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FAULT DETECTION IN LINEAR DISCRETE DYNAMIC
SYSTEMS USING
GENERALIZED-LIKELIHOOD-RATIO TECHNIQUE

SHoco TANAKA*

Generalized-likelihood-ratio (GLR) technique is used for fault detection in
linear discrete dynamic systems. Based on fault detectability, three detection
methods are first introduced; a reduced order step-hypothesized GLR (SH-
GLR) method, a reduced order tracking functional subspace method(TFSM),
which makes use of the system information about input and observation, and
a pattern recognition based method (PRBM), which recognizes the pattern
of the curve of the reduced order SHGLR to detect the fault. Finally, the
robustness on uncertainties of the system is considered.

1. Introduction

Fault detection and/or diagnosis are important from the viewpoints of impro-
ving system availability and protecting against disasters. From this perspective,
many fault detection and diagnosis methods have been developed (for example, see
Willsky, 1976; Isermann, 1984; Basserville and Benvensite, 1986). Specifically,
GLR technique is well-known for its rapid fault detection for the dynamic systems
whose mathematical models are known (Willsky, 1976). But, in its application,
adequate hypotheses must be adopted. The step hypothesis, which models the
anomaly vector function appearing in the system by a step function, has been
often used for its convenience, because it only necessitates the anomaly function to
have a meaningful bias over an interval (Tylee, 1982; Ono and Kumamaru, 1984).
This hypothesis is sufficiently robust in the sense that it does not require any exact
mode of the fault.

This paper first introduces, based on fault detectability, a reduced order step—
hypothesized GLR (SHGLR) method which considerably improves the detection
performance. Using only the SHGLR method, however, good detection result can-
not always be expected because the actual anomaly vector function cannot neces-
sarily be well modelled by a step function. Thus, the paper furthermore presents
other two more general detection methods; one of which, named here TFSM, ma-
kes use of the system information about input and observation effectively to track
and estimate the unknown anomaly vector function, whereas the other, called here
PRBM, recognizes the pattern of the curve of the reduced order SHGLR to detect
the fault.

* Department of Electrical and Electronic Engineering, Yamaguchi University, Ube 755, Japan



446 S. Tanaka

2. System Description

The system to be considered is :
z(k + 1) = Az(k) + Bu(k) + I'w(k) (1)
y(k) = Ha(k) + v(k) (2)

where z(k) € R"™: the state, u(k) € R": the input, y(k) € R™: the observation,
and w(k) € R? and wv(k) € R™ are mutually independent white Gaussian
noises with zero means and covariances Q and R (positive definite). The initial
state x(0) is assumed to be a Gaussian random variable with known mean and
covariance independent of the noises.

When an anomaly/fault occurs to the plant or the sensors, it generally causes
changes AA and AB or AH in the system matrices A, B and H. This
means that an unexpected time varying function such as AAz(k) + ABu(k) or
AHuaz(k) appears to the dynamics or to the sensor equation after the anomaly.
For dynamics fault, for instance, we have

2(k+1) = Az(k) + Bu(k) + Pw(k) + o(k +1,8) f(k) 3)

where ¢ and f(k) are respectively an unknown onset time of the fault and an
unknown anomaly vector function of dimension n, and o(k,6) is the unit step
function which takes the value 1 for k > 6.

A similar discussion applies to sensor fault, but for clarification we are concer-
ned here only with the dynamics fault.

3. Detectability by the Conventional SHGLR Method

We use a Kalman filter to estimate the state. The filter equations are given by:

#(klk—1) = Az(k — 1)k — 1) + Bu(k - 1) (4)

2(k|k) = 2(klk — 1) + K (k)v(k) (5)

v(k) = y(k) — Ha(k|k - 1) (6)

P(klk —1) = AP(k — 1]k = 1)AT + rQr” (7

P(klk) = P(k|k — 1) — K(k)HP(k|k — 1) (8)
where

K(k) = P(klk = )HTV~Y(k) (9)

V(k)=HP(klk-1)HT + R (10)
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In normal operation, the innovation sequence (k) in the filter behaves as a white
Gaussian sequence with mean zero and a known covariance V'(k). We denote it by
~°(k). But, in fault condition, the anomaly function f(k) affects the innovation
sequence as follows:

v(k) = +°(k) + A(k; 6) (11)

where

k
Ay(k;6) = GO(k;0) x F(B) £ Y GO(k; ) F(G - 1) (12)
j=0
Here, G°(k;7) and =+ represent respectively a fault signature matrix for a
dynamics jump and the symbol of a convolution (Willsky and Jones, 1976; Tanaka
et al., 1987). From (11), (12) we find that the fault detection can be made by
noticing the change in the innovation sequence ~(k).

