identification of
the linear regression equation. Parameter identification algorithm can be described
as follows.

Only N past samples for each of processed signals (in realization N = 50)
are stored in system memory. For each set of samples ¥, J=12,..,N the
optimal line y = at+b in the sense of the least square method is looked for. The
parameter estimates @ and b are as follows

N N . LN
a=3 "ty [ 34 b= 2 U M
i=1 ji=1 j=1

where t; denotes the time instant for j-th measurement (it is assumned for
simplicity that the origin of t-oxis is the centre of such a moving window). The
parameters and quantities defined in this module are then transferred to the data
base of the system. In this way data are accessible for the inference engine.

3.2. Data Base

The data base of the system consists of a set of processed measurement signals, sta-
tistical parameters and a set of parameters and constants characterizing properties
of the boiler—turbine unit. This data is directly used by the inference engine, for
example, the parameter estimate b defines the mean value, while @ is a measure
of the upward or downward slopes.

3.3. Procedural Knowledge Base

In general, the procedural knowledge base consists of analytical methods for fault
detection and localization in dynamic systems based on the Kalman filter theory
(Patton et al., 1989; Korbicz and Bidyuk, 1993). According to this approach, the
procedural knowledge base contains:

— mathematical models of components of the boiler—turbine unit,
— the suboptimal Kalman filter algorithm for state and para— meter estimation,
- the test for random sequences.

3.3.1. Mathematical Model of Boiler

For the power boiler of drum type, the watet level in the drum is the balancing index
between the amount of feedwater coming into the drum and amount of outcoming
steam from the boiler. Changes of water level in the drum can be caused by the
following changes of:

i) steam consumption by the turbine,
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il) steam pressure following from oscillatation of quality and amount of incoming
fuel,

iii) consumption of spray water,
iv) capacity of the water pump,

v) opening or closing of the reduceral-descending units.

The increase of feedwater inflow is related with some delay in increasing water
level (only in the case of unheated water the transient drop of water level can
appear). Decreasing steam consumption from the boiler causes the process of
steam condensation as a result of pressure increase in the drum. Therefore, a
drop in water level in the drum is first observed (more precisely the steam—water
mixture), although, in fact, during this period water mass increases. After some
time condensation of steam bubbles is stopped and then the water level in the drum
starts increasing. This phenomenon is called the water swelling and complicates
the control process of level liquid during disturbances of steam consumption.

Assuming that the mass flow rate of steam, Fi(t) (steam consumption) and
the mass flow rate of feedwater, Fy(t) areinputs, and the water level in the drum,
h(t), is an output, the set of differential equations describing physical processes in
the drum is given by (Pieczyniski and Korbicz, 1993):

d? d d d

— — = by — _— baF.

" h(t) +adth(t) blthk(t) + boF (t) + bs dth(t) +baFo(t)  (2)
a3 d?

d
d?F;;(t) +c Fz(t) + Co a—tF2(t) + C3F2(t) = de(t) (3)

de?

where Fy(t) denotes the mass flow rate of water leaving the feedwater valve, and
the initial conditions take the form of:

dh(0), d2F,(0) _ dFy(0) B
Parameter values in equations (2) and (3) are equal to:
a=25-10"2

by =—5-10"3, ¢, =0.15,

by =1.75-107%, ¢ =7.5-10"3,
bs = 6.75- 1073, c3=1.25.10%,
by=1.75-10"%, d=1.25-10"*

3.3.2. Suboptimal Filtering

Various techniques for solving the problem of state estimation are available and
a short survey of the recursive state estimation techniques is given by Misawa
and Hedrick (1988). Among these techniques, the Extended Kalman Filter (EKF)
method is widely used by most investigators to solve practical problems (Sorenson,
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1985). This algorithm has been applied in the design of state and parameters
estimators as from the fault detection viewpoint. It is important to consider the
joint parameter and state estimation.

