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CONSTRAINED CONTROLLABILITY OF LINEAR
RETARDED DYNAMICAL SYSTEMS

JErzy KLAMKA*

The main purpose of the paper is to study the constrained controllability for linear,
time-invariant retarded dynamical systems defined in infinite-dimensional Banach
or Hilbert spaces. First the brief theory of such dynamical systems is recalled.
Next, different definitions of controllability are presented and the relationships be-
tween them are explained. Using the general spectral theory of unbounded linear
operators, many constrained controllability conditions are formulated and proved.
Finally, a simple illustrative example is given. The results presented extend to the
case of abstract retarded dynamical systems, constrained controllability conditions
given in the literature for finite-dimensional case or systems without delays.

1. Introduction

Recent years have witnessed a good deal of research focussed on abstract control systems
modelled by an ordinary differential equations in abstract spaces (see e.g. Carja, 1988;
Fattorini, 1966; 1967; Klamka, 1991; 1992a; 1992b; Triggiani, 1975a; 1975b; 1976; 1978).
Such abstract models are known to be a unified framework for studying a variety of
different dynamical systems governed by integrodifferential or partial differntial equations
both parabolic and hyperbolic. Regarding the controllability problems of such abstract
dynamical systems, general results for different types of controllability can be found for
example in the papers cited above and in (Farlov, 1986; Fabre, 1992; Fattorini, 1975;
Fattorini and Russell,1971; Kabayashi, 1978; Krabs et al., 1985; Lagnese, 1978; Lasiecka
and Triggiani, 1983; Naito, 1987; Narukawa, 1982; 1984; Russell, 1973; Sakawa, 1974;
Salamon, 1984; Schmidt, 1992; Weck, 1982; 1984; Yamamoto and Park, 1990; Zhou, 1983;
1984; Zuazua, 1990a; 1990b). So far most literature in this subject has been concerned,
however, with unconstrained controllability. Only a few papers deal with the so called
constrained controllability problems, i.e. with the case when the control is restricted to
take the values in a preasigned set, (Korobov, 1979; Korobov et al., 1975; Korobov and
Rabah, 1979; Korobov and Son, 1980; Peichl and Schappacher, 1986; Seidman, 1979;
1987; Son, 1990; Szklar, 1985).

On the other hand, controllability theory for dynamical systems with delays has
been developed in (Banks et al., 1975; Chukwu, 1979; 1987; Colonius, 1984; Delfour
and Mitter, 1972a; 1972b; Jacobs and Langenhop, 1976; Klamka, 1991; Manitius, 1980;
1981; 1982; Manitius and Triggiani, 1978a; 1978b; Naito and Park, 1989; Salamon, 1984;
Szklar, 1985; Zmood, 1974), but only in (Nakagiri and Yamamoto, 1989) the abstract
functional dynamical system defined in infinite-dimensional linear space is considered
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for the case of unconstrained controls. Therefore, it should be stressed that up to now,
constrained controllability of abstract functional dynamical systems has not been consi-
dered in the literature. In order to fill this gap, the present paper studies the constrained
controllability problem for abstract functional dynamical systems.

We shall formulate conditions for absolute and relatively exact and approximate
controllability with constraints posed on the control for linear time-invariant dynami-
cal systems with delays, defined in infinite~dimensional Banach or Hilbert spaces. The
results presented extend controllability conditions given in the papers (Nakagiri and
Yamamoto, 1989) and (Son, 1990) for the case of constrained controls and delayed sy-
stems, respectively.

2. Linear Retarded Systems in Banach Spaces

First we give the notation and terminology used throughout this paper. Let R be the
set of real numbers and let R* be the set of non-negative numbers. Let X and U
be real separable Banach spaces with norms |[|-||x and |||y, respectively and X is
additionally reflexive. The adjoint spaces of X and U are denoted by X* and U+,
respectively. The duality pairing between X and X is denoted by (-,-), ie. (z*,2)
is the value of the functional z* € X* at the point € X. For theset M C X, we define
the orthogonal complement by M+t = {ac* €X*:(z*,2) =0, forallz € M} and the
polar cone by M°® = {:n € X* : (z*,2) <0, forall z € M} The convex hull, the
1nterlor and the closure of M C X are denoted respectively by co{M}, int{M}, and

The linear space spanned by M is denoted by span{M}. For given Banach spaces
U and X, L(U,X) stands for the Banach space of linear bounded operators from U
to X. When U = X,L(X,X) is denoted shortly as L(X) and the identity operator
in L(X) is denoted by I. For a densely defined closed linear operator A on X,
its adjoint operator on X* is denoted by A*, and the null space, the range, and the
spectrum of an operator A are denoted by Ker 4, Im 4, and o(A), respectively.

For a given interval [a,b] C R, we denote by L,([a,b],X) the usual Banach space
of X-valued measurable functions which are p-Bochner integrable for 1 < p < oo, or
essentially bounded for p = co on [a,b]. Let M, ([q,?b], X) denote the product space
XxL »([a,8], X). Given an element g € M, ([a b,X), then ¢° € X and g'(-) €

Lp([a,b],X) will denote the two coordinates of g = (9°,9"). The space Mj([a,b], X)
is the Banach space with the norm

(185 + 119112 )" it 1<p<oo
lo = r(121.)
0 E05) 7 i+ g i p=
X TN (1a,0,%) h p=00
The spaces Ly ([a,b],X) and M, ([a,b], X) are shortly denoted as L, and M,,
respectively. Moreover the symbol X 'z means the characteristic function of the set E‘
Throughout this paper, unless otherwise stated, the space X is always assumed to
be infinite-dimensional.
Now, we shall review some basic results on linear retarded control systems in Banach
spaces. Let us consider functional differential equation on a Banach space X: (Nakagiri,
1987; 1988; Nakagiri and Yamamoto, 1989; Webb, 1976):
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z(t) = Aoz(t) + ’[-h dn(s)z(t + s) + Bou(t) ae. t>0 (1)

2(0)=4¢"€ X, z(s)=g'(s) a.e. s€[—h,0] (2)

where g = (¢°,9') € M,([a,b],X), h >0 is a constant delay, By € L(U,X), Ao :
X D D(A¢) — X is the infinitesimal generator of a strongly continuous semigroup of
linear bounded operators 7T(t),t > 0 on the Banach space X. The Stieltjes measure
n in (1) is given by

i=m

n(s)=— E X(—o0,—n;}(8)Ai — / Ar(Hdd, s € [~h,0] (3)

i=1

where 0 < Ay < ... < hi < ... < by, A; € L(X), for r =1,2,...,m and Aj €
Ly ([—h, 0], L(X)). Then, the delayed term in (1) is written by

0 i=m 0
/ dn(s)z(t+s) = Agz(t — hi) + / Ar(s)z(t + s)ds (4)
—h h

=1 -

o

If the condition Ar(+) € L, ([—h,O],L(X)), 1/p+ 1/g = 1, is satisfied, then for each
teRt, g=(¢%¢") € My([—h,0],X) and u(-) € Lfl"c(R"‘,U), there exists a unique
solution z(t;9,u) € X of the autonomous linear equation (1) given in the integrated
form by (Nakagiri, 1987; 1988; Nakagiri and Yamamoto, 1989):

S(ti,) = T(t)g°+/0T(t—s) (/_hdn(l)x(s—{—l)+B0u(s))ds, 20 o
g' (1), a.e. t € [—h,0]

In this sense, z(t;g,u) is called the mild solution of problem (1) and (2). The detailed
analysis of solution (5) is given in the papers (Nakagiri, 1987) and (Nakagiri, 1988).