The conventional SHGLR method is the method which detects the fault by
modelling the anomaly vector function f(k) by astep function ve(k,8) (v € R")
and estimating it. The situation of the modelling is graphically shown in Figure 1
for two cases.

) step function

) 1
0 6 G k \/ time

vo(k, o)

8 : onset time of the fault
k : current time .
Fig. 1. Modelling of anomaly function by a step function.
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More accurately, the maximum-likelihood—estimate (MLE) &(k;8y) of the
step vector v is obtained under the step hypothesis that a step function vo(k,6)
has added from the time 8 and the step-hypothesized GLR{SHGLR) defined as

k (k; 6,
{(k; 80) = fn [Ph / Ii{(i;f}’}{()()k’g ))] (13)

is computed, and whether the system is faulty or not is judged with the SHGLR.
Note that in (13) ~* means ~(j)(6o < j < k), and Ho, H1 represent respectively
the hypotheses of no fault and fault.

In implementation, however, the maximum SHGLR over a window © =
[k — M,k — N] is adopted to raise the detection performance. Anyway, with
the SHGLR method, the value of the SHGLR serves as the index for judging the
occurrence of an anomaly.

Calculating the SHGLR, we have

£(k; 80) = (1/2)&(k; 00)T C (k; 60)2(k; o) (14)
where
k
D(k; 00) = C1(k;60) D GT(j;60)V 1 (3)v(4) (15)
j=0p
k
C(ki%)2 3~ G (j;60)V ()G o) (16)
G0 2 Y @) | an

We introduce now the inner product and the norm defined by

k

(a(®), b(®)r £ Y a”()VHG)BG) (18)
la(E)I% 2 (a(k),a(k))r (19)

and consider the vector vy such that

J(wo) < J(v) for all v € R (20)
where

T () £ 1|a9(k;6) ~ G°(k; 60) * wa(k, 60) [IF

=[|G°(k; 8) * £ (k) — G(k; 60)|[7 (21)
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(21) is nothing but the approximation error in the anomaly effect Ax(k;0) =
G°(k;6) * f(k) in the interval [60,k] by the step hypothesis. We find that v is
the step vector which optimally models the anomaly function f(k) under the step
hypothesis in the interval [6p,k] in the sense that the difference in the innovation
sequence is minimum. - Note that /¢ is not necessarily an arithmetic mean of
F(k) on the interval [6g, k], but a vector of such a kind. At any rate, expressing
the effect A~(k;0) by: ’

A~ (k;8) = G(k; bo)vo + Av¥(k; 0) (22)
we obtain a condition for A~v#(k;6) as follows:
(A~ (k;0), G(k;60)v)r = 0 for any v € R (23)

Substituting +(j) = Av(j;8) + ¥°(j) (see (11)) into (15) and considering the -
relations (22) and (23), we immediately find that the MLE &(k;6,) obeys Gaussian
distribution with mean vy and covariance C~'(k;8;) and that the. probability
distribution of the SHGLR £(k;69) becomes from (14) the non—central Chi-
squared distribution with n degrees—of-freedom and the non—centrality parameter

5(k;60) = VT C(k; bo)vo (29

We find from (16) and (19) that &(k;60)? is the squared norm (in the sense of
(19)) of the function G(j;60)vo. This function approximates the anomaly effect
A~(j;6) in the interval [fo, k] optimally under the step hypothesis, and 7
represents the step vector of the step function. This distribution is denoted here
by x%(n,8%). On the other hand, letting 62 = 0, we get Chi-squared distribution
with n degrees-of-freedom as the distribution of the SHGLR under no fault. We
denote it by xZ%(n). Thus, whether fault detection can be easily accomplished or
not depends on the difference between the two distributions x2(n,62) and x%(n).

