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MODEL-BASED DAMAGE DETECTION,
LOCALIZATION AND ASSESSMENT OF STRUCTURES

THE EXTENDED SYSTEM IDENTIFICATION METHODOLOGY

H.G. NATKE*, J.T.P. YAO**

System analysis and system identification are the basis of damage detection,
localization and assessment. The (global) dynamic mathematical model with
generally many fewer degrees of freedom than the static model is used for
stability and dynamic qualification. It is also the basis for identification,
which refers to the correction and validation of the mathematical model by
using measurements of the existing structure. When this is done at several in-
stances in the lifetime of the structure, these validated models can be taken as
a knowledge base for damage detection, localization, and for making decisions
for further actions. No better knowledge base exists than that of a validated
mathematical model using the recent state of the structure itself. Assessment
of the structure in every state can be done with the dynamic model based on
fault investigations. The possible application of neural networks and fuzzy
logic in this context is mentioned here. Active and smart structures are also
open for further study with the use of the measuring devices and control
circuits.

1. Introduction

Man-made systems from civil, mechanical, naval, aeronautical etc. engineering
in operation are dynamically loaded during their lifetimes in several ways: inter-
nal and external forces (including those from the environment) stress the system,
which leads to modifying dynamic behaviour during the lifetime due to modified
model parameters dependent on lifetime. If the modifications attain corresponding
thresholds with respect to stress or strain limits, to production quality limits, or
to comfort conditions etc., the system is said to be damaged, has faults or the pro-
cess is faulty. These brief introductory remarks provide motivation for a holistic
consideration of the problem of the damage detection, location and assessment of
structural systems. It has to be noted that a complete theory of holistic dynam-
ics does not yet exist, but only an engineering approximation which distinguishes
between fast and slow time coordinates is available (see, for example (Cempel and
Natke, 1993b)). The cross—impact of the holistic dynamic investigations on the
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design and development phase can be that the lifetime of the system is enlarged,
or the inspection costs, the maintenance or servicing costs and repair costs can be
reduced drastically.

In addition to theoretical investigations, lab tests and tests with the existing
system (sometimes during construction work) have to be done. The goals for test-
ing are the validation of the theoretical models and of their related assumptions,
and the tests serve for system qualification. During the operating phase the moni-
toring of symptoms or periodical inspection and such on request produce data for
the detection of system modifications or of modified system behaviour. If such a
modification indicates a fault, then further investigations concerning localization
and causes lead to an assessment. Based on these results a decision has to be made
which leads to corresponding actions.

As can be imagined from the problems mentioned above, diagnostics is an
interdisciplinary field and can be classified as a part of applied system engineering.
The particular fields are:

e holistic dynamics (long-term, short—-term dynamics): modelling, prediction,
simulation, optimization,

e system identification: dynamics, measuring technique (data acquisition), ex-
citation technique, process computation (hardware and software), signal pro-
cessing,

o Al (expert systems),

e mathematics: algorithms, inverse problems (posedness), stochastics, estima-
tors, computational engineering.

Design and construction techniques including material science influence the sys-
tem properties which, however, belong to the particular engineering task. The

interrelations are obvious, and system identification itself is an interdisciplinary
field.

The state of the art of diagnostics is documented in the proceedings of, for
example, the international conference SAFEPROCESS’91 (Isermann, 1991), and
in the books (Natke and Yao, 1988; Natke et al., 1993). In (Ben-Haim et al., 1993)
various methods are enumerated, discussed and a first attempt is made at evalua-
tion. For highly complex systems one may conclude that diagnosis with physics—
based mathematical models can be recommended: the best available knowledge
basis is a validated mathematical model. This model must

e be adjusted with respect to the lifetime,

e include the symptom description within the fast time, coordinates?,
o fulfil the three requirements concerning validation (Craemer, 1985; Natke,

1992¢):
- verification (model reliability),
- validation (homomorphy between model and system),

1 That means the model must be detailed enough in order to be able to describe model
parameter modifications.
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¢ - usability (negligible systematic errors, sufficiently small standard devi-
ations of the estimates),

e enable the applicant to assess system modifications by simulations,
e with some additional effort lead to trend predictions.