For each A € C we define the densely defined closed linear operator A(X) =
A(X; Ao, m) by

0
AA) =M — Ao — / exp(As)dn(s) (6)

—h
where I denotes the identity operator on X. The retarded resolvent set ¢(Ag,n) we
understand as the set of all values A € C' for which the operator A(XA) has a bounded
inverse with dense domain in X. In this case A(X)~! is denoted by R(A;Ao,n). The

complement of ¢(Ap,n) in the complex plane is called the retarded spectrum and is
denoted by o(Ao,n).

The mild solution «(¢;g,u) of the abstract retarded equation (1) given by for-
mula (5) is expressed as a solution of the integral equation. In the applications it is more
convenient to present this solution in a direct form, depending immediately on the given
initial conditions (2) and control function wu(t), ¢ > 0.
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In order to do that, let us introduce operator W(t) € L(X), ¢ > 0, which is the
unique solution of the following integral equation (Nakagiri, 1987; 1988)

() + /tT(t - s)/o dn(HW(E + s)ds, >0
0 —-h
0, t< 0

W(t) =

The operator valued function W(t) is strongly continuous on Rt (Nakagiri, 1987;
1988).

Now, let us define the operator valued function Hy(-) € Ly([—h,0], L(X)) given by
the following formula

Hi(s) = _;/_ah W(t — s+ Hdn(?), a.e. s€[—h,0]

Taking into account equality (3) we may express the function Hy(-) in a more
concrete form, namely

Hi(s)= S Wit — s — he)A Xy or(s) + / Wit=s+Da0aL, e s€lh0]
r=1 -

Therefore, using operator valued functions W(t) and H:(s) we may express the
solution z(t;g9,u) € X as the following function (Nakagiri, 1987; 1988)

W(t)g° + /_th(s)gl (s)ds + /0 W(t — s)u(s)ds, t>0
g'(t), ae.t € [—h,0]

z(t;g,u) =

The function z(t;g,u) is well defined and is an element of the space C(R*,X)n
Ly ([—h,0],X), (Nakagiri, 1987; 1988).

More detailed analysis of the properties of the operator valued functions W (¢)
and Hy(s), including stability behavior, can be for example found in the publications
(Nakagiri, 1981; 1987; 1988).

Finally, it should be stressed that operator valued functions W(t) and H(s) will
play an important role in controllability considerations, which will be presented in the
next sections of this paper.

Now, we shall recall basic properties of semigroup associated with the abstract equ-
ation (1), (for details see e.g. (Nakagiri, 1987; 1988; Nakagiri and Yamamoto, 1989)). In
what follows we generally assume that 1 < p < oco.

Let z(¢;9,0) be the mild solution of equation (1) with u =0 and g = (¢%¢') €
M, ([—h,0], X), given by integral formula (5). With equation (1) we may associate the
solution operator S(t) : M, — M,, t > 0 defined by the following equality

S(t)g = (m(t;g,O),mt(-;g,O)) € M,, for g € M, )

where ,(s;¢,0) = z(t + s;9,0) for s € [~h,0].
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The operator S(t) is linear and bounded on M, for ¢ > 0, and has the following
properties, listed in Lemma 1.

Lemma 1. (Nakagiri, 1987; 1988; Nakagiri and Yamamoto, 1989; Webb, 1976).
1) The family of operators S(t) :t > 0 is Co—semigroup on the Banach space
M, ([—h,0], X).
1) If T(t) ts compact for all t >0, then S(t) is compact for t > h.
iit) The infinitesimal generator A of semigroup S(t), t > 0, is given by

D(A) = {9= (6" 0") € My (-, 01, X) 14" € WED(1=h, 0], X),6(0) = ¢° € D(4) }(®
ao= (4o + [ a0 550, for g=(0)e ) ©

t
iv) d_Sé_);q_ = AS(t)g = S(t)Ag, for g€ D(A) and t >0
Since the space X is reflexive and 1 < p < oo, the adjoint space My of M, is
identified with the product space X* x L,([—h,0],X*) via the following duality pairing

0
h

(0 Far, = (6°, F)x + /_ (6 (s), F1(s)) x s

forg=(s"9"YEM,, f=(f"fYeM,

where (-,-)x denotes the duality pairing between X and X*, and 1/p+1/¢=1.

In control theory of retarded dynamical systems, it is desirable to consider so called
retarded transposed dynamical systems in the space M, (Delfour and Mitter, 1972a;
Manitius, 1982; Nakagiri, 1981; 1988; Nakagiri and Yamamoto, 1989). This is strongly
connected with the adjoint theory for retarded dynamical system (1), (Nakagiri, 1987;
1988; Nakagiri and Yamamoto, 1989).

The retarded transposed dynamical systems is defined by (Nakagiri, 1987; 1988)

#(t) = A5(1)z(t) + [0, dn*(s)z(t +s) ae.t>0, z(t) € X* (10)
2(0) = f°, z(s) = fi(s) a.e.s €[—h0], (f°f!)eM;

Since the space X 1is reflexive, the adjoint operator A} generates a strongly
continuous (of class Cp) semigroup T*(t) on X* which is given by the adjoint of
T(t). Hence we can construct the operator valued function W*(t), which is strongly
continuous on Rt and W*(¢) is the adjoint of W(t) for t > 0, (Nakagiri, 1988).
W*(t) is the unique solution of the following integral equation

. t 0

T*(t)—{-/T*(t—s)/ (Wt + 5)ds, ¢ >0
0 —h

0, t<0

W*(t) = (11)
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Using thé solution of the retarded transposed dynamical system it is possble to
construct, in a similar way as for system (1), the semigroup Sr(t), t > 0 of bounded
linear operators on M ([=h,0],X) and its infinitesimal generator Az, (Nakagiri, 1988).
On the other hand, we may obtain semigroup S*(t), t > 0, where S*(t) is the adjoint of
S(t) for t > 0, (Nakagiri, 1988) and its infinitesimal generator A*. However, generally
S*(t) # S7(t) and A* # Ar (see e.g. (Nakagiri, 1987; 1988) and (Webb, 1976) for
details). The connections between semigroups Sp(t) and S*(t) can be easily explained
by using structural operators F and G(t), (Nakagiri, 1988). '

The retarded control system (1) can be transformed into an abstract differential
dynamical system in the space M, ([-—h,O],X) (Nakagiri, 1987; 1988). In order to do
that, let us define operator B € L(U, M,) as follows (Manitius and Triggiani, 1978a):

Bu = (Bgu,0) € M,, for veU (12)

Hence the retarded dynanﬂical system (1) may be expressed as an abstract differential
dynamical system in a Banach space M, ([~h, 0], X)

2(t) = Az(t) + Bu(t), t>0 (13)

where z(t) = (z(t;9,u), ©:(-59,u)) € Mp([——h,O],X) and the operator A is defined by
relations (8) and (9). This compact form of dynamical system is very useful in various
research problems in modern control theory. Specially, it will be extensively used in
controllability problems.”