In the discrete-time framework, the model of general stochastic system with
unknown parameter vector 6 can be described mathematically by the following
equations

2(k +1) = A(k,8)z(k) + B(k, 8)u(k) +w(k) )
y(k) = H(k, 8)z(k) + v(k) (8)

where k is a discrete time; z(k) is a n-dimensional state vector; (k)
is a p-dimensional input (control) vector; y(k) is a m-dimensional output
measurement vector; v(k) is a m-dimensional observation noise vector; w(k)
is a g—dimensional system noise vector; A(k,0) is a (nxn)-dimensional sys-
tem matrix; B(k,0) is a (n x p)-dimensional input matrix, and H(%,0) is a
known (m x n)-dimensional observation matrix. Note, that dimz > dimy. It is
assumed that the systemn noise w(k), measurement noise wv(k), and the initial
condition x(0) are Gaussian random variables with known covariance matrices:
Q(k), R(k) and P(0/0), respectively.

To cope with time—varing parameters we postulate that the true parameter
vector 6 varies according to:

8(k +1) = 8(k) + wg(k) (6)

where wg(k) denotes a s—dimensional parameter noise vector.

To tackle the joint state and parameter estimation problem, the augmented
state vector x is defined as:

=" (k) = [ (k) 67 (k)] ™

By means of the nonlinear Kalman filter approach (Anderson and Moore, 1979) and
its suboptimal modification (Korbicz et al., 1991), the estimate of ®(k) based on
the sequence of measurements Y (k) = {y(0), y(1), ..., y(k)} for the augmented
stochastic system described by equations (4)—-(6), is given by the sequential use of
the following recursive algorithm (Korbicz et al., 1991):

2(k + 1[k) = f(Z(k|k), k) (8)
bx(k + 1|k) = Ay (k)éz(k|k) + w. (k) (9)
P(k + 1)) = P(k[k) +y(k)[sz(k + 1|k)s2" (k + 1[k)— P(k|k)]  (10)
Vik+1)= H(k+ )Pk + 1B)HT (k + 1) + R(k + 1) (11)

K(k+1)=Pk+1k)HT(k+ 1)V (k+1) (12)
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vk=1)=y(k+1)- H(k)Z(k +1|k) (13)
Z(k+1k+1) =3k + 1)k) + Kk + Dok + 1) (14)
sz(k + 1|k + 1) = bz (k + 1|k) — K (k + L)w(k + 1) (15)
P(k+1|k) = P(k+ 1|k) — K(k + 1)H(k + 1)B(k + 1|k) (16)

with the initial conditions: Z(00) = Zo, P(0]0) = P,. In equations, (8)—(16) the

following notation is used:

A(k,0)z(k) + B(k, )
6

Joof(x(k), k)

Oz z=z(k|k)

f(z(k)’k) = ’ Af (k) =

wy (k) = [w” (E)wj ()], §z(k|k) = =(k) — 2(k|k) (17)

Furthermore, Z(i|j) denotes the estimate of (i) given the available data
Y (5) = {v(0) (1) ...¥(H)}, i’(z!y) is the estimate of the covariance matrix P(i|5)
of Z(i|j), 6=(i|j) denotes the estimation error, and w(k) is the innovation
sequence.

In general, the structure of the modified EKF algorithm given by the set of
equations (8)—(16) is the same as the standard EKF for nonlinear dynamic models
(Anderson and Moore, 1979; Sorenson, 1985). The main difference is based on the
computation of the estimate of covariance matrix P (Korbicz et al., 1991).

3.4. Statistical Test

A variety of statistical tests can be performed on the innovations or residuals to
determine the validity of the mathematical model used in the filter design (Chien
and Adams, 1976; Yoshimura et al., 1979). If the filter reflects the actual system
properly, the innovation sequence is an independent Gaussian random sequence
with zero mean, and covariance V(k) (see eq. (11)). However, if a system
abnormality occurs due to parameter changes, the statistics of innovation changes.
To detect these changes, the modified Sequential Probability Ratio Test (SPRT)
(Chien and Adams, 1976) can be applied. The SPRT method is one of the simplest
tests for the presence of unmodelled phenomena in the system (4), (5). In our
diagnostic system this test was implemented, too. As a result of the test operating,
the truth of one of the hypotheses:

Hy: normal mode,
Hi: failure mode

is determined.

