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PROBLEMS OF COMPUTER-AIDED DATA

PROCESSING IN MACHINE DIAGNOSTICS
AND MONITORING

JaN KAZMIERCZAK*

The first part of the paper presents a structure of tasks which are performed
in systems of monitoring and diagnosing of states of machines. Basing on the
list of such tasks the areas of utilizing particular methods and algorithms for
the needs of data processing in monitoring and diagnostic systems are then
defined. The paper shows some common features of data processing from
the view-point of computer aiding. This part of the paper is illustrated by
on example of forecasting as a particular problem in diagnostic research. By
means of this example some consequences due to the use of general methods
in specific field are discussed. In conclusions some proposals are introduced
which concern the managing of input and output data in diagnostic and
monitoring systems, supporting the choice of computational algorithms and
problems of visualization of input data as well as results of its processing
in various phases of functioning of the system as the tasks which can be
supported by means of computer tools. This part of the paper is illustrated
by some results of research works which have been carried out in the Chair
of Fundamentals of Machine Design, Silesian University of Technology in
Gliwice.

1. Introduction

The problem of machine and industrial installation functioning in order to identify
their current state appears in many branches of technology. If we assume that
a machine is the object of investigations which is to be observed by means of
external effects called signals we are then in the field of the machine diagnostics.
It is possible to propose a general approach in order to analyze a structure of the
research which may be carried out in this field (KaZmierczak, 1989).

First of all we have to state that the processes which occur in the machines
and which are the subjects of investigations have usually continuous nature. The
commonly accepted assumption in the machine investigations is that the continuous
processes which occur in the machine and are projected in signals may be treated as
sequences of discrete elements (events). A continuous process could be represented
by a chain of two kinds of events: stales and changes of the states in the process.

Let’s distinguish the following basic states which are considered in the diagno-
stic investigations of machine functioning:
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e instantaneous state of the u—th machine in the class of U machines at the
time point ¢ which can be marked as sy,

e instantaneous state of the signal related to the state s, ;, marked as z, ;.

Applying these two parallel types of the states one may describe all particular
research problems which have to be solved in diagnostics. Of course, the states of
one type form a unique sequence (representing respectively the processes of machine
functioning and the related signal). Each pair of different instantaneous states is
connected by an interaction. The problem of identifying the connections between
elements of such a net of states can be considered in terms of relations.

2. Relations Between States of Machines and States of Signals

Let’s assume in the initial step that two separate sets A = {a;: i =1,2....} and
B ={b;: i=1,2...} are given. The interaction which connects the elements of
these two sets, called relation, can be treated as a set R of selected pairs:

R={(a,b):a€ A, be B)} (1)

In particular the relation can be described as a subset in the Cartesian product
of sets A and B:

R(A,B)C AxB (2)

Thus we are able to identify such relations between the states of the investi-
gated machine {s,;::su;: € Sy} and values of signal features {zy::24: € Zy}.
According to (2) we can note such relations as:

R1(S,Z) C Sy x Zy (3

If we are to consider the relationships which occur along the time axis in
the processes then the set of time points has to be taken into account. For the
purpose of defining such a relation between the elements of a single process {A(¢)}
and elements of the set of time we may select the set T of time points ¢ with
two distinct subsets T'; and T2 which fulfil the following conditions:

T'cT T,CT TinT,=0 4)
In this case the relation should be also shown as the Cartesian product:

R(A) C A1 x A, (5)
where:

Alz{at:tETlcT}CA

(6)
Ay={a;:teT, CT}CA
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According to (5) one may note respectively the relations:

RQ(S) C {SU;tl} X {SU, tg} (7)
for the set of states of the machine and:
R2(Z) c {Zv,t:} x{Zv,t2} (8)

for the set of states of the signal.

In order to distinguish different types of the introduced relations they are
denoted as R1 (see (3)) or R2 (see (7) and (8)). Following the above introduced
considerations, the basic net of relations in diagnostic research of machines could
be shown as in Figure 1.

R2(Z
Zu,t-1 Zu 41
R1(S, Z) R1(S, Z) R1(S, 2)
RZ(S) R2(S)
= Su,t-1 Su,t41 —>

Fig. 1. Net of relations between states of signals and states of the diagnosed object.

It has to be stated that in the investigation of a machine the states of an object
are recognized using states of signals. Usually we do not need to identify the single
state of an object: the aim is to recognize some fixed classes of the states (let’s
say the subclass of states close to failure). If only a limited number of classes is
looked for then, the number of parameters (features) of signals which are used for
the purpose of machine states projecting, of the machine may be limited, too.