In recent years the state space theory for linear retarded functional differential equ-
ations has been developed in many publications (see e.g. the papers (Banks et al., 1975;
Delfour and Mitter, 1972a; 1980; Manitius, 1976; 1980; 1982; Nakagiri, 1981; 1987; 1988;
Salamon, 198), and (Webb, 1976)). This theory is based on certain relations between se-
migroup S(t), t > 0 associated with equation (1) and the so called structural operators
F and G. The structural operators have provided various new and efficient techniques
for the study of control theory involving linear retarded functional equations (Delfour
and Mitter, 1980; Delfour and Karrakchon, 1987; Manitius, 1976; 1982; Nakagiri, 1987;
1988).

Now, we introduce the concept of the structural operator F : M, — M,, which is
defined as follows:

I 0
0 Fy

jl , e [Fg°= q°, [Fg]1 = Figt, for ¢g= (go,gl) € M, (14)

where the operator Fy : Ly([—h,0],X) — L, ([—h,0], X) is given by

[Fig%)(s) = /_Sh dn(Hg'(t — s) a.e. s€[—h,0]

It is easily verified (Nakagiri, 1987; 1988) that operator F is linear, bounded and into
the space L, ([—h, 0], X). Taking into account formula (4) we may express operator Fy
in a more convenient form given by

[Flgl](s) = i A,X[_hi,g](s)gl(—hi —s)+ /Sh Ar(Hgh(t — s)d4,
i=1 - ae. s€([—h,0]
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The adjoint operator F* : My — My of F is given by Nakagiri (1988)

. 1o
r=ll] )

where Fy : Ly([-h,0,X*) — Ly([—h,0],X*) denotes the adjoint of Fi and is
represented by the following formula

FA6 = [ shdn*(f)fl(f _o) = Y A (9)f (—hi — 8)
- (16)
+/_hA}(l)fl({ —s)dt  ae s€[-h,0]

For controllability investigations it is important to point the case, when the operator
Fy; and hence of course F are onto the spaces LP([—h,O],X) and M, ([—h,O],X),
respectively. It is well known (Nakagiri, 1987; 1988) that if 0 € ¢(Am), then Im F' = M,
and moreover, Im F* = M, For the special case, when Aj(s) = 0, in the neighbourhood
of —h, Ker F = {0} if and only if Ker A, = {0}.

In order to explain in detail the internal structure of dynamical system (1) it is
necessary to introduce second structural operator G(t): M, — M,, t > 0, defined by:

[G(t)g)(s) = W(t +5)g° + [-Oh W(t+s+H)g'(Hdd, se€[—h,0] (17)

[GR)g)° = [CM'(0)  g=(s"0") €M (1)
Especially we define structural operator G : M, — M, as
G = G(h) (19)

It is easily verified that operators G(t) are linear and bounded for ¢ > 0, and hence of
course G is linear and bounded.

In what follows, we shall give short comments on the spectral decomposition of
dynamical system (1), (see e.g. (Nakagiri, 1987; 1988) for details). First of all let us
observe that if the operator Ao generates compact semigroup 7'(t), for ¢ > 0, then by
(Nakagiri, 1987, Remarks 5.2) o(A) = 0,(A), the point spectrum. Hence, our analysis
will be simpler than in general case, (Nakagiri, 1987; 1988). Moreover, by Nakagiri (1987,
Sec. 4) we have

c(A) = 0,(A4) = 04(A) = {)\ € C : is isolated eigenvalue of A and
dim My = my < oo}

(20)

where o04(A) is discrete spectrum and is countable, and the generalized eigenspace M)
is given by

My = Ker (A — A)® (21)

where k) is the index of the eigenvalue .
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Definition 1. Dynamical system (1) is said to be spectrally complete if
span {MA A E O'(A)} =M, (22)

The completeness of dynamical system (1) plays an important role in the controlla-
bility analysis.

In a very similar way, we may define the so called F-completeness of dynamical
system (1) (Manitius, 1982; Manitius and Triggiani, 1978a).

Definition 2. Dynamical system (1) is said to be spectrally F-complete if
span {FMx:A€o(A)} =Im F (23)

In other words, dynamical system (1) is spectrally complete if and only if the operator
A 1is spectrally complete in the space M,. Similarly, dynamical system (1) is spectrally
F-complete if and only if the operator A is spectrally complete in the space Im F' C M,.

Under the assumption that the operator Ay generates compact semigroup T'(t),
for ¢ >0, then dimM) < oo for all A € 0(A) and M, is closed and invariant under
S(t) (Nakagiri, 1988, Sec. 7). Moreover, the restriction Ay of A to M, and the
restriction By of B to M, are bounded operators and we have

a":)\(t) = AA:C)\(t) + B)\u(t), for t>0, z) € R™ (24)

The detailed analysis for spectral decomposition of dynamical system (1) can be found
in (Nakagiri, 1988, Sec. 7). However, it should be pointed out, that since the linear
subspaces M) are finite-dimensional for all A € o(A), then the bounded linear operators
Ax and B) are in fact constant matrices of appropriate dimensions.

Taking into account the spectral theory of the operator A we may introduce the
concept of so called spectral controllability of our dynamical system (1), which will be
done in the next section.

Now, let us concentrate on the investigation of the ImS(t) for ¢ > 0. It is an
important feature from the controllability point of view. It follows from (24) , that (Son,
1990, Sec. 2)

S(t)zA(0) = exp(Aat)zx(0), for t>0, zy € R™ (25)
Hence, using spectral decomposition theory we see that
span { My : X € o(A)} =TmS(t) forevery ¢>0 (26)

On the other hand, from general semigroup theory it follows (Triggiani, 1976) that
Im.S(t1) D ImS(t), for t; < t3. A more detailed analysis of the ImS(t) is pre-
sented in (Nakagiri, 1987, Sec. 5), where some characterization of the Im S(t) is given,
using the adjoint theory. Finally, it should be mentioned, that in finite-~dimensional
case, l.e., when X = R" we have fine characterization of ImS(t) for ¢ > nh, namely
(Nakagiri, 1987, p. 527)

Im S(t) = span { M : A € o(4)} (27)
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Hence, for finite—dimensional case with operator A with finite spectrum (Manitius and
Triggiani, 1978a, Sec. 8) dim ImS(t) < co for t > nh.