Introducing the discriminating measure divergence (Kullback, 1959) to eva-
luate the distance, we can see that the divergence is characterized by the non-
centrality parameter &(k;600)? and that it is a monotonically increasing function
_of the parameter 6(k;60)? (Tanaka, 1988). From these facts, ‘'we see that we
can define the fault detectability by the conventional step-hypothesized GLR me-
thod as the non—centrality parameter §(k;60)2. We thus see that the conventional
SHGLR method is effective when the anomaly vector function f(k) has a com-
paratively large non—centrality parameter 62 somewhere after the fault. This is
satisfied if f(k) has a meaningful bias on some interval.

4. Order Reduction in the Step Hypothesis
It is noteworthy that there is a weékly—diagnosable—space(WDS) whose constituent
vector v has a particularly weak influence on the non—centrality parameter §2.

Below, we give only the result for the WDS for the dynamics fault for sim-
plicity. We assume, however, that the fault occurs in the stationary state of the
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Kalman filter, because it is quite rare for fault to occur. Of course, the result is
valid even in quasi-stationary state of the filter.

Theorem 1. We assume that the fault modelled well by a step function occurs in
the stationary state of the Kalman filter. Then, the WDS for the dynamics step
vector is given by the range space of (In — A) of N(H), i.e., (In— A)N(H),
where N(H) denotes the null space of the observation matriz H (Tanaka, 1988;
Tanaka, 1989).

Proof. Using the recursive equations on G°(k;8,) (Willsky and Jones, 1976) and
equation (17), the anomaly effect by the dynamics step vo(k, 6p) on the innovation
sequence can be expressed as follows:

k-1
G(k; Oo)v = G°(k; 60) *vo(k,00) = H[I, + > (M1 _y--- ;)] (25)

i=bo

where IT; = A(I, — K(j)H) and I, is the nxn identity matrix. Thus, in
the stationary state, we have

k-89
G(k;00)v =H Y II'v (26)

j=0

where IT = A(I, — K" H). Here, K* denotes a Kalman gain in the stationary
state. Since we are now assuming the stationary state, IT is a stable matrix. This
is easily verified if we consider that the recursive equation for the estimation error

e(k|k) = =(k) — &(k|k) is given by
e(klk) = (I, — K(k)H)Ae(k — 1]k — 1)
+(In — K(k)H)T'w(k — 1) — K(k)v(k) (27)

and that the matrices (I, — K(k)H)A and A(I, — K(k)H) are similar to
each other. The similarity of the two matrices comes from the non-singularity of
the matrix (I, — K(k)H) which is the result of the positive definiteness of the
estimation error covariance of x(k) (see Appendix).

Combining the stability of the matrix IT with (26), for an appropriately large
(k — 6o), we have:

G(k;0)v = H(I, — IT) v (28)

This means that the non—centrality parameter 6(k;8)%> by the step vector v
which satisfies H(I, — IT)"'v = 0 is considerably quickly saturated with time
k (see (16) and (24)). We call the space constructed by such a vector v a weakly—
diagnosable-space (WDS). This space is obviously the null space of H(I,—II)™!.
Using the definition of II, we can rewrite the space as follows:
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N(H(I, - II)™Y) = (I, — IT)N(H)
=(I,- A+ AK*H)N(H) = (I, - A)N(H) (29)

This completes the proof (Q.E.D.).

From Theorem 1, we see that the WDS for the dynamics step has the dimension
of (n—m), where m is the rank of H. Here, H is assumed to be of full rank
and so rank[H]=m.

This WDS property obviously comes from the saturation of the (n — m)
smallest eigenvalues of the matrix C(k;6,) with the time k. Theoretically, the
saturation occurs when (k—6y) becomes appropriately large. But, even at the time
k when the saturation does not occur, the subspace spanned by the eigenvectors
corresponding to the (n—m) smallest eigenvalues is very close to the WDS. From
this fact, it seems quite reasonable for the step hypothesis to assume only the step
function whose step vector is included in the orthogonal complementary space of
the WDS (hereafter the space will be called SDS (strongly—diagnosable-space)).
Because, by this procedure, the number of unknown parameters to be estimated
can be reduced from n to m with the non—centrality parameter 6&(k;6p)?
almost unchanged. This means that the degrees of freedom of the central and
non—central Chi-squared distributions, by which the SHGLR’s under no fault and
fault conditions are respectively governed, are decreased from n to m with the
non—centrality parameter almost unchanged, and thus a much larger divergence is
obtained between the two distributions than before.