3.5. Rule Base

Rules describing the experience in the diagnostics of the power plant control prob-
lem are obtained from the operators at the plant center and from special literature.
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The collected rules are converted to the rule base format according to principles
of the popular expert system shell, EXSYS. These rules can be written in the
deterministic way (absolute certainty of hypotheses) or regarding to uncertainty
(hypotheses with different certainty factors).

In our diagnostic system for the boiler—turbine unit the rules are divided into
three main groups.

i) Rules defining the ranges of measured values, e.g. a rule defining water level
in the drum is:

IF h < 48 THEN the water level in the drum is low
IF 48 <h AND h <52 THEN the water (2vel in the drum is normal
IF h > 52 THEN the water level in the drum is high

ii) Rules defining slopes of the level change (upward or downward factors), e.g.
the rule defining the steam pressure in the boiler is:

IF dpr < —0.05 THEN the steam pressure in the boiler is decreasing.

IF —0.05 < dpr AND dp; < 0.05 THEN the steam pressure in the boiler is

constant
IF dpr > 0.05 THEN the steam pressure in the boiler is increasing.

According to the change slopes of levels, the condition is divided to four cases as in
Table 1. We use the value 0.05 as the boundary between the serious and the safe
increasing or decreasing slope values.

Tabl. 1. Degrees of a slope.

Series Increasing 1 Slope= 0.05
Safe Increasing 2 Slope= 0.0
Safe Decreasing 3

Serious Decreasing 4 Slope= —0.05

iii) Rules defining a kind of a failure, e.g. the rule defining the failure of the release
valve is: '
IF water level in the drum is low
and the amount of used steam is increasing
and rotations of the turbine are normal
and steam pressure in the boiler is decreasing
THEN release valve is damaged — Probability=8/10

The rule defining correctness of the unit operation is assumed as the separate one.
This rule is described as follows:

IF water level in the drum is normal
and steam pressure in the boiler is normal
and temperature of overheated steam is normal
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and contents of ozygen in furnace gas is normal

and rotations of the turbine are normal

THEN failures are missing — Probability=10/10

and {table of all failures with zero probability coefficients}
ELSE failures are missing — Probability=0/10

During diagnosis process this rule is always tested first which essentially reduces
the time of diagnosis in the case of conclusion that failures are missing.

4. Implementation

Numerical processing tasks such as process simulation, preliminary data process-
ing, estimation and testing random sequences, have been implemented on a Turbo
Pascal v.5.5 based software. The EXSYS v.3.0 tool with its knowledge represen-
tation paradigm based on rules constitute an efficient medium for our knowledge—
based system development. For the boiler-turbine unit, the knowledge base that de-
fines the entities of the system and their characteristics and contains the problem-
solving knowledge in terms of rules has been created. This knowledge base has
been developed through preliminary knowledge aquisition based on background
knowledge, use of different documents, and detailed knowledge aquisition based on
meetings with the power plant operators.

5. Examples

In the current version of the prototype diagnostic system inputs are taken from
the power plant computer simulator. These inputs are preliminary processed in
the separate module of the system. The knowledge processing is activated in case
when operator suspects abnormal behavior of the plant. To illustrate the system
trail and its efficiency in performing a diagnostic task, an example is presented
below. In this example, fouling in the feedwater control valve and a failure of a
water level sensor in the drum are simulated. In these two cases the procedural
knowledge base is included during inference process. The filter is run using a
window of past and current data including last data transfer.