In the sequel, besides the general dynamical systems (1) we shall consider also some
special cases, i.e. dynamical systems with lumped multiple delays described by the
following retarded equation:

i=m

a(t) = Aoz(t) + Y Aiz(t — hi) (28)

i=1

where A; € L(X) for ¢ =1,2,.,m and 0 < hy < hy < ..<h; <..<h, are
constant delays. The theory of such dynamical systems is studied in detail in the paper
(Nakagiri, 1981). The special case m =1 is of special interest.

The other possible special cases of dynamical system (1) are dynamical retarded
systems with finite dimensional controls, i.e. the dynamical systems of the form (1)
or (24) with U = R", r < co. In this case the linear bounded operator Bg : R — X
can be expressed as follows

j=r
Bou(t) = Zb[)juj(t); where bg; € X, for j=1,2,...,r (29)
j=1 .

and u;(t) € R, t >0 are scalar controls.

The next possible special cases are dynamical systems of the form (1) or (24) with
finite-dimensional controls and finite-dimensional space X = R"™, (Banks et al., 1975;
Chukwu, 1979; 1987; Colonius, 1984; Klamka, 1991; Manitius, 1980; 1981; 1982; Manitius
and Triggiani, 1978a; 1978b; Szklar, 1985). In this case all the operators A;, i =
1,2,...m are of course bounded and given by the constant n xn dimensional matrices.
Moreover, the operator By is also n x 7 dimensional constant matrix.

We may also consider dynamical systems (1) or (24) in Hilbert space M ([—h, 0], X),
where X is a Hilbert space of infinite dimension. Since in this case we may iden-
tify X* = X, then we have also that Mj([-h,0],X) = X* x Ly([—h,0], X*) =
X x Ly([-h,0],X) = Mz([—h,O],X). For Hilbert space M, and specially X we
can obtain more concrete and computable criteria for various kinds of controllability.

Finnaly, it should be pointed out that it is possible to consider more general retared
systems than (1), i.e. retarded dynamical systems with linear unbounded operators
Ai, i =1,2,...,m. Theory of such dynamical systems can be found for example in the
publication (Jeong, 1993; Nakagiri, 1981).

3. Basic Definitions

In this section we shall recall various definitions for controllability of dynamical sys-
tem (1). As it was mentioned in the introduction, for retarded control systems in Banach
spaces there exist many different notions of controllability. It follows from the fact that
for dynamical systems with delays we may introduce different concepts of the state spa-
ces, and on the other hand since Banach spaces are generally infinite-dimensional, then
we must distinguish between exact and approximate controllability (Banks et al, 1975;
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Colonius, 1984; Delfour and Mitter, 1972a; 1972b; Fattorini, 1966; 1967; Klamka, 1991;
Manitius, 1981; 1982; Manitius and Triggiani, 1978a; 1978b; Nakagiri and Yamamoto,
1989; Salamon, 1984; Triggiani, 1975; 1976; 1978; Yamamoto et al., 1990; Zmood, 1974).

Let V C U be a given set in the space U such that 0 € V. We define the set of
admissible controls on [0,#;] by

Vo= {u() € L(0.010) s u eV, ae telon]} (30)

We define the linear operators P; : L, ([0,¢],U) — X and Q: : M, ([—h,0],X) —
X, respectively, by

Pu= /t W(t — s)Bou(s)ds, for ue€ Ly([0,%],U) (31)
Jo

0
Q=W+ [ H@ieds,  for g=@a)eM, (@)
~h
Similarly, we define linear operator F; : L, ([O,t], U) — M,, by

Fou= /t S(t — s)Bu(s)ds, for ue€ L, ([0,1],U) (33)

Linear operators P, @:, and F; play an important role in the theory of attainable
sets and in the controllability investigations.

First of all, let us define the so called attainable sets in the spaces X and M,
(Manitius and Triggiani, 1978a; Nakagiri and Yamamoto, 1989; Seidman, 1979; Triggiani,
1975a; 1975b; 1976; 1978).

vy ={zt;0,u) e X :ue i}, t>0 (34)
Coo(V) = tL)JOCt(V) (35)
Ky(V) = { (2(t:0,),2(:0,w) € My su € i}, £>0 (36)
Koo(V) = tL)JO Ki(V) (37)

Hence, Cy(V) = ImPy(V) and Ky(V) = ImFy(V). Similarly, we define in the
spaces X and M, the sets reachable from nonzero initial conditions (2), (Chukwu,
1987; Colonius, 1984; Klamka, 1991; Manitius, 1980; Nakagiri, 1987; Zmood, 1974).

Rtr_{x(t;g,O)EX:gEMp}, £>0 (38)

Roo = U Rt (39)

i>o0
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A= {(x(t;g,O),:v:(';g,O)) € M, :geMp}, t>0 (40)
Ao = A (41)

Therefore, R; =Im@; and A; =Im S(t), where S(t) is defined by equality (7).

Now we are in the position to give formal definitions for various kinds of controlla-
bility for dynamical control system (1).

Definition 3. Dynamical system (1) is sald to be absolutely exactly (approximately)
V—controllable if

Ko (V) = Mp, (Koo (V) = M) (42)

Definition 4. Dynamical system (1) is said to be relatively exactly (approximately)
V—controllable if )

Co(V)=X,  (Coo(V)=X) (43)
In the literature absolute controllability is named also as function space or My~
controllability (Banks et al., 1975; Manitius, 1981; Manitius and Triggiani, 1978a; 1978b).
Similarly, the terms X-—controllability are frequently used instead of relative controlla- '
bility (Chukwu, 1979; Klamka, 1991; Manitius and Triggiani, 1978a; 1978b; Zmood,
1974). For a finite-dimensional case, when X = R", exact and approximate relative
V-controllability are equivalent. For the case, when the final time f = f; 1is given @
priori we may formulate the definitions of absolute and relative controllability in time
interval [0,¢;]. However, in the sequel we do not consider such kinds of controllability.

In many practical situations, it is important to steer our dynamical system to zero
final state. This is strongly connected with the concepts of absolute and relative null
controllability (Chukwu, 1979; 1987; Colonius, 1984).

Definition 5. Dynamical system (1) is said to be absolutely exactly (approximately)
null V—controllable if

Ao CKoo(V), (A CEoa(V)) (44)

Definition 6. Dynamical system (1) is said to be relatively exactly (approximately) null
V—controllable if

Reo C Coo(V), (Roo C Coo(V)) (45)

All the remarks and comments following definitions of absolute and relative control-
lability are also valid for relative and absolute null controllability. Moreover, it should
be stressed that the concepts of absolute and absolute null controllability are essen-
tially stronger than the concepts of relative and relative null controllability, respectively
(Klamka, 1991; Manitius and Triggiani, 1978a; 1978b; Nakagiri, and Yamamoto, 1989).
Finally, it should be pointed out that generally each notion of controllability is essentially
stronger than the corresponding notion of null controllability. The equivalence relations
between these two concepts will be considered in the next sections.
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In retarded functional differential control systems the concept of controllability is
strongly related to the choice of a state space. In many cases controllability in the full
state space is a very restrictive assumption, too restrictive from the practical point of
view (Manitius, 1982). This suggests to define the weaker concept of controllability, i.e.
controllability in certain nontrivial linear subspaces of the state space. This observation
leads directly to the notion of the so called F—controllability (Manitius, 1982), i.e.
controllability in a linear subspace Im F.