The problem of finding the optimal lowest number of the most sensitive featu-
res of the signal which might enable to distinguish the requested classes of states
of the investigated machine is one of the main tasks of the discussed research. Fol-
lowing this approach we may consider some additional elements in the discussed
set of states:

e representation of the signal state z,; by means of a limited number of features
called image of the state of signal (marked as im(zy:) or Izy.);
e limited representation of the state su,t which can be recognized using the image

of signal which is called image of the state of machine and marked as im(s, 1)
or Isy;.

For such elements we can create a separate net of relations as shown in Figure 2.
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— Is,,,g_.l Is,.,g Is,.,¢+1 —

R1(IZ,IS)

R1(IZ,IS) | R1(IZ,1S)

Fig. 2. Net of relations between images of states of signals and the object.

The question appears in what manner the net of relations shown in Figure 1
can be connected with the net in Figure 2. It is clear now that when using the
first net we are looking for the relationship between the states of the machine
and the respective states of the signal then using the second net we will intend to
identify the connections between the images of the machine states and the images
of the signal states. Therefore the next problem of machine diagnostics may be
formulated through the contradistinction between the state of the signal and the
image of such a state. The transformation 7T, which connect the state z,: with
the image Iz,;: is shown in Figure 3.

T T
|
&)

RI(S, Z) RI(S,2) | RIS, 2)

T,

— Syt-1 Su,t

A

Sy,t+1 —»

Fig. 3. Connections between states of the signals and its images in the net
of diagnostic relations.

The partial nets are shown in Figures 1, 2 and 3. The full net of diagnostic
relations is shown in Figure 4. All problems of diagnostic research of machines may
be then considered using the above mentioned net (as relations between relevant
states).



Problems of computer—aided data processing ... 491

In opposition to relations of the R1 type, tying elements of two separate
sets: the states of the object and the values of signals, the relations of type R2
associate with elements of a single set. Thus, if we intend to consider the structure
of diagnostic research by means of such relations the analysis of both these two
types of relations should complement each other. It is worth noting that both
R1(S,Z) and R2(S) relations in the above presented approach are assumed to
be time independent. Such an assumption may always be accepted, but it results
in a significant difficulty of drawing accurate conclusions about the effect on the
reasouing. In order to minimize those difficulties these relations may be considered
as the processes of a higher order in which the relations (for instance of the R2
type) of a higher order are defined. Anyway, this approach causes an increase of
complexity of generated models.

—— sy Tsy, Isu41 —

)

RI(IZ, Isj/lizz, 18) | R1(1Z,15)
R12)(

Fig. 4. Net of relations in machine research.

3. Basic Research Problems in Machine Diagnostics

The classic problem of machine diagnostics (the identification of the instant state
of the object making use of values of the features which form the instant state of
the diagnostic signal) is represented in the scheme shown in Figure 4 by means of
the vertical sequences of elements. If we consider additionally the fact that the
states of the investigated object and respectively the states of the diagnostic signal
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may vary in time, then the problems of processing diagnostic data in time domain
will appear.

At first let’s try to connect the vertical relations with the particular research
problems. We may list these problems as follows:

1) The identification of the transformation T, in order to recognize the relation-
ship between states of signals and its images. This problem is commonly solved
by the proper selection of the sensitive signal features (sometimes called the
diagnostic filtering) which is described in many known works on this subject.

2) The identification of the relation of R1 type in order to form a base for dra-
wing conclusions about the state of the machine using the state of diagnostic
signals. As mentioned above, in practice, the relations R1(S,Z) are identified
by means of the relations R1(IZ,I1S) which may be treated as the respec-
tive models of relations. The diagnostic reasoning is the main field of solving
this class of problems (see Cholewa, 1992; Cholewa and KaZmierczak, 1992;
Kazmierczak, 1984).

This class of problems in machine diagnostics can be represented by means of
the sequential scheme:

instant image of the diagnostic signal —
— instant image of the stale of the machine

or by means of the notation:
im(zy,1) = {R1(im(S), im(Z))} = im(su,) 9)

The horizontal relations in the scheme shown in Figure 4 relate to the separate class
of research problems. Before listing these problems it is necessary to say that, in
practice, only the relations between states of signals are taken into consideration.
More precisely we try to identify the relations between images of these states and
to treat them as appropriate models of relations.