Conséiﬁlently, without neglecting the difficulties that arise, model-based diagnos-
tics is favoured. This method is discussed and reviewed in the paper in hand.

2. The Methodology

Damage occurs due to system modification(s). Severe system modification results
in a modification of the system behaviour. It is assumed that these modifica-
tions ¢an be described by parameter modifications: of a structured mathematical
model, :and by model structure modifications including parameter modifications
whenicompared with the parameters of the previous model.

2.1. General Description

The ejaitended system identification methodology is published in the Preface of
(Natke and Yao; 1988; Fig. 1). Starting with the/ operation of the existing sys-
tem, it is assumed that a validated mathematical model exists which describes the
dyna.inic behaviour sufficiently accurately with kno‘wn errors: My . This mathe-
matlcal model of the design, development and prototype phase of the system serves
for studles of possible faults and the resulting parameter modifications including
the modifications of the dynamic behaviour. These lead to particular features and
pattems due to specific faults, from which symptoms (sensitive quantities to be
measured sensitive with respect to expected parameter modifications) can be de-
rived- for monitoring. This prior knowledge enables'us to design the monitoring of
the system under operation and to predict the streSses etc.

Theoretical system analysis gives the necessary data for thresholds, bounds for
symptoms etc. during monitoring, or the first mspéctlon intervals etc. This is an
estimation with respect to the lifetime 7. The measurmg of dynamic responses
(e-g. by the symptoms) at the lifetime 7, i = 1(1)N, N € N, and adjustment
of the prior mathematical model (see Fig. 2) gives; a holistic dynamic description
of the system in discrete steps of the lifetime: M;. Comparison of the resulting
model structure and the parameters with those of the model M;_; in time step
T;—1 permits a decision concerning significant model deviations. If the deviations
are significant, then dependent on the pattern and ithe existing catalogue of faults
a first. diagnosis can be made. If this working step as unsuccessful, the mathemat-
ical model M; serves for further investigations: . localization and assessment of
the detected deviations. Reliability analysis, trend predictions with the help of
the lifetime models M; for the previous lifetime 'steps, and decision analysis in
combmatlon with the inference machine gives the experrenced engineer responsible
the information needed for possible actions. These can consist of further operation

for a fixed time before repair etc. The iterative procedure is shown in Figure 3 as
a flow chart.
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FOR COMPLEX AND HIGHLY NONLINEAR STRUCTURES
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Fig. 1. The extended system identification methodology.
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Fig. 2. Lifetime concept and zooming ocut the dynamics.

As can be concluded:
o uncertainties of models play a great role; they must be overcome by additional
modelling,
o the relationship between model errors and damage effects influences the dam-
age detection,
¢ system identification (model structure identification and parameter estlma-
tion) is the key of the model-based methodology,
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o the resulting validated mathematical model provides various theoretical in-
vestigations with respect to the detection, localization, and assessment of
faults (~ knowledge base),

o lifetime dependent mathematical models (holistic dynamics) serve for trend
statements, :

o reliability analysis and decision-making is based on predictions and simula-
tion. '

These topics are discussed in some detail in the following.
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Fig. 3. Flow chart of the iterative procedure of diagnosis.

2.2. The Relationship between Model Error and Damage Detection

The mathematical model of a system in general is uncertain. The model uncertainty
includes the model structure and the parameters. In addition, the environmental
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uncertainties have to be considered. The model uncertainties can be reduced by
applying system identification for well-defined environmental conditions. Such a
verified mathematical model can be used under additional conditions (validation
and usability, see Sect. 1) for the design of diagnostic procedures in order to predict
damage symptoms, features and damage severity, dependent on type and location.

Uncertainty models can also be more or less erroneous. Sometimes these er-
rors can be removed by measurements. Uncertainty models describing damage
processes are necessary and important for the design and optimization of diagnos-
tic algorithms. They should be able, first, to detect faults which are significant;
this means they should lead to parameter modifications in M; compared with the
parameters of M;_; larger than the corresponding parameter errors (standard
deviations as well as biases). Additionally, they should allow one to distinguish
between various classes of faults. The combination of dynamic models and uncer-
tainty models perform the ability to predict the behaviour of the system. Inclusion
of the lifetime, an indirect or direct modelling of the fault evolution (Cempel and
Natke; 1993a) with their particular uncertainties, results in monitoring/inspection
by demand rather then by a rigid schedule.

