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FREQUENCY DOMAIN APPROACH TO MINIMIZING
DETECTABLE FAULTS IN FDI SYSTEMS

PauL M. FRANK*, X. DING"

Problems related to fault detection and isolation in uncertain dynamical sy-
stems are studied. The purpose of this study is to develop a scheme to design
residual generators and furthermore to evaluate residuals. Different from the
most of previous studies, the basic idea of this work is to minimize the size
of detectable faults. This physically means that a fault will be detected even
if its size may be small. With the aid of frequency domain fault detection
approach, a relationship between residual generators as well as residual evalu-
ation function and the minimum size of detectable faults is established. This
enables us to formulate the design problems as optimization problems that
are solvable by using frequency domain optimization techniques. The study
reveals how far a fault could be detected using a suitable residual generator
and evaluation scheme and answers some questions that have been studied
over the years. )

1. Introduction

In view of an increasing demand for higher performance as well as for more safety
and reliability of dynamic systems, fault detection and isolation (FDI) has received
more and more attention. One area of the active research is the development of
analytical redundancy management. In the course of this development a capable
strategy has emerged and is increasingly discussed. It is based on the use of modern
observer theory (Frank, 1990, 1991; Gertler, 1988, 1991; Patton and Chen, 1991;
Patton et al., 1989).

1.1. Background of the Study

The basic idea of the observer-based approach to FDI is, in contrast to the physical
redundancy approach that makes use of physical replica for the residual generation,
to compare the measurable process variables with their estimate given by observers.
The difference, also called residual, is nominally near zero and evidently deviates
from zero when a fault has occured in the system. Evidently, this is realizable if
we could acutely understand the dynamic processes arising in any physical plant so
that we would be able to precisely estimate the desired process variables. Unfortu-
nately, this idealized prerequisite does generally not apply to real technical systems.
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Neither there exist perfect models nor are characteristics of possible disturbances,
available which are unvoidable in real technical systems. The consequence of the
existence of such model uncertainties is that the measurements will not match the
corresponding estimation even if there are no faults present in the system. For
this reason, the robustness problem becomes one of the most important issues of
observer—based FDI schemes.

A classical way to increase the robustness to the model uncertainties is to use
evaluation thresholds to distinguish a fault (Frank, 1990; Gertler, 1988; Patton
et al., 1989). The crux with thresholds is that they do not only reduce the sensiti-
vity to faults, but also vary with the input of the actual system and the magnitude
and nature of the model uncertainties. Choosing the threshold too low increases
the rate of false alarms; choosing it too large reduces the net effect of fault de-
tection. To overcome this difficulty, Clark (see Patton et al., 1989) has presented
an adaptive threshold selecting method which has been demonstrated to be sui-
table for the instrument fault detection regarding a class of system uncertainties.
A more generalized version of this method was lately proposed by Emami-Naeini
et al. (1988), where they have introduced the concept of threshold selector.

Another way to solve the robustness problem is to use robust residual gene-
rators. The philosophy of this scheme originated from the idea that if one is able
to generate residuals that are on the one hand insensitive or even invariant to the
model uncertainty and on the other sensitive to the faults, then FDI is achieved.
Notice that in this case evaluation thresholds can be set as zero or nearly zero
so that a residual evaluation is separeable. Over the last two decades a great
deal of research has been devoted to the realization of this idea, and in company
with it, also supported by the development in modern control theory and com-
puter technology, a number of sophisticated residual generation techniques has
been developed. During the eighties, the study was concentrated on designing ro-
bust residual generators that are inwvariant to unknown disturbances. Significant
researches on this topic have been made e.g. by Chow and Willsky (1984), Ge
and Fang (1988), Massoumnia (1986), Patton et al. (1989), Viswanadham and
Srichander (1987) and Wuennenberg (1990), using the modern linear control the-
ory such as geometrical theory, algebraical theory. The results reveal that it may
be very difficult to achieve a residual that is invariant to the unknown disturban-
ces. Encouraged by this knowledge, a new study has been carried out. As a logical
alternative, it was tried, instead of making residuals invariant to the disturbances,
to generate residuals such that they are approzimately invariant to the disturban-
ces. Based on this idea, new approaches have been developed during the last years
(Chow and Willsky, 1984; Ding and Frank, 1989, 1991; Lou et al., 1986; Patton et
al., 1989; Wuennenberg, 1990).

Recently, it has been noticed that although the new approaches are effective to
enhance the robustness of the residuals against the disturbances, which, from the
modelling point of view, may be considered as structured model uncertainties, they
may fail in dealing with unstructured model uncertainties (Ding and Frank, 1991;
Frank, 1991). It was furthermore recognised, also due to the publication of the
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results achieved by Emami-Naeini et al. (1988), that a possible way to solve this
problem is considering residual generation and evaluation as one problem (Ding
and Frank, 1991; Frank, 1991; Patton and Chen, 1991). Encouraged by this idea,
the first study has been done by Ding and Frank (1991).

By the study on this topic, one is forced to define a performance index that ma-
thematically describes the original robustness idea and plays the role of connecting
residual generation and evaluation problems. On the other hand, one may remark
that although the robustness of FDI may be increased due to the introduction of
the threshold, only a part of faults, namely the faults that may cause evaluated
residuals larger than the threshold, are detectable. It is naturally desirable to have
a residual generator that makes the size of detectable faults as small as possible.
The basic idea of this paper originated from this consideration. We formulate it as
follows:

Design a residual generator that minimizes the size of detectable
faults, instead of optimizing some performance index.

Obviously, our objective has a clear, direct physical meaning that is also the aim
of FDI, while previous works dealt with the robustness problem in an indirect way.