In order to discuss the range of research problems concerned with the time
domain the following terms have to be introduced additionally:

o time series Y; : the sequence of values y; (where y; may relate to s,; or
2yt or im(zy ;) or im(sy,:)) ordered in time,

o forecast Yipyia of ye: the estimate of the time series element value which is
future in time due to the fixed actual element of this time series,

o lead-time of forecast la: the distance between the actual and forecasted element
of the time series along time axis,

o residual values &4 € Ey: the differences between values of time series and
its forecasts.
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Thus we can list the particular research problems concerned with the R2 type
relations as follows:

1) Detection and analysis of trends in time series of diagnostic data,

2) Modelling of time series of diagnostic data (or the modelling of R2(1Z,18)
relations,

3) Forecasting in time series of diagnostic data.

The above listed problems may be considered in the similar manner as the
problems of the first group. For instance, in the case of forecasting one may consider
the following sequence:

history of images of the signal —

—— forecast of the image of the signal
— forecast of the image of the machine state
( F=— forecast of the machine state )

or respectively the notation:
im(zu,i t= Lt — 1,t) = {R2(1m(Z))} = irn(zu,t+1a) =
= {R1(im(S), im(Z)} = im(sy ¢41a) (10)

All the mentioned research problems which are to be solved in machine dia-
gnostics have some common features from the view—point of using computer tools
for the needs of assissting them. In order to introduce these features let’s consider
one of the listed areas: forecasting in time series of diagnostic data.

4. Forecasting as an Example of the Particular Problem
in Processing of Diagnostic Data

The general division of forecasting problems which can be solved in technical dia-
gnostics is determined by some kind of an answer which we expect to get as the

result of the diagnostic forecasting. In general, two possible questions will have to
be answered:

Question 1: what, in turn, (on account of the actual time point) is the element
z: in the analyzed time series X;? or in diagnostic research we shall
ask: when will the state marked sy,i# appear in the investigated
chain of events Si(sy,v € St) ?

Question 2: what will be the value of the time series element with the identifier
t' +la, where: la > 0 and the element identified by ¢’ is the last
one known? or, if this question is posed in the field of diagnostics it
will read: what will be the state of the investigated machine after la
time units (steps) from the chosen actual moment t' (sy 41414 =7)

The first question refers to problems of the so—called long—time (or long-term)
forecasting. Usually, the solution of a problem from this area requires some forgoing
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assumptions which may especially be concerned with a possible form of trends
behind the observed time-interval. It also requires an appropriate knowledge of
the machine functioning which:

e have the same set of design features (are of the same construction),
e are exploited in similar circumstances,

and additionally, one can a priori assume that the rationally accepted form of
trends exists in the analyzed set of diagnostic data.

The answer to the second question refers in technical diagnostics to problems
of the so—called short-term forecasting. The considerations presented in this paper
are concerned just with this kind of problems.

If we need to solve a forecasting problem in diagnostic investigations first of
all we will have to find the forecasting model which will be used for this purpose.
In fact, when we want to use one of the known algorithms we shall notice that
there is no general rule of the choice of the proper forecasting method. Thus, we
can formulate a number of criteria of such a choice, for example:

1) the ability of the considered model to represent systematic components
(trends) in the analyzed time series,

2) the batch quantity of the data set which can be utilized as a learning set in
the particular case of research,

3) the size of the sample of elements of the time series which has to be used for
the needs of calculating forecasts in compliance with a fixed method, as well
as to verify currently a model with a lack of exploitational time,

4) the intensity of changes of the values in the analyzed time series,

5) the complexity of calculations in the stage of:

a) generating of forecasting model,
b) the verification of the model,
¢) calculating forecasts by means of the model;
6) the possibility to obtain a good quality/accuracy of the forecasts,

7) the influence of sudden changes of values (jumps) on the results of forecasting
by means of the considered method,

8) the dimensionality of the analyzed time series.

There is another important question how to find any rules in order to fix the
hierarchy of the validity of criteria (in the particular field of machine diagnostics).

Usually, the authors of known works in the mentioned field prefer their favora-
ble models (see Batko and KaZmierczak, 1985; Cempel, 1987; Kazmierczak, 1989)
and try to prove its advantages. In general, we can state that the choice of the
proper forecasting method depends on particular needs of research.

Suppose we have fixed the method of solving a particular forecasting problem
and the choice is the method based on the linear models of ARMA/ARIMA class.