Definition 7. Dynamical system (1) is said to be F — V-controllable if
FKo(V)=ImF (46)

The notion of F—controllability is generally weaker than the notion of approximate
absolute controllability (Manitius, 1982). The equivalence of these two concepts depends
on the internal structure of dynamical system (1) represented by the linear operator F.

The link between absolute approximate controllability and F—controllability is pro-
vided by the operator F which contains the information about the structure of the
hereditary part of the dynamical system. The ”true” state of the dynamical system is
Fz, z € M, rather than z itself. This is especially important when the structure
of the dynamical systems is such that there are nonzero 2z for which Fz = 0, ie.,
Ker F # {0}. Then the introduction of the operator F shows explicitely that some
nontrivial reduction of the state space is possible. For finite-dimensional case, when
X = R", it means that there are state variables which are not delayed (Manitius, 1982).

Spectral decomposition of the state space M, presented in Section 2 gives us the
opportunity to define the next kind of controllability, namely, spectral controllability
(Manitius and Triggiani, 1978a; 1978b).

Definition 8. Dynamical system (1) is said to be spectrally V-controllable if for each
A € 0(A) dynamical systems (24) are V—controllable.

Spectral V—controllability is in general an essentially weaker concept than absolute
approximate V-controllability, i.e. absolute approximate V-—controllability always im-
plies spectral V—controllability. The converse statement holds if and only if operator A
is spectrally complete in the space M,,.

Similar considerations are valid for F-controllability and spectral controllability.
More precisely, F' — V-controllability always implies spectral controllability. The con-
verse implication holds if and only if dynamical system (1) is spectrally F-complete.

Finally, let us return to the concepts of absolute exact V-controllability and
relative exact V-—controllability. Since by assumption the operator Ay has com-
pact resolvent, then by the results of (Nakagiri, 1987; Nakagiri and Yamamoto,1989;
Triggiani, 1975a; 1975b; 1976; 1978) dynamical system (1) is never absolutely exactly
V—controllable and relatively exactly V—controllable in the case when X  is infinite—
dimensional.

For the finite—dimensional case, when X = B™ absolute and relative exact
controllability are possible (see e.g. (Banks et al, 1975; Colonius, 1984; Jacobs and

Langenhop, 1976; Manitius and Triggiani, 1978a; 1978b) and (Zmood, 1974)). For exam-
ple in the paper (Banks et al., 1975) rather a very restrictive condition rank By = n
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for absolute exact R"—controllability has been formulated and proved. The conditions
for relative exact controllability are less restrictive, because for X = R™ exact and
approximate relative controllability are the same concept. It follows from the fact that
in finite—dimensional linear spaces all linear subspaces are closed.

Taking into account previous considerations, in the next sections of this paper we
shall concentrate on approximate absolute and relative controllability.

4, Constrained Approximate Controllability

In this section we shall solve the problem to find characterization of various kinds of
approximate V-controllability, expressed in terms of the operators connected with the
retarded abstract equation (1) and the restraint set V. The results extend to infinite-
dimensional case the approximate controllability criteria given in the papers (Son, 1990;
Szklar, 1985) for retarded dynamical systems with X = R™. The results of the paper
(Son, 1990) are based on certain general theorem (Son, 1990, Thm. 3.3). For the sake
of convenience, we formulate here the main theorem of that work. However, in order
to do that let us formulate the so called spectral decomposition property for the linear
operator A (Son, 1990).

Assumption H1: (spectral decomposition property). For every o« € R the spectral
set 0o = 0(A)N{z € C : Rez > a} consists of a finite number of eigenvalues of the
linear operator A with finite multiplicities.

Proposition 1. (Son, 1990, Thm. 3.3) Let Z and U be separable Banach spaces
and Z reflezive. Let A be a generator of Co-semigroup of linear bounded operators
S(t), t >0, on Z, and let additionally operator A satisfy assumption H1. Let V be
a cone with verter at the origin in U such that intco V # 0. If the operator A is
spectrally complete then the dynamical system

z(t) = Az(t) + Bu(t)

is approzimately V—controllable if and only if it is approzimately U—controllable (i.e.
without any constraints) and moreover

Ker (\I — A*)N(BV)? = {0}  for every A€ R (47)

From the proof of Proposition 1 which is presented in the paper (Son, 1990) it imme-
diately follows that without assumption about spectrall completeness of the operator A,
that proposition is the necessary and sufficient condition for spectral V—controllability.
Moreover, from the spectral decomposition property (assumption H1) it follows that li-
near subspaces corresponding to each spectral set in the decomposition procedure are
finite dimensional (Son, 1990).

Now, we are in the position to formulate main theorem concerning absolute appro-
ximate V—controllability of dynamical system (1).

Theorem 1. Suppose that:
1} Operator Ay generates compact semigroup T(t), for t > 0.
ii) Operator A s spectrally complete.
iii) Theset V is a cone with vertex at the origin in U and such that int (co{V}) # 0.
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Then, dynamical system (1) is absolutely approzimately V -controllable if and only if it
1s absolutely approzimately U-controllable and

Ker Ap(A) N (BoV)° = {0} for every A€ER (48)

Proof. Proof of Theorem 1 is based on Proposition 1. First of all, let us verify the
assumptions of Proposition 1. It is evident that all the assumptions, besides assumption
H1 are satisfied. Hence, this verification is reduced to showing that assumption H1 holds.
In order to do that, let us observe, that since by assumption i) operator Ag generates a
compact semigroup T'(t) for ¢ > 0, then Ay has compact resolvent (Triggiani, 1976),
and moreover the retarded resolvent R(A; Ag,n) is also compact for all A € ¢(Ao.7)
(Nakagiri, 1988, Remark 7.3). Furthermore, o(A) is a countable set consisting entirely
of eigenvalues of the operator A (Nakagiri and Yamamoto,1989, Sec. 4; Nakagiri, 1987,
Rem. 5.2) and for each X € o(A), the corresponding generalized eigenspace M) is
finite-dimensional (Nakagiri and Yamamoto, 1989, Sec. 4). Hence, we have proved, that
operator A satisfies assumptions of (Webb, 1976, Lemma 3.4 and Remark 3.6), which
states that spectral sets o, consist of finite number of eigenvalues for each o € R.
Therefore, operator A satisfies spectral decomposition property given in assumption
H1.