The mathematical tool used for realizing the above idea is frequency domain
approaches. The decision on such approaches has the following background:

e many frequency domain properties can be utilized by the design of residual
generators as well as by the residual evaluation (Ding and Frank, 1989, 1990);

e the rapid development of H.,—theory (Francis, 1987) provides us a powerful
tool to solve robustness problems associated with FDI (Frank, 1991; Patton
and Chen, 1991).

The application of frequency domain approaches to FDI was initiated by Vi-
swanadham et al. (1987) and Viswanadham and Minto (1988). They have proposed
a simple form for constructing the residual generator and suggested to apply Heo—
theory to FDI. A more intensive study and extension has been made by Ding and
Frank (1989, 1990, 1991), in which the FDI problem was systematically formulated
and solved by using factorization and 7H,—optimization techniques. A part of
these results constructs the basis of this paper.

1.2. Notaticn

Standard notation is used whenever possible. For simplicity of terminology, the
term iransfer function will be used to refer to transfer function matrices as well.
G'(s) and G*(s) denote the transpose and Hermitian transpose of a transfer
function G(s), respectively.

lIr(Ge)llz == (r* (o )r(jw)) /2
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denotes the 2-norm of a vector and ||r(jw)|| denotes
. -1 ] Wl e . 1/2
llrGw)lle = ((27) /r (jw)r(jw)dw) ™, € =wy —ws.
w3
0(G(jw)) as well as &(G(jw)) and g(G(jw)) denote the singular as well
as maximum and minimum singular value of transfer function G(jw), sup(-)
the supremum, and inf(-) the infimam. The subset of Hardy space Hoo

(Francis, 1987) consisting of real-rational functions, i.e., all transfer functions that
are realizable using stable linear systems, are denoted by RH.

2. Problem Formulation
2.1. Mathematical Model

We consider nominal linear systems described as follows:
Yo(s) = Gu(s)u(s), 1

where u(t) € RP is the input vector and y,(t) € R™ is the nominal observation
vector, Gy(s) isan mxp dimentional real-rational transfer function matrix.

In the context of FDI, a fault is understood as any kind of malfuntions in an
actual dynamic system that leads to an unacceptable anomaly in the overall system
performance. The effect of the faults on the system dynamics can be in general
modelled as follows:

Y(s) = Gu(s)u(s) + G4(s)f(s), (2)

where f € R? represents fault vector and Gy (s) denotes a known distribution
transfer matrix which, without loss of generality, is assumed to be stable. It is
worth mentioning that transfer function Gy(s) also serves as a weighting factor
which addresses possible information about the fault f.

Since in practice no nominal models can describe a physical plant perfectly,
model uncertainties should be taken into account. Model uncertainties refer to
the mismatch between the nominal model and the actual system. With respect to
system model (2) a uncertain system may be expressed by

Y(s) = y,(s) + Ay(s) + Gy (5)f(s) ()

with Awy(s) representing the effects of the model uncertainties on the measure-
ment. We call the model uncertainties structured if it can be written as

Ay(s) = Gu(s)w(s)

with known distribution matrix G, (s) and a unknown function vector w(s),
otherwise it is called unstructured. In the remainder of this paper we consider
systems of the form :

U(s) = (Guls) + AGu(s))u(s) + (G(s) + AG())f(s) + Gu(s)w(s) (4)
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where Gy (s) is known and assumed to be stable, AGy(s), AG(s), w(s) are
unknown, but their sizes are restricted:

F(AG(jw)) < bu(w), F(AG(jw)) < §1(w), |lw(iw)llz € bu(w).  (5)

2.2. Outline of Tasks

A complete FDI process essentially consists of two stages (Frank, 1990). The first
stage is residual generation and the second stage residual evaluation. A residual,
r(t), is a vector of functions that are accentuated by the fault vector f(t). To
generate a residual, a dynamic system, also called residual generator, has to be
constructed. It makes use of the ¢ priori knowledge contained in the system model
and processes on—line measurements y(t) and u(t) to perform some kind of
validation of the nominal relationships of the system. If a fault occurs, the re-
dundancy relations should no longer be satisfied. In general, a residual has the
following definition:

r(s) = 0, for f(s)=0, Ay(s)=0, (6)
r(s) # 0, for f(s)#0. )

To decide whether a fault occurs in case 7(s) # 0, the generated residual has
to be evaluated to form some appropriate decision function, denoted by J(r). A
fault f is detectable and isolable if the following specifications are fulfilled:

J(r) < Jw for f(s) =0 (8)
J(>y > Jun  for f(s) #0 (Fault detection) (9)
J(ri) < Jw, for fi(t)=0 (i=1,...,9) (10)
J(r:) > Ju, for f;(t) £ 0 (Fault isolation) (11)

where Ji, as well as Jyp,, define thresholds. Evidently, the ideal case would be
‘Jth=0) Jﬂlgzo) (i:‘17"'7Q)1

called perfect fault detection and isolation (PFDI), so that every fault, independent
of its size and form, could be detected or isolated. This is, however, normally not
realizable. In order to avoide false alarms, the thresholds should differ from zero.
As a result faults under certain size cannot be detected or isolated. Nevertheless,
we can try to make the size of detectable faults as small as possible. The tasks of
this paper are to

# develop an approach of designing residual generators,

e introduce decision function J(r) and

o define thresholds Jy, (Jin;)
so that the size of detectable faulls could be minimized.
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3. Preliminaries

This section reviews some preliminaries concerned with FDI, in particular, the
frequency domain approach to residual generation and evaluation.

3.1. Parametrization of Residual Generators and their Dynamics

Over the last decades, FDI using observation techniques has been widely stu-
died and a number of significant approaches have been proposed such as detec-
tion filter scheme (Beard, 1971; Jones, 1973), unknown input observer approach,
(Viswanadham and Srichander, 1987; Patton et al., 1989) and parity check (Gertler,
1988; Lou et al., 1986). Ding and Frank (1990) have proposed a frequency domain
approach, with the help of factorization theory, to construct residual generators.
It is the basis of this paper.