Two filters have been designed for the drum. The augmented state vector and
the output vector for these filters are defined as follows: '

Filter 1 27 = [h dh/dt d2h/dt®k,), v =[h]
Filter I 2T = [h dh/dt d%h/dt?8,), y = [h]

where h(t) denotes the water level in the drum, k, is the gain of the feedwater
contro] valve and @, is the parameter of the water level sensor. In Filter I and
Filter II h(t) (the state variable) k, (the equivalent valve conductance) and 6,
(a sensor parameter) are the unknown parameters. Filter I simulates a fault model
corresponding to a change in conductance (e.g., fouling, parameter fault) and Filter
II models a fault that manifests itself as a change in water level in the drum (e.g.,
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water level sensor failure). The state equations in both filters are obtained from
the dynamic model given by the equations (2), and (3).
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A typical fault of the feedwater valve is its partial plugging which can be de-
tected by the on-line identification of the conductance respectively. The Filter I is
designed to model this case. Figures 3 and 4 depict the true and estimated conduc-
tance, for the increased (Fig. 3) and the decreased (Fig. 4) values of conductance



Knowledge-based fault detection and isolation ... 625

respectively. The quality of this modified EKF filter in tracking the system be-

havior is manifested by comparing the estimated and measured water levels in the
drum (see Figs. 5 and 6).
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Fig. 6. Measured and estimated water level (decrease).

The drum module (Filter II) is used to estimate the water level in the drum
and parameter 6, describing the sensor. The estimation results for this case
(Filter II) are depicted in Figures 7, 8 and 9. The filter is started from a value
that differs from the actual water level (Fig. 7). As it can be seen, the estimation
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module quickly determines the correct value of the water level. Figures 8 and 9
show the Filter IT behavior during the abrupt change of sensor parameter 8,. This
change is treated as the sensor failure. The estimation accuracy of this abrupt
change of 1 to 2 is reasonably good. As it comes out of Figures 8 and 9 estimates
of the sensor parameter and water level rather quickly approach their correct values
(true values).
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Fig. 8. True and estimated sensor parameter.
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6. Conclusions

This paper presented a diagnostic methodology in which the symbolic reasoning
of knowledge-based systems is integrated with quantitative analysis of analytical
redundancy methods. Such an integrated approach (analytical and knowledge-
based redundancy) on the one hand complicates the knowledge base but on the
other hand increases the effectiveness of the diagnostic knowledge—based system.
The numerical experiments carried out with the use of a power plant simulator
illustrate the efficiency of this approach. The Kalman filter as the analytical re-
dundancy algorithm has been very successful in estimating both states and system
parameters using available measurements.

References

Anderson B.D.O. and Moore J.B. (1979): Optimal Filtering. — Englewood Cliffs:
Prentice Hall.

Bedkowski L. (1991): Technical Diagnostics. — Warsaw: WAT Press (in Polish).

Bokor J.A., Edelmayer A., Soumelidis A., Tanyi M., Gaspar P. and Nagy I.
(1991): Knowledge-based noise analysis promising tool for early failure detection in
nuclear power plants. — Prep. IFAC/IMACS Symp. Fault Detection Supervision
and Safety for Technical Processes SAFEPROCESS 91, Baden-Baden, Germany,
v.2, pp.73-80.

Cempel C. (1991): Vibroacoustical Condition Monitoring. — Chichister: Ellis Horward
Ltd. ,



628 J. Korbicz, D. Uciniski, A. Pieczynski and G. Marczewska

Chien T.T. and Adams M.B (1976): A sequential failure detection technique and its
application. — IEEE Trans. Automat. Control, v.AC-21, pp.750-757.

Ding X. and Frank P.M. (1992): Fault diagnosis using non-linear adaptive observers.
— Prep. 8th Int. IMEKO Symp. Technical Diagnostics, Dresden, Germany,
pp-710-719.

Dhurjati P.S. (Ed.) (1992): — Prep. IFAC Symp. On-line Fault Detection
and Supervision in the Chemical Process Industries, Newark, Delaware, USA,

pp-138-143.

Fathi Z., Korbicz J. and Ramirez W.F. (1992): Fault detection in coal fired power
plants using nonlinear filtering. — Appl. Math. and Comp. Sci., v.2, No.l,
pp-87-118.