Now, let us concentrate on the equivalencee between conditions (47) and (48). First
of all, let us observe, that for each eigenvalue A € C, the corresponding eigenspaces of
Ar and A* are related through the so called structural operator G by the following
formula (Nakagiri, 1988, Thm. 8.2)

Ker (M — A7)’ = G*Ker (M — A*)',  for i=1,2,... (49)

Moreover, by (Nakagiri, 1988, Prop. 4.5) KerG* = {0} and ImG* = M. Hence,
repeating the proof of (Son, 1990, Thm. 4.3), we conclude, that conditions (47) and (48)
are equivalent. Thus, the proof of our Theorem 1 is complete.
Corollary 1. Suppose that:

i) Operator Ay generates compact semigroup T'(t) for t> 0.

i) Ker A, = {0}.

iii) The set V is a cone with vertez at the origin in U and such that int (co{V}) #0.

Then, dynamical system (28) is absolutely approzimately V —controllable if and only if it
is absolutely approrimately U-controllable and condition (48) holds.

Proof. Since Ker A,, = {0}, then the operator A associated with the dynamical
system (28) is spectrally complete (see (Nakagiri, 1987) or (Nakagiri, 1988)). Hence,
all the assumptions of Theorem 1 are satisfied for dynamical system (28). Thus, our
Corollary 1 follows.

For the finite-dimensional case, i.e. X = R™, from Theorem 1 and Corollary 1 we
obtain immediately the well-known results (Son, 1990; Szklar, 1985).
Corollary 2. Suppose that:
i) X =R".
il) Operator A is spectrally complete.
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iii) The set V satisfies assumption iit) of Theorem I.
1v) rank [A(X)|Bo] = n, for every AeC (50)

Then, dynamical system (1) is absolutely approzimately V —controllable if and only if
condition (48) holds.

Proof. Since X = R", then operator Ay generates compact semigroup 7'(t) for
t > 0 (Nakagiri, 1987; 1988). Moreover, condition (50) is equivalent to absolute ap-
proximate U-controllability of dynamical system (1) (Manitius, 1981; Manitius and
Triggiani, 1978a; 1978b). Hence, all the assumptions of Theorem 1 are satisfied and then
our Corollary immediately follows.

Corollary 3. Suppose that:
i) X=R".

ii) rank A,, = n.

i) The set V satisfies the assumption iii) of Theorem 1..
i=m

iv) rank [A] — Ag — E exp(—Ah;)Ai|Bo] = n, for every AeC (51)
=1

Then, dynamical system (28) is absolutely approzimately V-controllable if and only if

condition (48) holds.

Proof. First of all, let us observe, that condition (51) is the necessary and sufficient
condition for absolute approximate U-controllability of dynamical system (28) for the
case X = R", (Manitius, 1981; Manitius and Triggiani, 1978a; 1978b). On the other
hand, assumption ii) is equivalent to spectral completeness of the operator A (Manitius,
1980; 1982). Hence, all assumptions of Theorem 1 are satisfied and then our Corollary
follows.

Finally, let us consider the problem of F'—V—controllability of dynamical system (1)
(Definition 8), which is strongly connected with spectral F-completeness of our dyna-
mical system (Definition 2). We assume that the set V' satisfies the assumption iii) in
Theorem 1.

Corollary 4. If dynamical system (1) is spectrally F-complete, then absolute approzi-
mate V -controllability is equivalent to F — V —controllability.

Proof. Using the same arguments as in (Manitius, 1982, Proposition 2) it is easy to show
that under the assumption of spectral F-completeness dynamical system (1) is absolute
approximate U-controllable if and only if it is F — U—controllable. Hence, repeating
the proof of Theorem 1, but in the space ImF we conclude the equivalence stated in
our Corollary. '

Many results concerning  F-controllability and relationships between  F-
controllability and other types of controllability can be found in the paper (Manitius,
1982), but only for the finite dimensional case, i.e. X = R".

The connections between F-controllability and other kinds of controllability depend

mainly on the concept of F-completeness of dynamical system (1) or (28), (Manitius,
1980). Moreover, it should be stressed that conditions for F-completenes of dynamical
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system (1) or (28) for infinite—dimensional case are rather complicated and difficult in
practice to verify (Nakagiri, 1988).

5. Constrained Relative Controllability

In this section we shall study various kinds of constrained relative controllability for
general dynamical system (1) and its special cases considered in section 2.

Generally, relative controllability of dynamical system (1) is strongly related to the
investigation of the properties of the linear operator P; : L, ([O,t],U) — X, t >0,
defined by (31), and the attainable sets Cy(V), t > 0 and Cw(V), given by (34)
and (35), respectively.

First of all, let us observe, that unfortunately, in contrast to the situation for absolute
controllability; the linear operator W(t), t > 0, in (31) does not possess semigroup
property (Nakagiri, 1988, Sec. 2 and 4).

On the other hand, as has been stated in section 3, absolute exact (approximate)
V—controllability implies always relative exact (approximate) V-controllability.

Firstly, in this section we concentrate on negative results for relative exact U-
controllability for infinite-dimensional space X. Such a fact for mild solutions in infinite—
dimensional control systems without delays has been proved in (Triggiani, 1975a; 1975b;
1976), where some types of compactness of operators are assumed. A similar conc-
lusion has been stated in the paper (Nakagiri, 1988, Sec. 3) for retarded dynamical
systems. Now, we recall without proof the main result on the lack of relative exact
U-controllability.

Proposition 2. (Triggiani, 1975a; 1975b; 1977) Let X be infinite-dimensional. If
T(t) 1s semigroup of compact operators for all t > 0, then dynamical system (1) is
never relatively exzactly U-— controllable.

Hence, if the assumptions of Proposition 2 are satisfied, then dynamical system (1) is
never relatively exactly U—controllable for any set V' C U. Therefore, since we assumed
that operator Ay generates compact semigroup 7T(t), t > 0, in the sequel we shall
concentrate only on the study of relative approximate V-controllability of dynamical
system (1) and its special cases given in the section 2.

In order to do that, let us recall some well-known results (Nakagiri, 1987, Sec. 5)
concerning the pointwise completeness of dynamical system (1). Combining the results
stated in (Nakagiri, 1987, Corollary 5.1, Remark 5.2) we obtain the following special
version of (Nakagiri, 1987, Corollary 5.1).

Proposition 3. Supj)ose that the operator Ay generates compact semigroup T(t), for
t > 0. If there exists a set A C o(A) such that

span {moM: A €A} =X ' (52)
where mo : M, — X s the projection operator then dynamical system (1) is approzima-

tely pointwise complete in each time t > 0.

It should be stressed that condition (52) is satisfied if the generalized eigenfunctions
associated with dynamical system (1) form a complete set in the space M, (Nakagiri,
1987, Corollary 5.1).
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Theorem 2. Suppose that:

i) Operator Ay generates compact semigroup T'(t), for ¢ > 0.
i) Assumption (52) holds.
1) Assumption i) of Theorem 1 is satisfied.