As mentioned earlier, the useful signals for the residual generation are the
measurable input vector and the output vector. Thus, the most general form of a
linear residual generator in the frequency domain is

r(s) = F(s)u(s) + H(s)y(s), (12)
where F(s), H(s) € RHoo. Let

Gu(s) = M, (s)Nu(s) (13)

be a left coprime factorization of G,(s). Ding and Frank (1990) have proved the
following lemma.

Lemma 1. Given system (4), then (linear) residual generators can be parametrized
as follows:

7(s) = R(s)(Mu(s)y(s) - Nu(s)u(s)), R(s)(#0) € RHoo. (14)

In equation (14) R(s) is a parametrization matrix, the transfer functions M ,(s)
and N,(s) can easily be determined using the existing algorithms, see e.g.
(Francis, 1987). Thus, the problem of designing residual generators is reduced

to finding a suitable parametrization matrix R(s) to meet different specifications
of FDL

We now observe the dynamics of the residual vector corresponding to the fault
f as well as to the model uncertainties. To do this we substitute equation (4) into
(14), which yields

r(s) = R(s)M.(5)((Gs(s) + AG;(5)f(s) + AGu(s)u(s) + Gu(s)w(s)). (15)

Equation (15) characterizes the achievable residuals with respect to the fault vector
and the model uncertainties. Based on this relationship we are able to suitably
choose the parametrization matrix R(s).

It is worth mentioning that the parametrization of residual generators provi-
des a systematic and straightforward way to construct residual generators, while
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the parametrization of residual dynamics suggests how to choose parametrization
matrix R(s). This makes the design especially suitable for the implementation on
a computer.

3.2. About Fault Detection and Isolation

Following (15) it is clear that FDI problem may be looked upon as being virtually
a decoupling problem, i.e.,

o for fault detection the fault effects on the residual r must be distinguishable
from the effects of the model uncertainties and

e for fault isolation the effects of a fault on the residual r must be distingui-
shable from the effects of the model uncertainties as well as the other faults.

We re-write system model (4) as
y(s) = Gu(s)u(s) + Ga(s)d(s) + Gy(s)f(s) (16)
Y(s) = Gu(s)u(s) + Ga(s)d(s) + Gri(s) fi(s) + gyi(8) fils)  (17)

where

Ga(s) =TI Gy(s)], d(s) = [ AG,(s)u(s) ] ’

w(s)
Gy(s) = Gy(s) + AGy(s) = [g71(s) -+~ Gri(s) - Fra ()],
Gpi(s) = [a2(5) -~ Gr6-1)(8)  Fr+n(®) - 1a(5)]
3ri(s) = 95i(s) + Agyi(s), i=1,---,q
Fi(s) = [fu(8) -+ fima(s)  Figa(s) - Fo()IT.
Substituting (16) or (17) into (15) gives
r(s) = R(s)My(s)(Ga(s)d(s) + Gy(s)f(s)) (18)
ri(s) = Ri(s)Mu(s)(Ga(s)d(s) + Gri(s)Fi(s) + ri(s)fi(s)).  (19)

This indicates that

o the fault detection problem is that of choosing a suitable parametrization
matrix R(s) so that the generated residual r(s) is sensitive to the fault f

and robust against d and

e the fault isolation problem is that of choosing ¢ parametrization matrices
Ri(s), i=1,---,q, s0 that the generated residuals are sensitive to the fault
f; and robust against d and f;(s).
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In view of the above statement we focus our attention, without loss of generality
and also for the sake of simplicity, on the systems of the form

Y(s) = Gu(s)u(s) + Ga(s)d(s) + G (s) £ (s) (20)

with known distribution matrices Ga(s), Gy(s) and unknown input vector d(s)
whose size is restricted by

Hd(jw)|lz < ba(w)# 0 forall w - (21)
where 64(w) is an even rational function in w. Notice that d(s) is a function of
u(s). This implies that 6§4(w) is (off-line) known only if u(jw) € RL, and is
given before the process observed is in operation. Unfortunately, this is not always
the case, since in practice the input signal is often on-line calculated to adapt real

operating conditions. Taking this into account we consider in the remainder of this
paper two cases

e 64(w) is known;
o 64(w) consists of two parts
8a(w) = Ba(w)bu(w) (22)

where 64(w) is known and é,(w) is only on-line achievable.
Substituting (20) into (14) gives a residual of the form

7(s) = R(s)M 4 (s)(Ga(s)d(s) + G;(s)f(s)). ' (23)

Thus, our problem is to find out a parametrization matrix R(s) such that the
generated residual is sensitive to the fault f and robust against d. Here we
would like to emphasize that the column number of transfer function Gg4(s) may
be much larger than its row number. That results in, in general,

rank G4(s) = dim(y) = m. (24)

We would also like to point out that although the system is re-modelled so that
the model uncertainties are summarized by a unknown input vector, a scheme for
the residual generation and evaluation that is different from the existing methods
will be developed in the next section.

3.3. A Remark on PFDI

If a perfect FDI is realizable, thresholds can then be set equal to zero or nearly
zero and the FDI procedure becomes very simple. Unfortunately, in most practical
cases this is impossible. To show this clearly, we give the following lemma.

