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ON THE NUMBER OF ACTUATORS
IN PARABOLIC SYSTEMS

A. EL JAI*, S. EL YACOUBI*

Given a parabolic system defined on a bounded domain Q and excited by a finite
number of actuators, the purpose of this paper is to show that one actuator can
achieve the controllability of the system. The method is based on a perturbation of
the boundary of .

1. Introduction

Real systems are very often excited by a finite number of actuators. The actuators may
be of zone, pointwise or boundary type. If we consider the problem of steering the system
to desired given states (controllability problem), it can be shown that for zone actuators,
their number and structures can play an important role to achieve controllability (El
Jai and Berrahmoune, 1983a; 1983b; 1984; El Jai and Pritchard, 1987; 1988; Sakawa,
1974; Triggiani, 1975; 1976). This result was extended for the pointwise and boundary
cases by El Jai and Berrahmoune (1983a; 1983b; 1984), El Jai and Pritchard (1987;
1988). In these cases it was shown that the number of actuators must be greater than
the supremum of the multiplicity of the eigenvalues of the associated eigenvalue problem.

In this paper we shall point out the fact that there is a link between the geometry
of the domain © and the multiplicity of the eigenvalues. Then we focussed on a result
which shows that one actuator may be sufficient to achieve controllability if the domain
Q is replaced by * such that:

d(Q,Q*) <6
where d is an appropriate distance and §-a sufficiently small number.

2. Rank Condition

Let Q be an open bounded subset of IR™ with smooth boundary 0Q and consider
the following class of linear parabolic systems described by

%% —Ay= é)l gi(z)ui(t) 2x]0,T7Y
(SP) y(a:,O) - 0 Q
y=0 8% x10,T[
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with

g €L (), %CQ and %NQ; =0 if i #j, int(Q)#0 (1)
and

w €U =L%0,T), i=12.,p (2)

The system (S,) is assumed to be excited by p strategic zone actuators. We recall that
a zone type actuator is defined by a couple (Q;,g;) where Q; C Q is the support of the
actuator and g; € L%((;) is the spatial distribution of the action on ;. A strategic
actuator is such that the excited system is weakly controllable. For more details of these
concepts see (El Jai and Pritchard, 1987; 1988).

Let (pn;) be the sequence of eigenfunctions of the opera;:or —A  with homogeneous
Dirichlet conditions associated to the eigenvalues ),, and r, the multiplicity of A,.

—Apn; = Anpn;
(P) { pny=0 o0 3)
lenlP =1 ¥n,

then we have the following characterization:

Proposition 1. The sequence of actuators (Q4,gi)1<i<p 1is strategic for the system

(Sp) if and only if

(i) pzsupry (4)

(i) rank (G,) =r, VneIN (5)
where Gp is the matriz of order (pxry) defined by
(Gn)i,j = (gi) spnj)Lz(ﬂ;); i= 1)2) P and .7 - 17 27 T (6)

This result is proved in (Curtain and Pritchard, 1978; El Jai and Pritchard, 1987; 1988).
In the case of pointwise and boundary controls, the same characterization is valid but

one needs the controls to be more regular to achieve controllability in L2(Q) (EI Jai
and Berrahmoune, 1983a; 1983b; 1984).

Remark 1. It is well known that for every domain  such that the eigenvalues of
—Agq are simple we can achieve controllability by one actuator.

Remark 2. Let us consider the system (S,) in a bidimensional case with
Q =]0,a[ x ]0,b[. The eigenvalues of the problem (P) are given by
m?  n?
)\mn:—<—§—+-{;2—> w2 (7)

a
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We notice that A,,, — oo when m,n — oco. From algebra theory we know that the
multiplicity s of the solutions of the equation

X2 + Y2 —_ AZ
is such that s — oo when A — co.
So from (7) if a2/b? ¢ @, then obviously the multiplicity of A, is 1, but if a2/b? € Q,
then the multiplicity r, of A, issuch that r, — oo when m,n — co.
From this remark, the previous proposition shows that the actuators (€,gi)1<i<p, may

be non strategic ((Sp) weakly controllable) if p is finite for a certain domain €.

Example. We consider again the system (S,) with Q =]0,a[x]0,a[. By the previous

remark, the system is not weakly controllable for any integer p. But if we consider a
a

n++/2

”small” perturbation of the geometry of Q, with . =]0,a[x]0,a+¢[ and ¢ =

with n sufficiently large, then we have
a2 (n++/2)?