Summarizing, modelling the anomaly vector function f(k) by the step func-

tion w,o(k,0) (v, €SDS) can offer a much higher detection performance than
before.

The maximum-likelihood-estimate of the reduced order step vector v, and
the reduced order SHGLR are obtained as:

k
D,(k;80) = S[STC(k; 00)S]™ < [ST D GT(§;60)V(i)(5)] (30)

j=0o

£,(k; 80) = —”T(k 80)C(k; 80)&5(k; 00) (31)

where S is the matrix composed of the orthonormal basis vectors of the subspace

SDS.
S2[sy, 82, 8m) (32)

5. Reduced Order Tracking Functional Subspace Method

For the system where the step hypothesis does not work well, we can take a direct

approach of estimating the anomaly function jf(k) as a linear combination of
appropriate basis functions.
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Letting the basis functions (n—dimensional) be
#i(k) = ¥i(k,00)a(k,00) (1<i<y) (33)

the MLE of the expansion coefficients {c;} of the basis functions are obtained by

9
Min (k) = G(k; o) » Y cai (R (34)

i=1

and the Generalized-Likelihood-Ratio (GLR) for this case is expressed as

1 _ !
£(ki60) = 3 U(IE - Min v (8) — DG (ki00) * B3} (39)
* i=1
Introducing now the new basis functions €; = G®(k;6o) * ¢;(k) (1 <i < ¢q) and
defining the functional subspace S spanned by the basis functions, we can see
that the GLR (35) becomes the squared norm of ~*(k), i.e.,

(ki60) = 3l () (36)

where ~*(k) is the orthogonal projection of the ~(k) onto the space S (see
Fig. 2). The conventional and reduced order step hypotheses mentioned before are
the special cases where ¢;(k) = e;jo(k,0)(1 < i< n) and ¢;(k) = sio(k,b)
(1 € i < m), respectively (where e; is the i-th natural basis vector of R® and
s; is the vector defined in (32)).

(k)

Fig. 2. Orthogonal projection of the innovation sequence <y(k) onto the subspace S.

Anyway, with this method, the GLR obeys the non—central Chi- squared di-

stribution x2(g,6?) with ¢ degrees of freedom and the non—centrality parameter:
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6% = || orthogonal projection of
G (k;0) * (k) onto the space $ ||% (37)

Under no fault, the GLR obeys of course the central Chi-squared distribution
x%(g) with the same degrees of freedom gq.

From the fact, we find that we should not use extra basis functioms when
adopting the method. This is because when we use extra basis functions, the
degrees of the two distributions increase whereas the non—centrality parameter $2
saturates and thus the divergence between the two distributions becomes small
and fault detectability considerably degrades. From this viewpoint, making use
of system information is recommended in the construction of the basis functions,
instead of adopting orthogonal series. As mentioned before, anomaly effect of the
anomaly function f(k) appearing in the innovation sequence is G°(k;8) * f(k),
where f(k) = AAx(k)+ ABu(k) (we are concerned here with the anomaly of
parameter change). We thus see that an effective approach is to adopt the basis
functions G°(k;6y) *e;uj(k) (1<i<n, 1<j<r) and Go(k;ﬁo)*e;yj k)1 <
i<n, 1<j<m). Of course, these basis functions are defined in the innovation
space. The reason why the observation signal y(k) is adopted instead of =(k) is
that (k) is not directly available.

According to our previous discussion, the smaller the number of basis func-

tions, the higher the detectability. From this viewpoint, we had better adopt the
following basis functions:

{n; ()} 2{G"(k; 60) * s;u;(k) (1<i<m, 1<j<m)
GO(k;00) * siyj (k) (1<i<m, 1<j<m)

where s;(1 <1< m) denote the basis vectors of the strongly-diagnosable-space
(SDS) (Tanaka et al., 1987; Tanaka, 1989). Taking into account, however, the
magnitude and the linear independence of the functions, further order reduction

is possible. That is, by considering the Gram matrix G whose (4,;) element is
defined by

9(i, 3) E(ns (k), m; (B))r - (38)

and considering the p eigenvectors £;(1 < i < p) corresponding to the largest -
(i.e., dominant) p eigenvalues of the matrix, desirable basis functions to be used
are given by

Zﬁfjnj(k) (1<i<p

where §;; is the j-th element of the i—th eigenvector ;.