Lemma 2 (Ding and Frank, 1991). Let system (20) be given. Then, a PFDI is
achievable iff

rank [G4(s) Ga(s)] = runk Gy(s) + rank Ga(s), (25)

rank Gy(s) = q. _ (26)
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Lemma 2 can physically be interpreted as follows: a PFDI is achievable iff
f and d have totally decoupled effects on the measurement y. Clearly, if the
system considered contains unstructured uncertainty, this is almost not achievable,
since in this case rank G4(s) becomes very large so that condition (25) cannot be
satisfied. This demonstrates how difficult it may be to achieve a PFDL

3.4. Evaluation Function and Threshold

Fault detection decisions are based on evaluating the characteristics of the residual
vector 7(s). Similarly to the so—called root mean square (rms) value, defined as:

T

1) = (/) [+ @rwan Y

0

Ding and Frank (1991) have proposed a frequency domain evaluation function
defined as follows:

J(#) = ((2me)™ /"* (jw)r(jw)dw)’? = Pl (Gu)lle, e=wr—wi, (28)

wa
where ¢ denotes the frequency range (wi,ws2). In this index r(jw) will be
on-line calculated by using Fourier transformation and the frequency window ¢

will be determined by the designer (this will be dicussed in the next section). This
evaluation function is adopted in this paper.

Thresholds can be established under residual measure (28). It is well known
that a major requirement on the fault detection is to reduce or prevent false alarms.
Thus, in the absence of any faults, J(¢) should be less than a threshold value,
Jth, i.e.,

Jin = sup J(¢). (29)
Ay, f=0

Setting f(s) in (23) equal to zero gives

Jen = sup((2me) ™! x
d

g / & (ju) G (jw) (o) B (jo) R(jw) Mo (jw) Galjw)d(jw)dew) *

w1

= sgp||R(jw)Mu(jw)Gd(jw)d(jw)Hec"l/z. (30)
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4. Main Results

This section presents the main results of the paper. Remember that our objective
is to minimize the size of detectable faults. Since a FDI procedure consists of
residual generation and evaluation, the size of detectable faults evidently depends
on the construction of residual generator, the selection of evaluation function as
well as thresholds. This, considering the results presented in the last section,
concretely means that the size of detectable faults is in fact a function of the
parametrization matrix R(s) and the frequency window ¢ = (wy,w2). If we are
able to find out the relationship between the minimum size of the detectable faults
and the parametrization matrix as well as the frequency window and to present it
in an appropriate mathematical form, our problem then reduces to an optimization
problem for which we may get an optimal or at least a suboptimal solution. This
is the basic idea of the following study.

4.1. Minimum Detectable Fault

It is physically clear that a fault is detectable if it makes the evaluation function
larger than threshold, i.e.,

I5(8) > Jn (31)

where J;(¢) denotes the evaluation function corresponding to some f. Notice,
however, that a fault may, due to the model uncertainties, have different effects on
the residual and furthermore on evaluation function. Taking this into account, we
define a fault as detectable if

inf J7(6) > o (32)
Denote the set of all detectable faults by Qy, i.e.,

Q :={f:i/§1nyf(¢)>J,,.}, (33)
then our first problem to be solved is to find out fuin satisfying

[l fminlle = inf{||f|lc : f € Qs} (34)

with respect to the parametrization matrix R(s) and the frequency window ¢.
This is given in the following theorem.

Theorem 1. Given a residual generator (14) and residual evaluation function
(28), then we have

“fmin“f = 2J1h€1/2/k(¢)’ (35)
where the threshold is defined by (30) and

k(¢) = gléig(g?(R(j:,,))Mu(jw)G, (jw)) — aZ(R(jw)M.,(jw))(s}(w)) v (36)
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Remarks.

e Theorem 1 presents a result that can be taken as a frequnecy domain exten-
sion of the time domain results given by Emami-Naeini et al. (1988).

e Somewhat different from the work in (Emani-Naeini et al., 1988), here the
effects of the model uncertainties on Gy(s) have been taken into account;
there is also no special restriction on the faults.

Proof. Following (23) and (28) J;(¢) may be re-written as
J1(8) = [|R(s) M u()Ga(s)d(s) + R(s)Mu(s)Gy(s)f (s)llee ™. (37)
Observe inequality
| R(s)Mu(5)Ga(s)d(s) + R(s) M u(s)G () F(s)lle
> [|R(s) Mu(5)G1(s)F (5)llc = |R(s) M u(s)Ga(s)d(s)lle (38)
for some f € Q. According to the defintion of a detectable fault we have
‘ | R(s)Mu(5) Gy (s)F ()le = | R(s) M u(s)Ga(s)d(s)]|e > O (39)
so the equality in (38) holds for some d(s), Gy(s). This yields

inf Jy(¢) =d(s)’ilgcf;!(_g)(lll‘l(S)lf’Iu(S)C_?f(8)1‘(8)|Ie—lIR(S)J\A’-’u(S)Gd(s‘)ﬂl(S)Ile)f‘”2

= (A é‘}f(,> | R(s) M y(s) Gy (s)F (s)lle — 31(15 | B(s) M u(5)Ga(s)d(s)||c) e /2
= inf [|R(s)Mu(s)Gy(s)F(s)|jec™ /% = Jin. (40)
AG, 3)

It can then be concluded that for a detectable fault the relation

S IREOM(5)Gs () (@)l > 20 (41)

holds. Now, we observe the left side of (41), which can be re—written as
IR F @ = (@07 [ £(0)(G50)
wi

+AG(jw) M, (jw)R* (jw) R(jw) M (jw) x

x (G;(jw) + AGy(jw)) F(jw)dw) . (42)
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Note that

(G}(jw) + AG; (jw)) M, (jw) R* (jw) R(jw) M u(jw) (Gs(jw) + AG;(jw))

> G} (jw) M, (jw) R’ (jw) R(jw) M(jw) G (jw)

—AG](jw) M, (j) B (ju) R(ju) Mu(jw) AGy (jw).
Hence, using the well known relation
a(A)|jbllz < [ Abll2 < 5(A)|[b]2,
we ﬁnally have