(a+e)?  (n+v2+1)?

and on €, one (p=1) actuator may be strategic.

¢Q

The aim of the following sections is to generalize the result of the previous example to
the case of more general but regular domains.

3. Actuators Number and Domain Deformation

In this section we shall see that by a ”small” change of the geometry of © it is possible
to ensure the weak controllability of the system (S,) with only one actuator.

Let € be an open bounded simply connected set in IR™ with smooth boundary 9.

Let 9 € C3(IR"), where C3(IR") = {¢ :IR® — IR"/D*% is continuous and bounded
on IR™ for |a] < 3}.
C3(IR™) is a Banach space normed by

Wlles = sup max {[[¢ ()], 0<i<3} ®)

where ¢ is the i-th derivative of .

Let us consider the problem (S,) with the Laplace operator Ag depending on Q

and let Ao be the first isolated eigenvalue of -Agq with multiplicity equal to m > 1.
It is always possible to consider an interval U such that U No(—Agq) = {Ae} where
o(—Agq) is the spectrum of —Ag.

3.1. Splitting of the Eigenvalue Aq

3.1.1. Definition of the Perturbed Domain ¢

In this section we show that it is possible to define, for € > 0 sufficiently small, a new

domain Q. = Q+ ey(£2) such that
TNno(-Ag,) = {A{“, A“}
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where /\?‘ is an eigenvalue of —Ag, with multiplicity‘equal to m; < m.
Consider the map F, :IR" — IR" defined by '

F.=1+4+¢y ] : (9)
Then for ¢ with compact support and ¢ small enough

1
supl|y/ ()|

le]l <& =

F. is a diffeomorphism of class €3 and then Q. = F (Q) is a domain obtained by a
perturbation of Q.

3.1.2. Definition of the Operator T'(e)

Let us consider the map:

v:u€ L*(Q) — y(v) =% € L¥(Q) with

u(z) = V/J (z)u(Fe(2)) ‘ (10)

where J denotes the determinant of the Jacobian matrix of F..

v is a topological and algebraic isometry. Denote by T'(¢) a selfadjoint operator in
L%(Q) such that

T(e)y = v(~Aa,) | (11)

hence (—Agq,) and T(e) = y(—Agq,)y~! are spectrally equivalent, i.e. they have the
same eigenvalues with the same multiplicities for |¢| sufficiently small.

Calculation of T'(¢)
We calcultate explicitely T'(e) defined in (11).

The scalar products and the corresponding norms in  L%(Q,) and H, = H}(Q.) will
be denoted by

(u,v)Lz(nl):/n u(z)v(z)dz, }ulzzf u?(z)dz A (12)

£ e

(= [ Y e = [ \;[M] (o

We have

(v, ), = (—Aq.u,v) 120, (14)
Since

(74, 7v)L2(0) = (4, v)L2(0,) (15)
and from (11) and (14) we deduce

(w,v)m. = (T8, V)r2)y (16)
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with
i=VJuoF, and 7=vJvoF. (1n
F.=I+¢ep and F7'=I+ex (18)

and then
s = ST BT ) o s

Consider the functions S;;(¢), K;(¢) and the operator D;(e) defined by

([ Sii(e) = 5= |65 4 e 26 0x;
St] (5) = ; I:fszk +€8:L‘k] [5115 + 661)];
_ 10logJ
Ki(e) = 35 (20
Di(e) = o+ Ki(e)
\ ’ - ay, ie
Using (16) and (19) we have
Va5 u 8 v
and, on the other hand, we have
-~ /T
\/—_.__ Vi \/" QM 1_0u_ -ow
\/— Oy; J Oy \/j
_ 3_u_ dlog T 7_ou laalc’g‘] _ ( o lalOgJ)ﬁ:Di(e)ﬁ
0y; Oy 8y 2 Ou dyi 2 Oy
which implies , »
(T'(e)u, V) 2(q) = /ﬂ > Sij(e)Di(e)uD;(e)o = (Z Sij(e)Di(e)u, D; (6)5)
i ¥ L@
This result can also be written in the form
(T(e)U, V) pagqy = (ES,] )D; (e) Di(e)d, v) (21)
L2(q)

where D} denotes the adjoint operator of D; with respect to the inner product in
L*(Q). Finally, we obtain

()i = 3 Sij(e) D} () Di(e)d (22)

i)j
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Analyticity of T'(e)