According to our recent research, we found that the vectors {s;} should be
changed according to the signal to be used. For example, for the signal u;(k)
the optimal vectors {s;} are obtained as the dominant eigenvectors of the nxn
matrix which is symbolically defined by
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(Go(k, 90) * Uj; (k), Go(k, 00) *Uj; (’C))F
The (i1,i3) element of the matrix is defined by
(g7, (k; B0) * u;(k), gi, (k; 60) + u; (k))r

where g%(k;80) is the i~th column vector of the matrix GP°(k;6). For each
signal of {u;j(k)} and {y;j(k)} the vectors {s;} which define the elements
in the set {n;(k)} are different. This consideration comes from the sensitivity
analysis that desirable basis functions must affect the innovation sequence very
largely. Evaluating this effect by the norm defined by (18), (19), we get the result
mentioned above.

6. Pattern Recognition Based Detection Method

We introduce here another detection method. This is the pattern recognition based
detection method (PRBM) which monitors the pattern of the curve of the maxi-
mum reduced order SHGLR and detects the fault. This method is quite easy to
implement and also requires no computational burden compared to the conventio-
nal SHGLR method. The validity of this approach can be easily understood by our
intuition. That is, many experiences show that even when after the anomaly the
maximum SHGLR does not take as large values as we might expect, the time in
which it takes comparatively large values is long and thus the curve of the SHGLR
suggests to us that an anomaly has occurred. By adopting this approach we can
expect not only the effective detection of the faults which are difficult to detect
with the reduced order SHGLR method and the reduced order tracking functional
subspace method, but also a decrease in false alarms caused by occasional large
maximum GLR’s taken before the anomaly.

With this method, furthermore, the fault, where some parameters change se-
quentially as time passes, can be detected much faster than with the reduced order
tracking functional subspace method. This is because, to detect the fault effecti-
vely, the latter method must wait until the time when the changes AA and AB
of the matrices A and B settle down to their final values.

Before handling the maximum reduced order SHGLR’s and describing the idea
of the method, we first consider the behavior of the M reduced order SHGLR’s
which are respectively computed for the pairs (k;i,0;0) (1 < i < M) of the M
successive windows ©; (1 <i < M) (with no intersection, see Fig. 3). That is, we
consider the M reduced order SHGLR's defined by (Tanaka and Miiller, 1990)

Cri 2 0(ki;050) (1<i< M) (39)
where k; and ;o are respectively the upper and lower edges of the i—-th window

O;. ki of course implies the current time k.

We call the SHGLR’s of (39) fixed-SHGLR’s, because the times at which step
functions are assumed to have added are respectively fixed at the initial times
{0i0} of the M windows {©;}.
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fixed GLR’s lrag » + » lrs lr2 Ir
' t } } e
a0 kv * * ° kb Ea610 k time k
Ny e Y ad
multi-windows ©, *°° ©s P 0,

Fig. 3. Introduction of multi-windows for effective tracking of the anomaly function.

Under no fault condition, each fixed-SHGLR £p; obeys the Chi-squared di-
stribution with m degrees of freedom x?(m). But, once an anomaly his occurred
to the system, £p; obeys the non-central Chi-squared distribution x2(m, §?)
with m degrees of freedom and the non-centrality parameter:

62 = vT C(ki; 0:0)v; (40)

where v; is a reduced order step vector which models the anomaly vector function
in the i-th window ©;. Since the M successive windows are separated from each
other and thus the M fixed-SHGLR’s £r;(1 < i < M) are mutually independent,
the divergence between the two random vectors L = (£r1,¢F2,-.. ,€FM)T arising
from no fault and fault conditions can be calculated as:

M
D(L/Ho; Hy) = _ D(€pi/Ho; Hy) (41)

i=1

If we assume that §2(1 < i < M) take nearly equal values for & < 8370, we can
get an almost M times larger divergence than before by considering such M
fixed-SHGLR’s £p;(1 < i < M). This means that fault detection becomes easier
as we use many windows in the method.