I R(s) M u(5)Gy(s) £ (5)e

AGI( ).f(s

= Aaif‘,l;(,)((%)_l / 1 (w)(G} (jw) M, (jw) B* (jo) R(jw) My (jw) Gy (jw)

wy

~AG; (jw) M (jw) B (jo) R(jw) M (jw) AG; (jw)) f(jw)dw)

= min (o* (R(&) V()G () - (RGN (19)83G6)) [ minlle

Summarizing (37), (41) acd (46) leads to (35). This completes the proof.
Notice that d(jw) can be written as
d(jw) = d(jw)ba(w)
with
lld(jw)ll2 < 1.
This leads to

Jen = sup((2me)~! x
d

x / d* (jw)G}(jw)M:(jw)R* (jw)R(jw)Mu(jw)Gd(jw)d(jw)dw) 12

= sup ((2me) ! x
d

W2

(43)

(44)

(45)

(46)

(47)

x / &' (jw)Gy(jw) My (jw) R’ (jw)82(w) R(jw) M, (jw) Ga(jw)d(jw)dw)

= rgg;(&((ﬁd(w)R(jw)Mu( Jw)Ga(jw))e~ 2,

With this equation the following corollary is obvious.

(48)
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Corollary 2. Given a residual generator (1§) and residual evaluation
function (28), then we have
| minlle = 2Iggfa(éd(w)R(jw)Mu(J'w)Gd(J'w))/k(f)- (49)

Remark. We would like to emphasize that 64(w) depends on ||u(jw)||z which
is often achievable only under on-line operating conditions. This requires an on-
line calculation for Jy; according to (48) which may cause some troubles due
to the somewhat involved computation for the maximum singular value. For this
reason we suggest that instead of equation (48) we use the following formula for
the threshold calculation:

Jin = max5 (ba(w) R(jw) Mu(jw) Ga(jw)) (2me) ! / Bwdw)?  (50)

where 64(w) is assumed to be of the form (see Section 3.2)
ba(w) = bg(w)by (w).

Since §4(w) is known, the on-line calculation needed is only the integration of

4.2. Minimization of Minimum Detectable Fault

Theorem 1 reveals the dependence of minimun detectable fault on the parametriza-
tion matrix R(s) and frequency window (w;,ws). With the aid of this relationship
we now study how to minimize the minimum detectable fault by suitably choosing
R(s) and frequency window.

It follows from Theorem 1 and Corollary 2 that the minimization of minimum
detectable fault is equivalent to solving the following optimization problem

Ri(il)f"# ”fmin”e
max 5 (6a(w)R(jw) My (jw)Ga(jw))
=2tk A : 7 6D
* min(g(R(jw) M () Gy (i) - 52 (R(jw) Mu(jw))$3(w))

Evidently, this minimum problem can be re-formulated as the following maximum
problem

1
2

min(? (R(je) Mu(jw) Gy (jw)) - 3% (R(jw) M jw)) §3(w))
Ro)6 max 7(64(w) R(jw) M. (jw) Ga(jw))

(52)

In the following, for the sake of simplicity, we will study the optimization
problem (52).



430 P. M. Frank and X. Ding

It is worth pointing out that f,;, may also be zero, which, as mentioned in
the last sections, means a PFDI. In this paper, we do not consider this ideal case.
For this reason, the following assumptions are made:

e Assumption 1: Condition (25) is not satisfied.

e Assumption 2: Gy(s) has as its zeros all the zeros on the jw-axis of
G'4(s) together with their structure in the sense that for

aGi(z) =0,
condition

aGy(z) =0
also holds.

Ding and Frank (1991) have demonstrated physical meaning of these two assump-
tions, which is now briefly mentioned below.

It is clear that if condition (25) holds, then there exists R(s) so that

g_(R(jw)Mu(jw)é/ (jw))# 0 for some w (53)
F(R(jw)M ,(jw)Ga(jw)) = 0 for all w. (54)
This obviously leads to
fmin =0.

Assume that Gg(s) has a zero and Gy(s) has no zero at jw,. Then, there exists
R(s) so that

g(R(jw)Mu(jw)éf (jw)) #0 for some w € (w1,ws) (55)

F(R(jw)M ,(jw)Ga(jw)) = 0 for all w € (w1,w2), (56)
where the frequency interval (w;,ws) is defined as a small neighbourhood of w,.
This shows that if Assumption 2 does not hold, then a near PFDI is achievable.
In the following, we will study the solution of the optimization problem (52).
We process this in two steps. We first discuss how to achieve a minimization of
minimum detectable fault for a given frequency range ¢ = (wi,wz) under the
assumption that &4(w) is known. The results will then be extended to the cases
where the frquency range ¢ 1is arbitarily selectable and é4(w) is only partly
known.

4.2.1. Case 1: Frequency Range is Given

If the frequency range is given, problem (52) reduces to
1

min (o (R(jw) M (jw)G; () - 6% (R(jw) M (j0)) $}(w))
sup

R(s) r‘?g.;(6(5d(w)R(jw)Mu(jw)Gd(jw))

(57)
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In (Ding and Frank, 1991) a systematic procedure for dealing with such kind of
optimization problem has been proposed, and is adopted here.