The basic assumption in the method of analyzing time series by means of linear
modelling, as among others proposed by Box and Jenkins (1976) and developed
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later (for example Cadzow, 1983; Ljung, 1983; and others), is that a time series
Y: may be treated as an output (answer) of a modified linear Yule filter excited by
a discrete representation of the white—noise process. According to such a model,
the element y; of the oufput time series Y; can be noted as a linear combination
of an infinite number of elements ¢; of the input time series Ej:

Yt = C1E¢ + C2€41 + C3E¢—2 + ... (11)

where c(e1,c2,......) denotes the set of weighing coefficients.

In agreement with the modification of the Yule model proposed by Box and
Jenkins the so-called AutoRegressive Moving Average (ARMA) model is used for -
the mentioned purpose. According to it the y, can be described by a finite number
p of the elements {y;—; : i = 1,...p} of the time series Y; and/or by a finite
" number q of the elements {e;—; : j = 1,...q} of the time series FE}, which are
weighted by suitable coefficients:

Yi =1 Y1+ ...+ ApYt—p + & — b16¢__1 i bqé‘g_q (12)

where a(aj, a3, ...,ap): denotes the set of autoregressive (AR) coefficients of the
ARMA model, and b(by,b2,...,by) is the set of moving average (MA) coefficients
of the model.

Using the backward shift operator B, defined as:
By:=yi-1, By =y (13)
where z is the order of the operator B we might put:
a(B)=(1—a;*xB—ay*xB*—..—a, x BF) (14)
and respectively
b(B)=(1—by*B—by* B2 —..—b, + BY) (15)
Then the equation (12) may be expressed by means of the following notation:
(1-a1B—..—apBP)yy=(1—b0B — ... — b, BY)ey (16)

or in a shorter form:

b(B)
a(B)"

a(B)y: = b(B)e: and y: = a"}(B)b(B)e: or y = (17)

In order to use such models for the needs of representing diagnostic data
we have to note that the data usually contain a deterministic component together
with a stochastic part. Box and Jenkins have proposed a form of their model which
makes it possible to represent a class of non-stationary stochastic processes as well.
Complying with this advanced model the deterministic component is derived from

the original time series Y; by means of the so—called differential operator V¢
defined as:
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z;,o =y
z71= V=4 — i1 =(1-B)w (18)
Zg= Viyy= Vi ly, - v¥ly,_, = (1- B)'y

where d is a degree of the operator V.

The operator V¢ enables us to transform the time series Y; into a new
time series Z; 4. It is possible to find such a value of d that the time series Z; 4
represents a stationary stochastic process Z(t) and thus can be analyzed by means
of ARMA modeling. The autoregressive moving average model of the stationary
stochastic process Z(t) is marked by the symbol ARIM A(p,q). If we analyze
a nonstationary process Y (t) and for this reason use the operator of the degree
d >0 (to transform the time series Y; into Z; 4), this symbol will take the form
ARIMA(p,d,q). We may then speak of an integrated (I) autoregressive moving
average model of a stochastic process.

The transformed time series Z; 4 can be written as:
/
zt,d = a12t-1,d + ...+ apz;__P’d + & — blst—l —_— e quf_q (19)

The degree d of the differential operator V together with the autoregressive
parameter p defined above as well as the moving average parameter ¢, form a
set of parameters of the ARIMA model. The autoregressive and moving average
weights are respectively called the coefficients of the model.

The ARMA/ARIMA method offers also the possibility to describe multidi-
mensional time series. The exemplified notation of the ARIMA model of the
L-dimensional time series Z; and E;(L>1) can be expressed by the equation:

Z1a=Arze 19t -+ Az pat e —Big 1 — ... —Bg, (20)

where z; 4, £ are elements of time series Z; and E; (given as colon matrixes
Lx1),and A;, B; are coefficients AR and MA of the model (quadratic matrixes
LxL).

The discussed class of models may be used as well for the needs of modelling
time series with the so—called seasonal component. By the term seasonal we under-
stand the presence of a component with a repeatability with the period Ats which
is significantly longer in time than the time step interval of the considered time
series. In this variant of the method from the basic time series Y; with a seasonal
part an auxiliary time series Z; p s in the form {..,2¢—nsp,..zi-5D,2:,D,..} 18
extracted for which the ARIMA model is built of the form:

as(B) V2y, = bs(B)eq (21)

where as{as; : i = 1,2,...,P} is the set of seasonal AR coefficients, bs{bs; :
J=12,..,Q} is the set of seasonal MA coefficients, D is the degree of the
seasonal differential operator Vg, and S is length of a single cycle of the seasonal
component in the analyzed time series.