This fault detection can be regarded as a classification problem between fault
and no fault patterns. Applying the Bayesian decision rule, which minimizes the
probability of errors, to the classification problem, we get the following suboptimal
decision boundary (Tanaka and Miiller, 1990; Fukunaga, 1972):

M
D tri = e (42)
i=1
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{r

discrimination boundary

discrimination boundary
(conventional)

- In
0

Fig. 4. Discrimination boundaries in the space of the fixed-GLR’s.

Thus, we get a detection rule such that

if _{Sfo—> No Fault , (43)
iz1 B > €g — Fault

The parameter ¢ is a threshold in detecting the fault. Using the terminologies
in pattern recognition theory, the proposed method corresponds to introducing a
linear discriminant function into the L-space, where L = (£r1,fF2,...,0rm)7,
in order to detect the fault, whereas the conventional SHGLR method judging the
fault occurrence by the value of {£g;} corresponds to adopting a piece-wise linear
discriminant function (see Fig. 4).

We next describe some modifications in applying the method. As previously
mentioned, the larger the non—centrality parameter {§?}, the more easily the fault
can be detected. Thus, if the maximization of 67 is attempted with respect to the
parameter §; in each window O, instead of fixing 6; at the initial time 6, of
the window, we can get much larger non—centrality parameters 62(1 < i < M). Of
course, we cannot a priori guess where these optimal 6;(1 < i < M) are located in
the windows. However,we can naturally imagine that for the optimal location we
would be able to have larger GLR’s than those which are computed for the fixed
6;’s, i.e., {0io}. We thus recommend, as a practical approach along this thought,
to use the maximum reduced order SHGLR’s computed in the windows {©;}, i.e.,

f"ggn:& 0(ki; 0;) = £(ki;6;) (1<i< M) (44)
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instead of the fixed SHGLR'’s £p; = €(k;i;0;0) (1 < i < M). By this approach,
however, the actual interval from which fault information is extracted becomes
shorter than before, from [f;q, k] to [é,-,,k,-] in each window. This means that
all the observations from 6y to the current time % are not utilized, which
generally yields some detection delay. In order to avoid the detection delay, it is
necessary to close the times k;(1 < ¢ < M), at which each maximum reduced order
SHGLR is computed, to each other. Regretfully, however, we do not have a prior:
any knowledge of how to close them to each other.

Thus, we propose to adopt the statistic defined by the sum of the all maxi-
mum reduced order SHGLR’s calculated in a time interval [k — M’ k] and to
monitor the value to see when it exceeds a threshold. This time interval must
be comparatively long to raise the reliability of detecting the fault. We call this
method a LIPRBM (long interval pattern recognition based method). However,
this type of detection method inherently yields a detection delay for the fault, for
which a single-step hypothesis can be effectively applied. We therefore finally re-
commend implementing the reduced order SHGLR method or a SIPRBM (short
interval PRBM) together with the originally proposed LIPRBM. That is, we finally
have the following detection rule:

i=1

(45)

{Zf\; 4 < ¢ and ZM' ¢, <e; — No Fault
otherwise — Fault

where N’ and M’ are, respectively, the lengths of the short and long intervals on
which the newest N’ and M’ maximum reduced order SHGLR’s are summed up
and £;(i=1,2,...,N',...,M’') represent, the maximum reduced order SHGLR’s
computed at the last M’ times including the current time £, i.e.,

¢; én}?,xf(k,';e,;); ki=k— (l - 1)

7. On Robustness

The fault detection methods described above all assume the exact knowledge of
the system. But, practically, the assumption does not hold. Therefore, it yields a
little larger GLR even under normal operation of the system. One approach which
prevents the detection methods from causing false alarms is making the threshold
a little higher. Here, we give some remarks on robustness of the proposed detection
methods and also some ideas to overcome uncertainties of the system.

We first assume that the dynamic equation (1) has the following modelling
errors: 3, 0AA] 2 ﬂ,-AB? respectively in the system matrices A and
B, where {o;}, {B;} are unknown, whereas {AA]} and {AB?} are known.
This assumption corresponds to considering the case where the system has some
uncertainty on the values of its physical parameters. The parameters {e;} and
{B;} may be constant or time-varying. This case, with the reduced order SHGLR
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and PRBM methods, the reduced order SHGLR takes large values because of the
anomaly function

Y wAAlz(k) + Y B ABY u(k)
i J

due to the modelling errors even when the system is operating normally. It is thus
required to remove the effect of the modelling errors when using the reduced order
SHGLR and PRBM methods.