Fathi Z., Ramirez W.F., Tavares A.P., Gilliland G. and Korbicz J. (1992): A
knowledge—based system with embedded estimation components for fault detection
and isolation in process plants. — Prep. IFAC Symp. On-line Fault Detection and
Supervision in the Chemical Process Industries, Newark: Delaware, USA, pp.32-37.

Fathi Z., Ramirez W.F. and Korbicz J. (1993): Analytical and knowledge—based
redundancy for fault diagnosis in process plants. — AIChE Journal, v.39, No.1,

pp.42-56.

Frank P.M. (1990): Fault diagnosis in dynamic systems using analytical and knowledge—
based redundancy. A Survey and some new results. — Automatica, v.26, No.3,
pp.459-474.

Frank P.M. (1991): Enhancement of robustness in observer—based fault detection. —
Prep. IFAC/IMACS Symp. Fault Detection Supervision and Safety for Technical
Processes SAFEPROCESS 91, Baden—Baden, Germany, v.1, pp.275-287.

Frank P.M. (1992): Robust model-based fault detection in dynamic systems. — Prep.
IFAC Symp. On-line Fault Detection and Supervision in the Chemical Process
Industries, Newark, Delaware, USA, pp.1-13.

Finch F.E., Oyeleye 0.0. and Kramer M.A. (1990): A robust event-oriented
methodology for diagnosis of dynamic process systems. — Computers chem. Engng.,
v.14, No.12, pp.1379-1396.

Gertler J. (1991): Analytical redundancy methods in fault detection and isolation. —
Prep. IFAC/IMACS Symp. Fault Detection Supervision and Safety for Technical
Processes SAFEPROCESS’91, Baden-Baden, Germany, v.1, pp.9-21.

Gertler J.J. and Anderson K.C. (1992): An evidential reasoning eztension to quan-
titative model-based failure diagnosis. — IEEE Trans. Systems, Man and Cyber-
netics, v.22, No.2, pp.275-289.

Gertler J. and Singer D. (1990): A new structural framework for parity equation-
based failure detection and isolation. — Automatica, v.26, No.2, pp.381-388.

Gomm J.B., Williams D. and Harris P. (1992): Detection of incipient process
faults using approximate parametric models. — Prep. IFAC Symp. On-line Fault
Detection and Supervision in the Chemical Process Industries, Newark, Delaware,
USA, pp.138-143.

Isermann R. (1984): Process fault detection based on modeling and estimation methods.
A survey. — Automatica, v.20, No.4, pp.387-404.



Knowledge—based fault detection and isolation ... 629

Isermann R. (Ed.) (1991): — Prep. IFAC/IMACS Symp. Fault Detection Supervision
and Safety for Technical Processes SAFEPROCESS 91, Baden-Baden, Germany,

v.1 and v.2.

Korbicz J. and Zgurowski A.Z. (1991): Estimation and Control of Stochastic
Distributed Parameter Systems. — Warsaw: Polish Scientific Publishers, (in
Polish).

Korbicz J. and Bidyuk P.I. (1993): State and Parameter Estimation. Optimal
and Digital Filtering, Applications. — Zielona Géra: Technical University Press,

Poland.

Korbicz J., Fathi Z. and Ramirez W.F. (1993): State estimation schemes for fault
detection and diagnosis in dynamic systems. — Int. J. Systems Sci., v.24, No.5,
pp.985-1000.

Koshijima I. and Niida K. (1992): Neural network approach to fault detection un-
der unsteady state operation. — Prep. IFAC Symp. On-line Fault Detection
and Supervision in the Chemical Process Industries, Newark, Delaware, USA,
PP-174-179.

Kramer M.A. and Leonard J.A. (1990): Diagnosis using backpropagation neural
networks. Analysis and criticism. — Computers Chem. Engng. v.14, No.12,
pp.1323-1338.

Kramer M.A. and Palowitch B.L. (1987): A rule-based approach to fault diagnosis
using the signed directed graph. — AIChE Journal, v.33, No.7, pp.1067-1078.