Problems of computer-aided data processing ... 497

If we connect the seasonal model described by (21) with the common ARIMA

model (see dependence (19)), the multiplicative ARIMA model of (p,d,q) *
(P, D, Q) order will be given by the equation:

a(B)as(B) V2 Viy, = bs(B)e, (22)

Figure 5 shows the algorithm of building an ARMA/ARIMA model of time series

in

the form of the block diagram. As you can see in this diagram the algorithm

can be divided into a number of groups of operations which may be described as:

1)

2)

3)

Identification of parameters of the ARMA/ARIMA model of the time series Y::
" the parameter/parameters P (AR parameter) and/or ¢ (MA parameter),

as well as the parameter d (degree of the operator V) are fitted in order to

describe in general the structure of trends in the analyzed time series;

Estimation of the coefficients of the model: the values of weights {a; : i =
1,..p} and/or {b; :j=1,..q} are estimated in this step.
Testing of the model: checking of the presence of systematic components in the
time series of differences between the original and the forecasted values of time
series elements (called residuals) which are calculated according to the fixed
forecasting algorithm. If a systematic component in the time series of residuals
appears, then it shall be assumed that the model is inadequate to the analyzed
time series. As we can see in Figure 5, a negative answer in testing the ARMA
model may affect:

1) a verification of AR and/or MA coefficients,

ii) a verification of the parameters of the model.

Identification
of parameters -

of the ARMA model

Estimation

of coefficients

of the ARMA model 1

Testing
of adequacy
of the ARMA model

Yes No

...........................

Fig. 5. Block diagram of the algorithm of generating ARMA models of time series.
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A large choice of computational algorithms which can be used in all the mentioned
stages of building the ARMA/ARIMA model is presented in many papers (Box
and Jenkins, 1976; Cadzow, 1983; KaZmierczak, 1989). However, if we intend to
apply these algorithms for the specific needs of processing diagnostic data we will
have to take into consideration some particular conditioning of such an application.

Let’s now try to use the chosen method for forecasts calculations in the given
time series Y;. In order to do it, in this time series we mark out the element
{#) : ¥, € Y;} and we assume that the time point ¢’ is the actual moment on
the time axis. By means of a subset of elements of the time series {y : t €
[(# — M);t']} C Y: we have constructed a model for the analyzed time series. By
the term to construct @ model or 1o generate a model we should understand the
fixing of the set of the model parameters. The algorithm of forecast calculation
Ui'41a with the lead—time la by means of the model we can show as the following
sequence of operations:

o we assume that the subset of elements of the time series Y; is given and the
actual element y, is the last one in this subset (in the direction of increasing
time),

¢ making use of the model we calculate the forecast of the elements of the ana-
lyzed time series in the time point t' + 1,

e using the forecast fir41 of the (¢ + 1)-th element of Y; we are then able to
calculate the forecast Fy42 of the (¢’ + 2)-th element.

When the forecast of the element of Y; with the identifier ¢’ = t' +la
has been calculated in compliance with the above presented routine, the iterative
procedure is finished. The algorithm does not make any limits to the lead—time
la of the calculated forecasts. Anyway, we should remember that for higher values
of la we can compute forecasls from forecasts. Because of that, the likelihood
(accuracy) of the forecasts is more and more limited.

Using the above presented example we are able to mention the areas which
can be supported by computer tools as well as the range of the assistance in each
mentioned case. Let’s name the successive steps as follows:

a) choice of the proper forecasting model,

b) necessary calculations in every steps of the algorithm of fitting the model to
the given set of data (time series),

¢) calculations of forecasts with the fixed lead—time,
d) estimation of accuracy (quality) of forecasts.

It is well observed that the mentioned steps should require various computer
tools. For the steps (b), (c) and (d) the computer supporting consists of arithmetic
calculations. In the case (a) the problem is more complicated. We have here the
example of the task which can be supported by more advanced computer tools,
namely the methods from the area of knowledge engineering or artificial intelli-
gence (ezpert systems). In particular, such classes of research problems in machine
diagnostics like multicriterial choice of algorithms or various cases of drawing conc-
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lusions are typical cases of applying expert systems for the purpose of computer
aiding of diagnostic data processing.

We have shown above the example of application of a general method in the
particular field of machine diagnostics. It must be stated, that such an application
usually considering needs some specific requests of the field which may affect the
manner of using the chosen method. In the discussed case of modelling time series
of diagnostic data some particular aspects of the meaning of the term time ought
to be considered.