Then, dynamical system (1) is relatively aprozimately V -controllable if it is spectrally
U —controllable for every XA € A, and

Ker A7 ()N (BoV)°® = {0} for every M€ ANR (53)

Proof. From assumptions i) and ii) and Proposition 3 it immediately follows that dyna-
mical system (1) is approximately pointwise complete in each time ¢ > 0. Approximate
pointwise completeness for the set A C o(A), and spectral U-controllability for every
A € A, imply relative approximate U-controllability of dynamical system (1). On the
other hand, from the proof of Theorem 3.3 in (Son, 1990) it follows that under assump-
tion iil) condition (53) is in fact the sufficient condition for spectral V—controllability
for A € A, and hence taking into account the approximate pointwise completeness, it
is also the sufficient condition for relative approximate V-—controllability of dynamical
system (1). Hence, our Theorem 2 follows.

Now, let us consider the problem of relative approximate null V—controllability of
dynamical system (1). Definition 4 implies that if dynamical system (1) is relatively
approximately V—controllable, then we can steer the response of our system arbitrarily
close to any given point in the space X. Hence, of course to point zero. Therefore, taking
into account Definition 6 we see that generally relative approximate V-controllability
always implies relative approximate null V—controllability. However, the converse sta-

tement is not always true, even for finite-dimensional case X = R" (Klamka, 1991,
Chapter 4).

Another important point is that relative approximate null V-controllability is al-
ways impled by absolute approximate null V—controllability. However, the converse
statement is not always true. There are dynamical retarded systems which are rela-
tively approximately null V—controllable, but not absolutely approximately null V-
controllable (Klamka, 1991, Chapter 4).

The relationships between relative approximate V-controllability and relative ap-
proximate null V-controllability depend strongly on the concept of degeneration of
retarded dynamical system (1) and the reachable set Ro, given by (38). Relative ap-
proximate null V—controllability means, that Co(V) D Reo. Therefore, it is obvious
that preceeding inclusion may hold even C (V) # X, i.e., even dynamical system (1)
is not relatively approximately V-controllable. Hence, we have the following simple
Corollary.

Corollary 5. If dynamical system (1) is approzimately, pointwise complete, then re-
lative approzimate  V —controllability is equivalent to relative approzimate null V-
controllability.

Proof. If dynamical system (1) is approximately pointwise complete, then Re, = X.
Therefore, dynamical system (1) is relatively approximately null V-controllable if
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(V) Ry, = X, i.e. if it is relatively approximately V—controllable. The converse
implication is evident. Hence, our Corollary 5 follows.

Taking into account Proposition 3 we can formulate the next Corollary on the equ-
ivalence between relative approximate V-controllability and relative approximate null
V—controllability.

Corollary 6. Suppose that Ag generates compact semigroup T(t), for t > 0 and con-
dition (52) holds. Then, relative approzimate V —controllability is equivalent to relative
approzimate null V- controllability.

Proof. Since by Proposition 3 condition (52) implies approximate pointwise completeness
of dynamical system (1), then by Corollary 5 we have the desired equivalence between
relative approximate V-controllability and relative approximate null V—-controllability.
Hence, our Corollary 6 follows.

Remark 1. Condition (52) stated in Proposition 3 is essentially stronger than the
approximate pointwise completeness of dynamical system (1), (see e.g. (Nakagiri, 1987,
Sec. 4 and 5) for detailed study of the approximate pointwise completeness).

Remark 2. Theorem 2 is only sufficient but not the necessary condition for relative
approximate V-controllability. This is a consequence of Proposition 3 and the fact
that Theorem 2 is formulated and proved in terms of spectral properties of dynamical
system (1). Moreover, we used in fact spectral properties of the operator A in the space
M, ([=h,0],X), and semigroup S(f), t > 0 in the space M, ([—h,0],X) and we did
not use directly the spectral properties of the operators W(t), ¢t > 0, which do not form
semigroup (Nakagiri, 1988, Sec. 3). Therefore, we cannot derive explicit necessary and
sufficient conditions for relative approximate V-—controllability of dynamical system (1)
similar to those given in Theorem 1 for absolute approximate V-controllability.

Remark 3. Similarly as in the finite-dimensional case (Manitius and Triggiani, 1978a;
1978b) approximate V-controllability of dynamical system without delays (i.e. 7n(s) =0,
for s € [—h,0]) implies relative approximate V—controllability of dynamical system (1).

Finally, it should be mentioned that many algebraic conditions for relative control-
lability for finite-dimensional case (i.e. X = R"), can be found in (Klamka, 1991,
.Chapter 4; Manitius and Triggiani, 1978a, Sec. 6) and (Zmood, 1974), and for relative
approximate controllability in (Nakagiri and Yamamoto, 1989) for infinite-dimensional
case.

" In what follows, we shall concentrate on the special case of dynamical system (1).
First, we shall list the desired assumptions.
A1) X is separable Hilbert space and the state space for dynamical system (1) is a
Hilbert space M, ([—h,0],X).
A2) U is finite-dimensional space, ie. U = R'.
. A3) The operator Aq is selfadjoint and generates compact semigroup T'(t), for t > 0.

In view of the assumptions on X and Ag there exists a set of eigenvalues s;, i =
1,2,..., which are distinct from each other and real and of multiplicity d;, i =1,2,...
respectively. Moreover, the corresponding set of eigenvectors z;;, ¢+ = 1,2,..., j =
1,2,..d;, ;; € X is a complete orthonormal system in the space X.
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Under the above assumptions it is possible to formulate the suffcient condition for
relative approximate V—controllability.

Theorem 3. Suppose that the assumptions A1, A2, A3 and assertion iii} from Theorem
1 are satisfied. Then, dynamical system (1) is relatively approzimately V -controllable if

Boi coV =R%,  forall i=1,2,.. (54)
where By;, i1 =1,2,... are d; xr dimensional constant matrices given by
(bo1,zi1), (boz,zi1), ---, {bor,zi1)
Bo; = (bor,@iz), (boz2,zi2), ---, (bor,Zi2) (55)
(bor,zia;), (boz,xia)) -+, (bor,Tid;),

Proof. If the assumptions Al, A2, A3, and assertion iii) from Theorem 1 are satisfied, then
condition (53) is the necessary and sufficient condition for approximate V—controllability
of the dynamical system without delays (n(s) = 0, for s € [—h,0])) (Son, 1990, Thm.
4.1). Therefore, since approximate V-controllability implies relative approximate V-
controllability of dynamical system (1) our Theorem 3 follows.

Remark 4. Theorem 3 implies that the number of controls required for relative appro-
ximate V—controllability (V # R" = U) is at least that of the highest multiplicity of
the eigenvalues plus one (Son, 1990).

Theorem 3 is only sufficient but not the necessary condition for relative approximate
V—controllability of dynamical system (1). However, under some additional assumptions
on the Stieltjes measure 7(s), s € [—h,0], it is possible to formulate the necessary and
sufficient condition for relative approximate V-controllability.