2.3. Model Adjustment at Various Lifetimes

As Figure 3 indicates, at several lifetimes 7; the mathematical model has to be
adjusted by the use of measurements at this time. The adjusted model is considered
to be spatially discretized with n degrees of freedom:

M; : Mii(t) + Cia(t) + Kiu(t) = p(t), i=0,1,2,..,N, (1)

with the quadratic parameter matrices (of the prior, not adjusted model)
M;, Ci, K; of order n describing inertias, dampings and stiffnesses, respec-
tively. u(t) is the vector of displacements, dots indicate differentiation with
respect to time t, and p(t) is the vector of external forces. All vectors consist of -
n components.

Note: of course, description of the system in the state space also is possible.

Model adjustment methods are discussed in (Natke, 1992a), the reader can find
further details in (Natke et al., 1993). These methods assume a sufficiently accurate
model structure, so that the identification is reduced to parameter estimation.
One characteristic of the adjustment methods is error modelling within the frame
of submodelling. The parameter matrices are partitioned into sums of matrices
describing submodels. In order to avoid confusion, in the following the subscript
i is suppressed with respect to ;.

M(ay) = Ef:l anmo Mo,
C(ac) E,If:l acpCy, (2)
K(ax) = YL, ak.K..
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where apr, ac, ag are vectors of a total of S+ R+ I =J components. The
prior mathematical model has the parameters identical to one, assembled in the
vector e; the mathematical model to be updated with the parameter matrices (2)
contains the vector a to be estimated. The (extended) weighted least squares
estimator is widely applied (Isenberg, 1979; Natke, 1992a; Natke, 1992b; Natke
et al., 1993). The estimates d inserted into (2) result in the estimated parameter
matnces M, C, K for every lifetime step. In addition, an error estimation has to
be performed in order to make certain that the resulting adjusted model is usable
(see Sect. 1).

Model adjustment in the manner described here has some difficulties that have
to be overcome. One difficulty is the decomposition of the parameter matrices, and
the other difficulties result from the fact that here the identification is an inverse
problem which is generally ill-posed. The problem of submodelling is unsolved for
the general system. In the particular case sufficient prior knowledge is generally
available in order to assemble matrix elements of the same error magnitudes, and
in order to decompose by real subsystems with respect to special faults (dependent
on their sensitivities to be detected). Investigations within theoretical analysis will
answer questions concerning the decomposition due to the faults expected.

Application of the weighted least squares within matrix equations of inverse
problems together with erroneous measurements, as already mentioned, will lead
to ill-conditioned equations. Therefore, regularization methods have to be applied.
A powerful regularization is to include additional information, that means extend-
ing the relative information content. One method already introduced above is the
reduction of the number of parameters to be estimated by submodelling. The rela-
tive (with respect to the number of parameters) information content for estimation
is enlarged. Another method is to apply the eztended least squares,

J(a) = v*T(a)Gyv(a) + (a — )T Ge(a —¢), (3)
with

v(a) the vector of residuals dependent on a

v*T  the conjugate and transposed residual vector v
a the parameter vector to be estimated
e the prior information of a , 4)

G,  the weighting matrix with respect to v, equal to the inverse
covariance matrix C;!

G.  the weighting matrix with respect to e,equal to the inverse
covariance matrix C,!.

J

This estimator enables us to include a priori information, for example from the
prior mathematical model, as the penalty term. The problem introduced addition-
ally is to determine the regularization parameter or a corresponding matrix of the
required weighting. Here cross—validation is recommended if a sufficient number of
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measurements are available. Otherwise a prior determination of the regularization
parameter has to be performed. Regularization in system identification is discussed
in (Natke, 1992b; Natke et al., 1993).