5. Time Domain in Machine Diagnostics and Monitoring

The machine states and values of state symptoms vary in the domain of time. Thus
time—ordered sequences of data which describe such variability may be treated as
representations of particular processes. The time sequence of states of an object
may be considered as a representation of the diagnosed process and the sequence
of values of diagnostic symptoms — as a projection of the diagnostic signal.

It is a specific feature of machine diagnostics that one can make the question:
can the natural meaning of the term time be used directly in this area of problems?
Usually, the commonly accepted meaning of this term is treated in diagnostics as
the sets of time: we will talk in these cases about real time. But the processes
considered in machine diagnostics are not necessarily continuous in the real time.
It is connected for instance with the problems of breaks in the machine functioning.
It has also to be taken into consideration that in processing of diagnostic signals the
instant values of the features of signals are estimated not in points but in intervals
of time. Thus, it may be stated that both the diagnosed process and the diagnostic
signals occur in some other time domain, because the considered intervals between
changing states and features are significantly longer than intervals in the domain
of signal processing.

Because of the aforesaid reasons it was proposed to distinguish in the field
of diagnostic research a number of separate sets (domains) of time (Cholewa and
KaZzmierczak, 1992):

e real time {v},
e micro-time {7},
e macro-time {t}.

The following mapping is possible:

v— t/\(v, t)—>r (23)
or simply

v—(t,rT) (24)
so that for

vy — (t1,m1)

Vg — (tg, T2) ) (25)
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we have
h>teon>r (26)
(= tz/\‘rl >T) v > (27)
vy, Vo are incomparable for t; # i, (28)

In terms of the micro—time 7 and the macro—time t we can discuss here the
problem of instantaneous states of processes considered in machine diagnostics. In
practice the instant states of diagnosed processes and instant values of diagnostic
signals are identified in the micro-time interval [r,7 + A7]. The term instant
used in this case is relative in some sense because the values of signal features are
measured and estimated at a fixed point t of macro—time and in a closed interval
of the micro-time 7.

The variable which orders the elements of the discussed sequence in time has
not been necessarily given in real units of time (seconds, hours, years etc.). A value,
a like for instance number of kilometers passed by a vehicle since the moment of its
leaving the assembly belt (or since its last repair or maintenance) or a number of
hours of operation (the so— called motor-hours), may also be treated as a basis to
fix the succession of elements in time series. In the second case we have to take into
consideration the fact that the time—indexing value is not necessarily continuous
in the sense of the real time v axis (for instance some exploitational breaks may
appear in the functioning of any particular machine or industrial installation).
Thus, we should state that the existence of any indexing value connected with the
leak of time is a sufficient condition to use the expression time series to describe a
set of discrete data.

The important requirement for time series is the demand of a constant time-
step between successive elements of the sequence. This demand should be under-
stood in such a way that the value of a time-indexing function f(t) for every
element of the time series should differ from the value f(t) for the directly prece-
ding element, as well as the directly following one with a constant value, so that:

dist(t;,tiy1) = fE+1) = f(t) = f(t) - f(t—1)=...=const  (29)

where  f(i) is the function which orders the elements of time series, and

dist(t;,t;+1) is the distance between two successive elements along the axis of
the t time.

It is interesting to search effects of connecting the above formulated general
requirement with specific needs of diagnostics as a particular field of implementing
some general methodology. If the analyzed time series is a projection of process
in the domain of macro—time the requirement of the constant time step will have
some specific meaning (KaZmierczak, 1989).
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Apart from the problem of time-step, the results of primary research may
cause that in a particular diagnostic experiment the states of objects are identified
by more than one symptom. The number of symptoms taken into account in
the experiment refers certainly to the dimensionality of the time series. Such an
approach makes it possible to use single- or multidimensional algorithms for the
needs of analyzing diagnostic data. On the other hand, it has been proved in
investigations that, because of the specific properties of diagnostic investigations,
in many cases the variability of multiplied symptoms in time can be considered
separately i.e. using the proper number of single-dimensional time series.

In diagnostic investigations of machines we have usually at disposal values of.
features of signals which enable us to formulate conclusions about states of the
machine. If we measure such values along the axis of exploitational time they may
be ordered in the form of time series and then processed as time series. Of course,
the specific nature of diagnostic data provokes some troubles in such ordering of
the data. There are two main reasons for such troubles:

1) breaks in the functioning of machines of which may have a different origin and
have to be treated in a different manner when the time series are formed and
analyzed,

2) the number of values which are used for the needs of state recognition of the
diagnosed object.