Corollary 7. Let the assumptions of Theorem 8 be satisfied. Suppose that the measure
n s scalar—valued, that is A; = a;I, a; € R, for i =1,2,....m and Af(s) = ar(s)I,
where ar(s) € Ly([—h,0], X).

Then, condition (54) is the necessary and sufficient condition for relative approzimate
V —controllability of dynamical system (1).

Proof. Under the assumptions stated in Corollary 7 dynamical system (1) is relatively
approximately U—controllable if and only if (Nakagiri and Yamamoto, 1989, Thm. 4.2)

rank Bg; = d;, forall i=1,2,... (56)

On the other hand, condition (55) is the necessary and sufficient condition for ap-
proximate controllability of dynamical system without delays (n(s) = 0, s € [—h,0]),
(Triggiani, 1976, Proposition 3.1). Moreover, condition (54) is the necessary and suffi-
cient condition for approximate V—controllability of dynamical system without delays
(Son, 1990, Thm. 4.1). Therefore, combining the above assertions, we deduce that (54)
is the necessary and sufficient condition for relative approximate V -controllability of
dynamical system (1).

Remark 5. In the proof of the above theorem it is essential that the retarded resolvent
R(X; Ag,n) is not so different from the resolvent of the operator Ay, R(A; Ag) (Nakagiri
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and Yamamoto, 1989, Remark 3). Moreover, it should be stressed that in applications,
many dynamical systems satisfy the assumptions listed in Corollary 7. This is especially
true for distributed parameter systems defined in bounded region.

Remark 6. In the proof of Corollary 7 we can use also the results on approximate
controllability for dynamical system without delays given in (Fattorini, 1966, Proposition
2.3).

6. Example

We illustrate the theory we have developed on a simple example of linear partial differen-
tial equation of parabolic type with Dirichlet type boundary conditions and with lumped
constant single delay. :

Let us consider the following equation:

a 6? ,
5t Y) = gw(ty) + aw(t — h,y) + bi(y)ur(t) + ba(y)ua(?) (57)

= 57
defined for y € [0,1], t € [0,00) and satisfying the homogeneous boundary conditions
w(t,0) = w(t, 1) = 0, for t €[0,00) (58)

Initial conditions for equation (57) are as follows:

w(0,y) = wO(y) € LZ([O’”’R) =X

(59)
w(t, y) = wo(y)(t), for te€[—h,0] and ye][0,1]
where wo(y)(t) € L ([—h,O], Lz({O,l],R)).
Moreover, it is assumed that a € R is a constant coefficient, h > 0,
by € Ly([0,1],R), b, € L5([0,1],R) and the controls are nonnegative, i.e. u;(t) > 0,

uy(t) > 0 for t € [0, 00).

For dynamical system with delay given by equation (57) the instantaneous state at
time t is a function w(t,y) € L3([0,1], R), and the complete state at time ? is a
pair of functions ie. 2(t) = {w(t,y), wi(y)} € Ma([—h,0],X) = X x Ly ([-h,0], X).
Moreover, in our example the cone V C U = R? is of the following form:

V={ueR u >0,u; >0} (60)

In the abstract setting, equation (57) can be described by the ordinary differential
equation with delay

Zﬂ(t) = Ag:L’(t) + a:c(t - h) + biug (t) + szz(t), t>0 (61)

where Agz is the Laplacian, i.e.

Aoz = Agu(y) = aa—;w(y), for z € D(Ag) C X = Ly([0,1],R) (62)

D(4p) = {z € X : Apz € X,2(0) = (1) = 0} (63)
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Then, it is well known (see e.g. Fattorini and Russell (1971), Klamka (1991, Chapter 3),
Sakawa (1974) or Son (1990)) that the operator Ag is self adjoint and generates compact
semigroup 7T'(t), for t > 0. Moreover, the eigenvalues are s; = —i?7w?, i = 1,2,..
with multiplicity d;i = 1, ¢ = 1,2,.... The corresponding eigenfunctions z;(y) =
V2sin(iry), i = 1,2,... y € [0,1] form an orthonormal complete set in the Hilbert space
X.

Hence, taking into account equality (55) we have

Bo; = {(bOI’x‘-),(bgz,ZE)] = [/0 b1(y) sin(iry)dy, A ba(y) sin(;;"ry);ii] Lo, .“(64)

Now, we shall verify the relative V-controllability of dynamical system (57) with
boundary conditions (58).

First of all, let us observe that the linear operator Ay generates compact semigroup
T(t), for t > 0. Hence, since the space X is infinite—dimensional, then by Proposition
2 dynamical system (57) is never relatively exactly U-controllable and in consequence
it is never relatively exactly V—controllable.

In what follows we shall concentrate on relative approximate V—controllability of
dynamical system (57). In order to do that it is necessary to verify condition (54) in
Theorem 3. Taking into account the form of the vectors By;, i = 1,2,... given by
equality (64) we immediately conclude that condition (54) is satisfied if and only if

(/01 b1(y) sin(ivry)dy,)- (/01 ba(y) sin(iwy)dy) <0 for i=1,2,.. (65)

Therefore, by Corollary 7 dynamical system (57) is relatively approximately V-
controllable if and only if inequalities (65) hold.

Finally, it should be pointed out that for the case U = V = R? ie. for the

case of unconstrained controls, dynamical system (57) is relatively approximately U-
controllable if and only if (Klamka, 1991; Triggiani, 1976)

(bo1,xi)? + (boz, )2 #£0  for i=1,2,.. (66)

7. Conclusions

In the paper constrained controllability problem for linear abstract retarded dynamical
systems has been investigated. The retarded dynamical systems with distributed and
lumps delays in the state variables and defined in infinite-dimensional Banach or Hilbert
spaces have been considered using the general methods of linear operators and semigroup
theory. The structural properties of the solution both in the space X and in the state
space M, have been listed using the concepts and notations taken directly from the
functional analysis.

Next, several definitions of different kinds of controllability, as absolute (relative)
exact V—controllability or absolute (relative) approximate V—controllability have been
introduced. The relationships between these different types of controllability have been
explained using the notions of completeness and structural operators.
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In section 4 necessary and sufficient ‘conditions for absotute’ approximate V-
controllability have been formulated and proved. These conditions are generalizations
to infinite-dimensional case and constrained controls, the results given in (Son, 1990;
Szklar, 1985) and (Nakagiri and Yamamoto, 1989), respectively. As a very special case,
constrained controllability conditions for finite—dimensional case have been recalled.

Section 5 contains conditions for constrained relative approximate controllability for
various types of retarded abstract dynamical systems. Constrained relative approximate
controllability conditions for retarded systems with distributed delays in the state va-
riables and with lumped delays have been formulated and proved using some previous
results taken from the literature.

The last section contains simple illustrative example of dynamical system descri-
bed by partial differential equation of parabolic type and with Dirichlet type boundary
conditions and lumped constant delay, which is constrained relatively approximately
controllable.

The results presented in the paper can be extended to cover the case of linear abstract
retarded dynamical systems but with time—depended coeflicients.
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