If model structure identification is necessary during the lifetime of the sys-
tem, then the problem difficulties increase immensely. Model structure modifi-
cations have first to be detected. This can possibly be done by finding physical
non-interpretable parameter estimates, or by estimating additional eigenquanti-
ties (mainly eigenfrequencies). As in the observer theory shown (Gertler, 1991;
Mook, 1992), and as stated in Subsection 2.2, the structure uncertainty has to be
modelled. Nonlinearities can be modelled by an additional parametric term to be
estimated. If the system behaves linearly, then additional degrees of freedom will
result in additional equations of motions. There is no detailed scientific investi-
gation available yet with respect to structural systems. Structure identification
with respect to systems behaving nonlinearly and related problems are discussed
in (Natke et al., 1993). A summary states that due to the diversity of nonlinear
phenomena there is no unique approach for safety evaluation. Detection and lo-
calization of nonlinearities in such systems, for example due to faults, needs more
detailed investigation for each application.

The extended system identification methodology shown in Figure 1 indicates
the use of limit states as estimates. These quantities can be handled as local
properties (information) combined with the global estimation procedure (see, e.g.
(Orkisz, 1992)). This is a part of regularization, too, included in the extended
weighted least squares, for instance.

3. Resulting Possibilities from the Adjusted
Mathematical Model

The adjusted mathematical dynamical models M; are models with known confi-
dence and sufficiently small errors of the type (1). Dynamic models are restricted
to a finite frequency band, and therefore they describe only a small number of
degrees of freedom, in general less than 100.

3.1. Detection

M; may be adjusted by the measurement set 7;. The new measurements at
the lifetime 741, 7i+1, serve for adjusting M;. Parts of T;4q, taken directly or
the manipulated (information condensation by, for example, correlation or spectral
characteristics, symptoms) measurements, and also first estimates (for example,
eigenfrequencies) can serve for the detection of (significant) system modifications by
their comparison with the corresponding quantities of the model M;. Additionally,
the resulting residuals of certain quantities from M;;; and M; can be taken
for the detection of system modifications. Global detection uses scalars, such as
the norms of the residuals. Local detection is performed by the components of
the residuals. The deviations between estimated 7; and the measurements 7;4;
and the model residuals in Section 2.3 can be understood as errors of the model
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M; (Natke, 1991). Therefore the problem is transferred to one to detect model
errors as discussed in (Natke, 1991).

3.2. Localization

The resulting local residuals, which are the deviations between the parameter ma-
trix elements of the adjusted models M;,; and M;, indicate the fault locations
(in the model). If the parameter matrices stem from finite element modelling then,
for example, the stiffness matrix is the superposition of several elerient submatrices,
and the system locations may not be easily determined. Spectral decompositions
of the parameter matrices can also be investigated; the products of the eigenvectors
will define locations of modifications by means of modified eigenmodes. However,
with the prior knowledge of modelling and dynamic system behaviour, the local-
ization of modifications in the system due to those in the model can be assumed
as being solved in particular cases of application.

3.3. Assessment

The dynamic responses (for example, velocities, stresses) predicted by the last
adjusted mathematical model M;,; is generally taken for assessment, that means
by comparison with the foregoing state at time 7;. If the state is changed in such
a way that detailed local analysis has to be performed, then it can happen that
the dynamic model is not detailed enough for diagnosis purposes. In this case an
interface to a static model with a sufficient number of (static) degrees of freedom
must be used in order to find out maximum stresses for assessment. It may also
be necessary to use this model in order to study causes, and consequently to work
out countermeasures.

At the design and development phase some of this analysis wa‘s done for possible
faults and is already stored in the knowledge base. Only unexpected faults with
their modifications therefore need additional analysis.

Trend predictions on the base of M;, i = 0(1)N’ < N, N’ the current lifetime,
use extrapolated data of a model M; with extrapolated (in 7) model parame-
ters. If a probabilistic model is available, for example coming from fault evolution
(Cempel and Natke, 1993a), then these trends can be given with some probabilistic
limits. This result leads into the reliability analysis.