The first one of the mentioned factors affects the value of time step in time series,
the second one refers to the dimensionality of the time series.

The necessity of adapting general methods and algorithm to particular requests
of the field of application opens other possibilities of using the advanced computer
tools for the needs of tasks supporting. This area of problems may be also effectively
supported using tools as expert systems.

6. Practical Solutions of Computer—Aided Data Processing
in Machine Diagnostics and Monitoring

The results of research which have been carried out in the Chair of Fundamentals
of Machine Design of the Silesian Technical University in Gliwice have proved the
possibility to support effectively a number of particular tasks in the field of machine
diagnostics by means of computer tools.

At the first step the computer system was developed for the needs of proces-
sing diagnostic signals. The system, called Programmable Signal Analyzer PAS6
(Cholewa, 1988) has been designed in the friendly—for-user formula. It offers the
user a very rich range of calculating routines which performs basic as well as more
specialized analysis of random signals. The system disposes the own data base,
graphic driver and convenient manner of management based on multilevel menus.
The utilization of the PAS system in many practical cases of diagnostic research has
given the authors good experience in computer-aided diagnostic signal processing.
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According to the approach introduced in this paper the PAS system should
be treated as a tool of performing tasks connected with the vertical part of the net
of relations in diagnostic research. Because of that, in the following steps of the
research works two main problems have been undertaken:

e development of the tool of supporting the time—domain analysis of diagnostic
data, ,

¢ development of the tool of supporting the drawing conclusions in machine dia-
gnostics. ) ’

As the result of the first mentioned effort, the system of processing time series
of diagnostic symptoms was developed (KaZmierczak, 1989). The system is now in
a prototype version and enables user to carry out following analysis:

1) detection of trends in time series,
2) fitting the ARMA/ARIMA linear models of time series,
3) calculating forecasts in time series using the fitted models.

The system is developed as a perspective tool of computer—aided data proces-
sing from machine monitoring. At present the special attention is paid to problems
of data maenagement in monitoring systems (data bases, formats of input data for
the calculating routines, visualization of data in various steps of the processing).
In order to present possibilities of the discussed system let’s show some results of
its functioning.

Figure 6 shows an example of visualization of a single-dimensional time se-
ries of the diagnostic symptom. The figure shows clearly how some problems of
visualization of this kind of data has been solved. In particular the axis of time
in the diagram represents the ezploiiational time, i.e. pure time of functioning.
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Fig. 6. Example of time series of a diagnostic symptom.
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Fig. 7. Subset of elements of the time series plotted in Figure 6.

The breaks are marked in the figure by additional zero elements of the series. The
tools of visualization of such data should offer additionally a number of possibilities
like the possibility of zooming selected parts of the time series or the possibility of
scrolling the diagram when the new actual element is added into the time series.
Figure 7 shows the selected subset of elements of the time series presented in
Figure 6 which will be used for the needs of illustrating results of processing the
time series in the system of machine monitoring.

In analysis of time series of diagnostic symptoms as results of machine moni-
toring we are the most often looking for some tendencies (treads) in the time
history of the investigated values. There is a number of algorithms which make it
possible to detect trends in time series (Batko and KaZmierczak, 1985; Cholewa
and KaZmierczak, 1992). For the needs of data processing in systems of machine
monitoring these algorithms seem to be the most useful which offer quantitative
measures of presence as well as intensity of trends in the analyzed set of data. The
quantitative values are a better base for drawing conclusions about changes of states
of the investigated object, especially when we want to support the process of dra-
wing conclusions using computer tools (like the so—called ezpert systems). Figure 8
illustrates results of detecting trends in the time series shown in Figure 7 using the
exemplified quantitative measure (Spearman’s rank correlation coefficient). Com-
paring the results with the original time series we may state that the measure of
trend enables the user to conclude about the growing—up tendency in time series
far earlier than it can be observed in the diagram shown in Figure 7.