It is straightforward to demonstrate that the optimization problem (57) is
equivalent to:

sup min (o2 (R(jo) 1, ()G () — 5 (RG) Mo () 55() (68

R(s) wE®
subject to
max 5 (8a(w) R(jw) Mu(jw) Ga(jw)) < 1. (59)
Denote M, (s)G4(s) by Ga(s). Performing the so—called extended co-

inner—outer factorization (ECIOF) for Gy(s), which is lntroduced by Ding and
Frank (1991), gives

Ga(s) = Gao(5)Ga: (5)Gai(s), (60)

with Gg,(s) as co-outer, Gg(s) as co—inner and Gy, (s) having as its zeros all
the zeros on the imaginary axis of G4(s). Choosing

R(jw) = Q(jw)Gg,(jw) : (61)
with G, (s) as the inverse of Gg,(s) yields
5(R(jw) Ga(jw)) = 7(Q(jw) Ga: (jw)). (62)

Taking into account Assumption 2, M,(s)Gs(s) can be factorized as (Ding and
Frank, 1991)

M, (5)Gy(5) = Gao(5)Gaz(s)Gy1(s) for some Gji(s) € RHoo. (63)
We write, for the sake of simplicity, M, (s)AG}(s) as follows
M, (s)AGy(5) = Gao(5)Guas (s)A(s) , (64)

for some unknown transfer function A(s). In view of the restriction on the size of
AGy(s), it follows

7(A(jw)) < 0( w(j)) 65 (w)/5(Gao(jw)Ga, (jw)) = 6(w).  (65)

The optimal problem (58) thus reduces to

2‘2}’)5‘52( (QUjw)Ga: (w) Gy (jw)) — 7 (Q(Jw)Gdz(Jw))52(w)) " o)

subject to
rur}g;u‘f(rSd(w)Q(J'w)Gdz(jW)) <L (67)

With the aid of the following lemma the above optimization problem can be solved.
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Lemma 3. (Ding and Frank, 1991) Let G(s)(kxk) € RHo with rank G(s) = k
be given, whose zeros lie on the jw-azis. Then there erists Q(s) € RMo so that

G (jw)Q*(jw)Q(jw)G(jw) < I, forall w (68)
G*(jwo) Q" (jwo)Q(jwo)G(jwo) = I for some wp € [0,00].  (69)

We now state the solution to our optimization problem.
Theorem 3. The optimum of (66) is given by

1

sup min(o? (Q(j4)Ga: (1) G1(jw)) - 7 (Q(jw)Gas () #2(w))

= min (12(5;{ (W) Gra(jw)

(6710 (M) 83 ) /3(G o) G ()))”) (70)

Proof. First, we show that for all Q(s)G4,(s) satifying (67) the following inequ-
ality holds:

min(*(Q(ju) Gar i) G (i) - 7 (@) Gas (1)) 8°))

< min (_qz(&;l(w)Gfl(jw)) - 5;2’(w)52(w))1/2. (71)

wEP

If this is not the case, then there exists some @Q(s) such that

min(22(Q(j)Gas ()G11(i9)) - 7*(Q(j)Gas () 8(@)) '
= min (£2(QUjw)Gas (19)84(w)55  (0)G11()
(@) G (j)6a(w) 57 (@) 82w '

> mln( 267 ()G 11(jw)) — 63 2(u)62(w)) (72)
This leads, by using the relations

o(kA) = k'/?0(A), ¢(AB) < g(A)a(B) (73)
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with a constant k, to

min (02(Q(j0)Gar(1)84(w) (¢ (67 ) G (i0)) - 655" ) "

1/
> min(o? (571 () Gpa(i0) - 57 (@)F()) (74)
Since
2?(Q(jw)Ga:(jw)ba(w)) < 1, : (75)
(74) does not hold. This certifies, by contrast, that (71) is true.
Assume now at frequency w, € ¢
1/2
min (o (671 (@)G 1 (i) — 65 7(@)6%(»))
2 1 . -2 2 /2
= (27 @e) Gra(iwe)) — 672 (wa)?(wa)) - (76)
According to (71) we have
1/2
oup i (2°(QUu) Gas ()G 1) = (@) G () 8°())
1/2
< (22067 @o) Graliwe)) — 672 (wo)8?(w)) - (77)

Using Spectral Factorization Theory (Astrom, 1970) we are able to factorize §4(w)
as

83(w) = &5 (jw)da(jw) : (78)
with 64(s), 67'(s) € RHo. Let

Q(jw) = 87 ' (jw)Q(jw) (79)
and choose Q(ju) satisfying

7(Q(jw)Ga:(jw)) <1 forall weg (80)

a(Q(jwo)Ga: (jwo)) = 7(Q(jwo) Gaz (jwo)) = 1, (81)

which, according to Lemma 3, does exist. Furthermbre, we notice the relation

o (8(jw)G(jw)) = o (6(w)G(jw)) (82)
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with §*(jw)d(jw) = §%(w), then it can be, on the other hand, concluded that there
exists @(s) such that

gl(lp)mm( (QUjw)Ga: (jw)Gyi(jw)) — 7 (Q(jw) Ga: (ju)) 52(w))

= min (o2 (85" ()G (v) ~ (67 @F(LL(5)5 ()/3(Guo ()G (1))
for which the constraint .
sup 7(Q(jw)Ga: (jw)ba(w)) < 1 (83)

is also satisfied. This proves the theorem.

With the aid of Theorem 3 it is staightforward to find out the solution to the
original problem (51) with ¢ being given. It is summarized in the following
corollary.

Corollary 4. Let system (20), residual generator of the form (14) and evaluation
function (28) be given. Then

-1/2

ind (L fminlle = 2max (02 (671 ())G () — %5 @) T, (89
and the optimal parametrization matriz R(s) is determined by

R(s) = Q(s)G7,(s) = 07" (5)Q(5) G, (5) (85)
with Q(s) satisfying

7(Q(jw)Ga:(jw)) <1 forall we ¢

G;z (ij)Q*(jWO)Q(jwa)Gdz‘(jwo) =1
where Gy1(s), Gaoy Ga: and w, have the meaning stated by (60), (63), (76),
respectively.
4.2.2. Case 2: Frequency Range is Selectable

In this sub—section we study the solution of optimization problem (51) or equiva-
lently (52). The results obtained in the last sub—section is the basis of the research.
We assume that the lenth of the frequency range ¢ = ws —w; is constant and may
be suitably small.

Observe equation (84). It can be seen that for a given frequency range the the
minimal value of ||fmin|l¢ given by the right side of (84) is independent of R(s).