One approach is minimizing the sum of the maximum reduced order SHGLR’s

computed over an interval: Ef‘ill £; with respect to the unknown parameters
{ei} and {B;} and monitoring the resulting reduced order SHGLR. The reason
hy we minimize the sum is to raise the reliability of identifying the unknown
parameters. After the minimization procedure, the reduced order SHGLR itself
1s monitored for the reduced order SHGLR method, and the sum of the reduced
order SHGLR’s for the PRBM method. Powell method, which is known as an
optimization method, is available for the minimization. The minimization must be
of course achieved on the admissible regions of the unknown parameters {a;} and
{B;}. In order to decrease the computational burden for realizing an on-line use,
we can execute the minimization only at appropriately—spaced times and renew the
initial values using the data obtained in the preceding minimization procedure.

On the other hand, with the TFS method, too, the GLR under normal ope-
ration takes a little larger value because of parameter’s misunderstanding. So, it
will be desirable not only to make the threshold a little higher, but also to monitor
the change of the estimated expansion coefficients, in order to raise the detection
performance.

We next consider the case where the noise is correlated against our expectation
that the noise is white. If the characteristics of the correlated noise is accurately
known, the discussion is still valid through introduction of an augmented state vec-
tor, and the detection methods work perfectly. If not, the detection performance by
the detection methods will degrade. But, TFSM is expected to have a higher robu-
stness compared to the other two methods, because the detection method utilizes
the system information on input and observation over a long interval and enables
the anomaly function due to the fault to be discriminated from the correlated no-
ise. If we monitor the change of the expansion coefficients simultaneously, the fault
detection can be made more easily, because in normal operation the change is large
depending on the noise whereas not large in anomalous operation-of the system. To
make the other two methods (i.e., SHGLR and PRBM methods) be robust against
the noise characteristics, too, we may have to introduce the space of the pattern
which are composed of not only the sequential reduced order SHGLR’s, but also
the MLE’s {&,} and the operating condition of the system. This extension is now
under consideration.
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8. Numerical Examples

By an example of a 2nd-order servo-system, the superiority of the non-reduced-
order PRBM in comparison to the conventional SHGLR method and a Chi-squared
test was demonstrated in (Tanaka and Miiller, 1990). Also, the reduced order
SHGLR and TFS methods were respectively shown to be superior to the non-
reduced order SHGLR and TFS methods with a three dimensional system and a
linear motor car system (Tanaka and Miiller, 1993). Obviously, PRBM recognizing
the pattern of the reduced order SHGLR offers a much more higher detection
performance than that recognizing the curve of the conventional SHGLR. The
merit of the PRBM is that it can, in principle, detect any type of complicated
fault. The fault detection methods introduced here should be used according to
the fault mode and the system.

9. Conclusions

In the framework of the generalized-likelihood-ratio (GLR) technique, a redu-
ced order SHGLR method, a reduced order tracking functional subspace method
(TFSM), and a pattern recognition based method (PRBM) were respectively pro-
posed based on fault detectability. Finally, the robustness on the uncertainties of
physical parameters and noise characteristics was discussed.

Although the paper dealt with only fault detection methods, fault diagnosis
can be, for example, achieved with a multi-hypotheses test. In addition to the
importance of fault detection and diagnosis methods, optimal location of sensors
is also important from the viewpoint of raising the detectability and also the se-
parability between dynamics and sensor faults. These considerations are possible
within the framework of GLR technique, though omitted here (see (Tanaka, 1989)
for the details).
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Appendix

We show here that the matrix (I, — K(k)H) in Theorem 1 is non-singular.

Letting P(klk — 1) and P(k|k) be respectively prediction and estimation
error covariances of the state x(k) in the filter, then we have:

P(k|k) = (I, — K(k)H)P(k|k — 1)

From the assumption that the error covariances are positive definite, we can conc-
lude that the matrix (I, — K(k)H) is non-singular.
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