Milne R. (1991): Integration: the key to second generation applications. — Prep.
IFAC/IMACS Symp. Fault Detection, Supervision and Safety for Technical Pro-
cesses SAFEPROCESS’91, Baden—-Baden, Germany, v.2, pp.7-9.

Misawa E.A. and Hedrick J.K. (1988): Nonlinear observers: A state-of-the-art
survey. In: Benstsman J. and Joshi S.M. (Eds) Recent Advances in Control
of Nonlinear and Distributed Parameter Systems, Robust Control and Aerospace
Control Applications. — New York: ASME Press.

Neumann D. (1991): Fault diagnostic of machine-tools by estimation of signal spec-
tra. — Prep. IFAC/IMACS Symp. Fault Detection, Supervision and Safety for
Technical Processes SAFEPROCESS’91, Baden—Baden, Germany, v.1, pp.73-78.

Patton R., Frank P. and Clark R. (1989): Fault Diagnosis in Dynamic Systems.
Theory and Applications. — New York: Prentice Hall.

Patton R. and Chien J. (1991): A review of parity space approaches to fault diag-
nosis. — Prep. IFAC/IMACS Symp. Fault Detection, Supervision and Safety for
Technical Processes SAFEPROCESS’91, Baden—-Baden, Germany, v.1, pp.239-255.

Pieczyniski A. and Korbicz J. (1993): Dynamic model of boiler— turbine unit. —

Rep. of Dept. of Robotics and Software Engng., Technical University of Zielona
Goéra, Poland (in Polisch).

Sorenson H.W. (1985): Kalman Filtering: Theory and Application. — New York:
1EEE Press.

Sorsa T., Koivo H.N. and Koivisto H. (1991): Neural networks in process fault
diagnosis. — IEEE Trans. Systems, Man and Cybernetics, v.21, No.4, pp.815-825.



630 J. Korbicz, D. Uciniski, A. Pieczynski and G. Marczewska

Terpstra V.J., Verbruggen H.B., Hoogland M.W. and Ficke R.A.E. (1992): A
real-time, fuzzy, decp-knowledge based fault diagnosis systems for CSTR. — Prep.
IFAC Symp. On-line Fault Detection and Supervision in the Chemical Process
Industries, Newark, Delaware, USA, pp.26-31.

Tylee J.L. (1983): On-line failure detection in nuclear power plant instrumentation.
— IEEE Trans. Automat. Control, v.AC-28, No.3, pp.406-415.

Tzafestas S.G. (Ed.) (1989): Knowledge-Based System Diagnosis, Supervision and
Control. — New York: Plenum.

Tzafestas S.G. (1991): Second generation diagnostic ezperi systems: requirements,
architectures and prospects. — Prep. IFAC/IMACS Symp. Fault Detection, Su-
pervision and Safety for Technical Processes, SAFEPROCESS’91, Baden—Baden,
Germany, v.2., pp.1-6.

Ungar L.H., Powell B.A. and Kamens S.N. (1990): Adaptive networks for
fault diagnosis and process control. — Computers Chem. Engng., v.14, No.4/5,
pp.561-572. : i

Venkatasubramanian V. and Chan K. (1989): A neural network methodology for
process fault diagnosis. — AIChE Journal, v.35, No.12, pp.1993-2002.

Wallace J.N. and Clarke R. (1983): The application of Kalman filtering estimation

techniques in power station control systems. — IEEE Trans. Automat. Control,
v.AC-28, No.3, pp.416-427.

Willsky A.S. (1976): A survey of design methods for failure detection in dynamic
systems. — Automatica, v.12, pp.601-611.

Yoshimura T., Watanabe K., Konisch K. and Soeda T. (1979): A sequential
failure detection approach and the identification of failure parameters. — Int. J.
Syst. Sci., v.10, No.7, pp.827-836.

Young S.K. and Clarke O.W. (1989): Local sensor validation. — Measurement and
Control, v.22, pp.132-141.

Received March 10, 1993