This ensures

. 2 1 Y ot
pioy i Wminlle=2_inf max(? (55 @)G1(jw)) — 63 @) . (56)
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This suggests the following way to compute inf“ Jminlle: select a ¢; calculate

-1/2
minww(g_2 (671 (w)Gr1(jw)) — 87%(w)87 (w)) ; store the smaller one by com-
paring with the previour value; repeat. In fact, (86) is a nonlinear optimization
problem which can be solved by a search over w using the convetional nonlinear
optimization techniques (see e.g. Luenberger, 1969).

A simple way to achieve a sub-optimum to the optimization problem (86)
is to determine the frequency w,, at which min,g[g,o0) (g’_2 (651 (w)Gp1(jw)) —

-1/2
872 (w)8? (w)) reaches its minimum, i.e.,

min_ (¢ (6 (©)Gn(w)) - 7))

wel0,00
-1/2

= (57 (@o)Gpaliwo)) — 6726} wa)) (87)
and then let

¢ = (wo — €/2, wo + €/2). (88)
It is obvious that in this case

JJnf  max (.«zz (67' (@) Gn(jw) — 83 2(u)6}(w)) o

(2 @) Galio) = 67283 w) (89)

corresponds to € — 0.

4.2.3. Case 3: Input Signal is Only On-Line Achievable

As mentioned above, there exists such a situation that the input signal u(s)
becomes known only under process operating conditions. In this case, &a(w),
written as Sd(w)&‘ (w), is partly known before the observed process comes into
operation. Taking into account on-line realizability, it was suggested in Section 4.1
that instead of (48) expression (50) may be used for the threshold determination.
According to Theorem 1, minimizing detectable faults therefore reduces to solving

ma & (Ba(@) (i) M () Ga(i) (2r) T 83(w)a0)?
in = . (90)
R(s),¢ p

min (g_z (R(jw)M u(jw)Gy (jw)) ~ 52 (R(jw) Mu(jw)) 87 (W)) ’
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Notice that the term ((2m¢)~? f 62 (w )dw) %is independent of R(s), so the

optimizationr problem (90) is equ1valent to

max 7 (bg(w) B(jw) M u(jw) Ga(jw)

inf ; OV
" min (g2 (R(jw) My (j0)G () - 73(R(ju) Mo () 63() )

which has a similar form to (51) and can be solved off-line using the results obtained
above.

By now, we have arrived at our aim of minimizing the detectable faults. The
results obtained will be interpreted in the next section and summarized in the form
of algorithms to realize FDI.

5. Discussions

This section consists of discussions of several issues concerned with the use of the
results achieved in the last section and their interpretation.

5.1. Threshold

In Section 3.4 a general expression for a threhold is given, which is re-formulated in
Section 4.1. Bearing in mind that these expressions were derived based on system
model (20) and hold for all parametrization matrix R(s), the question may arise:
how to determine a threshold if the original system model (4) is considered and
the parametrization matrix R(s) is optimal in the sense of (51). We now answer
this question. Without loss of generality we only study the case of fault detection.

We begin by observing (48) as well as (50) that are re—written here:

Jin = Ifg;"—7(6d(“-’)R(jw)Mu(jw)Gd(jw))6—1/2 or

Jon = rggg&(c‘;d(w)R(jw)Mu(jw)Gd(jw))((21re)'1 fsz(w)dw)l/z.

We first assume that u(jw) € RL, and is given before the process comes into
operation. By proving Theorem 3 it has been shown that

max & (64(w) R(jw)Mu(jw)Ga(jw)) = 1 (92)

if R(s) is optimally chosen in the sense of (51). This means, somewhat surprising,
that the threshold is a constant equal to ¢~1/2. As a matter of fact, one may expect
a Jin changing with the input signal. However, if we observe §4(w) in detail, the
reason becomes evident. As shown in Section 3.2,
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d(s) = [ AG;((SS))“(“) ] ,

so we have

()3 < 62 (w) + 82 (@)|lu(iw)ll} = 63(w). (93)

This shows that the information on the input signal is included in é4(w) which
is further processed by the residual generator design. This is no more the case if
u(jw) is unknown before the process is in operation. To establish a threshold
according to (50) we have first to divide 64(w) into two parts. Since

50(@) + Sf@)lluiw)llz = 65,w) (1 + 6 @llu()3/5& W) (94)

87 (w) (83 ()/87(w) +Ilu(iw)ll3),  (95)

b4(w) may be difined as
ba(w) = 6;(w) or bda(w) = bu(w) (96)
and 8u(w) as

bu(w) = (1+ 5?(W)IIu(jw)ll"é/v&zu(w))”2

or

Bu(@) = (63,(w)/87(w) + [lu(iw)|I3)*. 97)

Note that this factorization is not unique. Remembering the discussion in
Section 4.2.3, we finally have

Jn= (@reyt [ B(w)aw) o (98)

which can be on-line calculated so far u(jw) is known.

Due to its adaptabilty to input signals the threshold derived above may be
called adaptive threshold (Frank, 1991). Emami-Naeini et al. (1988) have first
systematically studied this problem in the time domain, followed by the work (Ding
and Frank, 1991) in the frequency domain. Comparing the results one may notice
that the threshold introduced here is presented in a very simple form and can also
be easily calculated. Especially, in contrast to the time domain case, there exists
a suitable algorithm to determine the frequency window as given above.

5.2. Two Schemes to FDI

Remember that we have studied the problem of minimizing detectable faults in
two steps corresponding to two cases. The first one is the frequency window being
given, and the other one the frequency window being selectable. Both of these two
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cases may be met in practice and therefore are of interest for engineers. In the
following we summarize the main results of the last section into two schemes and
present them in the form of algorithms.