Apart from the analyzing of trends in the historically ezisting part of time
series we may also want to predict such trends in future: beyond the actual po-
int of time. We may formulate the problem of such prediction (forecasting) in the
terms introduced above. Forecasts of diagnostic symptoms may be in turn the basis
for conclusions concerning future states of the investigated machine. Anyway, the
methods of reasoning go beyond the methods discussed in this paper. In known
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research works (Batko and KaZmierczak, 1985; Cempel, 1987; Kazmierczak, 1989)
which discuss the problems of diagnostic forecasting the stage of drawing conclu-
sions has been commonly dealt with in the same way as in classic diagnostics, i.e.
by comparing the forecasts with a fixed threshold/limiting value. Figure 9 shows
an example which illustrates the results of performing the forecasting task. The
twin diagram compares values of the original time series (in this case: values of
vibration displacements measured in a chosen point on the shell of the air com-
pressor) with the forecasts calculated by means of a fixed model. In Figure 10 the
values of residuals corresponding to Figure 9 are presented.
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Fig. 8. Values of the trend measure for the subset of time series shown in Figure 7.

o ‘VVibratinn displacements of the HOWDEN air compressor (point No.1) l
{ymin = 4.20 ” um | [ymax = 13.0 || sm |
® | Forecasts calculated by means of ARIMA(p, 1, g) modti]

ymin = 4.17 |[ #m | [ymax = 12.5 ~|[sm ]

20.00
{pm]
15.00

10.00 |

5.00%

.00 T T r . ;
36 46 56 66 76 [No. of elem.]

Fig. 9. Example of the forecasting task of type 1 in diagrostics (A).
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Fig. 10. Example of the forecasting task of type 1 in diagnostics (B).

In the Chair of Fundamentals of Machine Design in Gliwice the works concer-
ning the advanced tools of computer-aided processing of diagnostic data have been
carried out, too. In particular, the shell expert system called VV_SHELL has been
also developed by Cholewa (1992, 1988). The system is meant first of all as a tool
supporting diagnostic data processing as well as of other kind of engineering tasks
(for example in the field of CAD).

There is a number of possible solutions of programs which belong to the family
of ezpert systems. The most significant feature of all these programs is a manner
of representing, storing and processing knowledge which is used in a particular
system. In the VV_SHELL the knowledge is stored in the form of frames. The
frame describes a selected object or a group of objects and its structure contains a
number of fields called slots. Every slot contains facets which are storing descriptors
of the object/objects covered by the frame. The values of the features of the
object or the connections between this object and other ones may be treated as
the descriptors. The frames, slots and facets are identified by means of names so
that in one frame two slots with the same name and in one slot two facets with the
same name can not exist.

The VV_SHELL system has some particular features of the above mentioned
structure. In every slot the facets of special destination may appear which are
marked as value, if_added, if_needed, if_removed. Value of the facet value is
understood as the value of the slot. If such a facet doesn’t exist then the facet
of the name if_needed will be looked for which should contain the description of
the proper subroutine (the so—called demon). The value which is given back as
the result of running this subroutine is treated as the value of the slot. The facets
if_added and if_removed should contain the subroutines which are run for the
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purpose of adding something to the contents of the facet value or removing the
contents of it, respectively.

For every frame the list of higher—order (superior) frames may be determined.
The list of frames which are directly superior to the considered frame is contained
in the slot with the name ako in this frame. The lack of such a slot means that
for the considered frame no superior frames have been determined. The contents
of the facets of the superior frames in the VV_SHELL system are inherited. If the
sought facet doesn’t exist in the slot of a given frame or if the demon contained in
it can not be run then the search will be continued in the superior frame.

In order to use the VV_SHELL for a particular purpose, i.e. for carrying
out calculations, the only thing to do is to complement the knowledge base. The
complementation of the knowledge base in the VV_SHELL system consists of re-
cording the proper frames. The knowledge base in the system can be divided into
two parts which deal with two types of frames:

1) frames which contain information about the subject of activity (referring to
decisive tables),

2) erganizing frames which utilize information from the first part for the needs of
controlling the run of action (for instance — the run of calculation).

The VV_SHELL is at present tested and applied for some limited tasks (see
Wyczdlkowski and KaZmierczak, 1992).

7. Conclusions

This paper should play a double role according to intention of the author. First,
it introduces the general concept of the structure of machine diagnostic research
and shows some possibilities of supporting particular tasks in this research by
means of computer tools. Secondly the paper presents an overview of works which
were carried -out in the Chair of Fundamentals of Machine Design of the Silesian
University of Technology. This part of paper shows by means of practical examples
what areas of the diagnostics and machine monitoring may be effectively supported
by computer tools. On the other hand, if the monitoring system is intended to be
used in industrial practice the problem will appear how to make this system to
be friendly—for-user. There is a range of questions, for instance, concerned with
the visualization of results of data processing or with the supporting of drawing -
conclusions by the user. The last problem may be solved using the tools from the
field of artificial intelligence which is proved in research works carried out in the
Chair of Fundamentals of Machine Design (the project KBN PB-132/9/91).
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