4. Decision—Making

4.1. Deterministic and Probabilistic-Based Decisions

Decisions are needed in many manners. Firstly, with regard to damage detec-
tion one has to decide whether the symptoms/features satisfy predetermined cri-
teria. This can be probabilistic-based, or deterministic error bounds will be used.
Secondly, decisions on the severity of detected faults and their effects are neces-
sary. Dependent on the accuracy of the models used, these decisions are often



528 H.G. Natke and J.T.P. Yao

deterministic-based. The uncertainty model (see Subsection 2.2.) may be proba-
bilistic, but within the uncertainty bounds the decision is made deterministically.
The deterministic logic for decision—making does not need any explanation. The
probabilistic decision-making needs samples of data and assumptions of the cor-
responding (joint) probability density functions, and it seems to be hard to verify
these assumptions.

4.2. Fuzzy Logic—Based Decisions

Fuzzy sets (Zadeh, 1965) and fuzzy logic (Zadeh, 1973) deal with linguistic vari-
ables, the possibility of events happening, and approximate reasoning. Several
attempts were made to apply fuzzy sets in assessing structural damage in the early
eighties (e.g., Ishizuka et al., 1982; Fu et al., 1982; Yao, 1985). Results of these
studies indicated the potential usefulness of such applications. However, it was not
continued because of the extreme complexity of the practical problem involved.
With the maturity of the fuzzy set theory (e.g., Zimmermann, 1991) and impor-
tance of damage and fault detection using system identification approaches today
(Natke and Yao, 1988; Natke et al., 1993), it is timely to apply such an approach
again to solve practical problems.

There are various ways of describing the damaged condition of a structure. For
example, an expert may decide whether an existing structure is ” totally collapsed”,
"partially collapsed”, ”severely damaged”, ”moderately damaged”, ”lightly dam-
aged”, or "not damaged”. All these linguistic descriptions are meaningful conclu-
sions of an expert following careful and extensive studies.

With the exception of total or partial collapse, which is obvious to every ob-
server, all other damage states are not clearly defined and are thus fuzzy events. On
the basis of process measurements and the monitoring/inspection of the existing
structure, we may compare the resulting mathematical model M; at time 7; with
the model M;;; at time 7;4;. The changes in parameters of theses two models
may be classified as “negative large”, “negative small”, ”almost zero”, ”positive
small”, or ”positive large”. These data may be used in the subsequent process of
diagnosis in deciding the damaged state of the structure. Recent attempts along

these lines are given by Natke and Yao (1991), Yao and Natke (1992).

5. Summary and Outlook

Damage detection, localization and assessment are important engineering problems
which remain to be solved. Solution of these problems would influence safety as-
pects as well as ones of economics. The recommended procedure is the extended sys-
tem identification methodology which is a model-based diagnostic procedure. Sys-
tem monitoring/inspection will preserve data to detect significant system/process
modifications, and required process? measurements will serve for identification pur-
poses, which means mainly for model correction in the initial phase and for model
adjustment during the lifetime of the system with its modifications. These verified

2

input /output description
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and validated mathematical models including their extrapolations (for trend pre-
dictions), perform the knowledge base, which is assumed to be the best available.

An expert system for supporting the mounitoring and measurements of struc-
tures (Doll et al., 1993) is under developmeni. In the first stage it will be applicable
to bridges and dwellings. Problems have to be solved here, such as detecting sensor
failures (see the related papers using the state space formulation and the measuring
equation within the observer theory). An interface to finite element modelling is
foreseen in order to continue with system identifications, this is in the recursive
formulation a self-learning part.

Problems within system identification are those of model decomposition, which
seems to be worth recommending due to the incomplete measurements as a part
of regularization, and also with regard to system modifications which introduce
additional degrees of freedom into the freequency band considered or additional
types of forces (model structure modification). The latter concerns their detection
less than the introduction into the model. However, for the particular system under
investigation this problem can be solvable with a detailed study of possible defects
and faults.

The mathematical model here is a model describing the dynamics behaviour:
a dynamic model with a few degrees of freedom compared with a static model. For
detailed diagnostic purposes and for safety assessment (local stress evaluation) an
interface to the static model should be provided for.

The inclusion of intelligent, smart structures, which are equipped a priori with
sensors and actuators, will complicate the equations of motion and the failure
detection of the related devices. However, this equipment can possibly be used to
compensate additional forces due to faults. The optimum decision-making process
can be a combination of deterministic, probabilistic and fuzzy approaches with the
possible use of neural nets.
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