Case 1: The Frequency Window is Given

This case is especially of interest if one is sure that the fault F is dominant over
some frequency range (wo,wk). In this case, one may divide (wp,wi) into k
sub-ranges (wi,wi41),i =0,---,k —1,. Over each of the sub-ranges a residual
generator will be designed by solvmg the optlmlzatlon problem (57). This will be
realized by using the following algorithm.

Algorithm to Residual Generator Design

e formulate process model into the form (20);

o calculate left coprime factorization of Gy(s) for My(s), Ny(s) using the
standard algorithms (Francis, 1987);

e do an ECIOF for Gy(s) = M(s)Ga(s), for which Ding and Frank (1991)
have proposed an effective algorithm;

s do factorization for Gj(s) = My (s)G(s) to achieve Gy1(s) (see also Ding
and Frank, 1991);

e determine frequency w, satisfying

min(2? (55 (@) Gya(jw)) ~ 652 (@)63()) = 2 (65 (we) G 11 (jws))

wEP

~87(wo)87 (wo);
o the optimal parametrization matrix R(s) reads:
R(s) = Q(s)G7,(s) = 651 (5)Q(5)G 3, ()
with Q(s) satisfying

&(Q(jw)Gdz(jw)) <1 forall weg

GZ: (jUO)Q*(jwo)Q(jwo)Gdz (jwo) =1

where Gj1(s), Gao,Ga: and w, have the meanings stated by (60), (63),
(76), respectively;

e the residual generator is finally given by

7(s) = R(s)(Mu(s)y(s) = Nu(s)u(s)).
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Using the obtained residual generators one may now realize FDI for the process
considered. For each frequency interval a residual generator will be used and the
corresponding on-line operations are summarized as follows:

On-Line Operations for Residual Generation and Evaluation

o calculate r(f) according to

r(s) = R(s)(Mu(s)y(s) - ﬁu(s)u(s));

e transform r(¢) into the frequency domain for 7(jw) using Fourier trans-
formation;

o calculate J(¢) according to (28);
e calculate the threshold J;; if necessary;
e compare J(¢) with Ju, and if J(¢) > Jun then make alarm, otherwise
repeat the procedure.
Case 2: The Frequency Window is Selectable

If one has no information on the frequency ranges over which the fault may pre-
sent, one is forced to choose a or a series of frequency windows for the residual
evaluation. In this case, an additional step has to be carried out in the above algo-
rithm, namely, a nonlinear optimization problem should be solved for the frequency
window according to (86). The on-line operations remain unchanged.

5.3. Interpretation and Comparison

We first study the physical meaning of expression (49) for the minimum

size of detectable fault. It can be seen that ||fminlle is determined by
7(84(w) R(jw)My(jw)Ga(jw)) as well as k(c). Re-write k(e) as
k(e) = 2(R(jw) M u(jw)Gy(jw)) (99)

and assume that ¢ is selectable over [0, oo]. This makes it clear that [|fminlle
becomes smaller by increasing min,eg g(R(jw)M w(jw)Gy(jw)) or decreasing
maXyeo a(&d(w)R(Jw)M (Jw)Gd(Jw)) It is known (Francis, 1987; Maciejowski,
1989) that max, &(-) and min, g(-) have the following meanings

e max, &(- ) is indeed the Hoo—norm of a transfer function that measures the
greatest increase in energy that can occur between the input and the output
for a given system

e in contrast, min, g(-) describes the possible smallest increase in energy that
can occur between the input and the output for a given system.

It is worth mentioning that for the above two cases no assumption on the input
signal is made beside that its size is restricted. This corresponds to our case where
no information about the fault as well as the model uncertainties is assumed to be
given.
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effects of the input signal, which, as mentioned above, is just what we need for
FDI. Notice that it would be possible that '

sgleG(S)f(S)II>>il}f||G(8)f(S)H, for [[f(s)ll 1. (100)

This means that using the optimal residual generator in the sense of (51) the
minimum size of detectable fault may be strongly reduced in comparison with
the use of residual generators proposed in previous works. This certifies, on the
other hand, that considering residual generation and evaluation problems together,
as opposed to previous works, may offer more potential for the enhancement of
robustness in the overall schemes of observer-based FDI.

Here, we would like to emphasize the fact that the minimum size of detectable
faults, under the use of the optimal residual generator in the sense of (51), is
independent of the residual generator used (see (84)). In fact, it is calculatable as
long as the system model and the restrictions on the model uncertainties are given.
This provides us with knowledge about how far we are able to detecte a fault before
we begin solving FDI problem for a given system.

Finally, it is worth pointing out that although we have treated the problem by
modelling the model uncertainties as a part of the unknown input vector, we did
not follow the classic way that simply compares the effects of the unknwon inputs
and faults. On the contrary, we devoted the attention to minimizing the size of
detectable faults. In this way, information on the model uncertainties is utilized.

6. Conclusions

In this paper several problems related to fault detection and isolation have been
studied. The basic idea of the study, different from the majority of previous works,
is to minimize the size of detectable faults using suitable residual generation and
evaluation scheme. This may enable a fault detection even if the size of the fault
may be small.

The key point of our study is the derivation of the relationship between the
residual generator as well as the residual evaluation function and the minimum
size of detectable faults. This reveals, on the one hand, how far a fault could be
detected using a suitable residual generation and evaluation scheme and, on the
other hand, reduces the problems into optimization problems that are solved using
frequency domain optimization techniques. The results have finally been presented
in the form of algorithms so that they are calculatable on a computer. The needed
on-line operations have also been investigated.

We finally discussed the physical meanings of the results achieved here. With
this we have found an answer to the question which performance index should
be adopted for designing residual generators, a question that has been, due to its
importance, studied and discussed over the years. With the aid of these results we
have achieved more insight into the observer-based FDI. It is believed that this
provides a valuable basis for further research.
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