We shall study the analyticity of the map ¢ — T'(¢). We can proove easily that the
functions S;;(¢) and K;(¢) are analytical with respect to ¢ for |e| < £p. Then we
can write

Sij(e) = ZSg’)s" ‘ (23)
k
Ki(e) = DKVt (24)
k .
with
59 =8 P =0
57 = —%% - g—ﬁf KM = —%—(;)—z:(divgb) ()

Using (22)—(23) and (24) we obtain
T(E) = ZTkEk
k

with
Tt = (—Ag)d _ (26)

and

9% %) 8&] (27)

o= Lan@ivpyas 52 [
Tiu= 2Aﬂ(d1v¢)u+@zj 0y; [(5% * dy; ) Oys

Now the operator T'(¢) given by (22) satisfies the hypothesis of a classical theorem of
Rellich and Nagy (Nagy, 1946) given by

Theorem 1. Let T; be a sequence of self-adjoint operators on the Hibert space H, all
having the same domain D. Let Ao be an isolated eigenvalue of Ty with multiplicity
m>1 andlet U be an interval with U N o(To) = {Xo}. If we assume that there ezist
two positive numbers M and r such that

M

pim1

ITAI< = Iflle + 1 Toflle] V€D andi=1,2,-- (28)

which ensures the ezistence of the sum T(g) of the series
T(E) =Ty +eT) + 62T2 + E3T3 +---, (29)

then for |e| sufficiently small there exist m real values

AE) =X e+ 1<j<m (30)
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with /\g.o) = Ag and m elements of H

wi) =P +ewV 4+, 1<i<m (31)
where (a;ﬁ”,wﬁ”, e ,wﬁ,?)) is an orthonormal basis of the eigenspace assoctated to Mg
such that

Una(T(e)) = {Xj(e), j=1,2,---,m} (32)

Remark 3. Since 7T(¢) satisfies the hypothesis of the previous theorem we obtain the
following formula

(wie),wr(€)) g = bjx (33)

Ty (e) = X (6 () (34)
and

{T(e)w;(e), wi(e))a = djxAj(e) (35)

where (.,.) is the scalar product in H = H}(Q).

Spectrum of T'(e)

Consider the orthonormal system {w;,ws,...,wm} of the corresponding eigenspace of
Ao and let A = (p)1<ij<m be defined by:

pij = (~Thwi, wj) (36)

With the previous theorem, we have the following relations:
1. Using formulae (31) and (33) for j = k, we obtain

Z (wj(p),wg”)yzo for r>1
pte=r
and for j # k we have
Z (w](-p),w£Q))H:0 for r>1
p+e=r
2. From (34) we obtain
Z pr](.q) = E Agp)wgq) for >0
ptg=r ptg=r
3. From (35) we have

E (Tst(P))wlgq)) =6jkA§r) for r>0
prqts=r H
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and for » =1 this relation becomes

Z (Tsw,(p),w;(f))H - 5],“5_1)
pHet+s=1

= (T0f0) (Tl + (1), =)

— (leg-o),'w,(co))H + Ao ((wj(.o),wg))H + (wgl),wgcu))H) = 5]'1,)\5-1)

Finally with this formula we obtain
pij = (—Tw;, wj) = (—T1w£0)7w§0)> = ~8;; A
It is then clear that the eigenvalues of A are equal to (—/\;1)) with 1< j < m. Then

we have the following result (Micheletti, 1976):

Pi'oposition 2. If the eigenvalues of T(e) are all equal, then the eigenvalues of A are
also all equal. Consequently, if the eigenvalues of A are of multiplicity equal to 1, then
the A;(e) are also of multiplicity equal to 1.

Proof. If we assume that all the eigenvalues (;(¢)) of T'(e) (then of (—Ag,)),

1<j<m
defined in (30) are equal, then (Ag-r)) i< are also equal for r > 1. Particularly for
<jgm
r = 1, all the eigenvalues of the matrix A, i.e. (—)\5-1)) ~, are equal. [ ]
1<5<m

3.1.3. Theorem of Splitting of Aq

. . Ow; N
First, let us calculate the matrix elements p;; and let % be the normal derivative
v
of w;

Bwi Ow;
v grad w;.v Ek ayk Vi

and

Ow; Ow; Ow; Ow;
A(wiw;) = wibw; +wjAw; +2) L = _2howiwj + Y s
(s5) A — Jy Oyk 0its — Jyr, Oyk

pij = (=Twi,w;) L3y

0 [(0vr | O Owi] 1/ '
= -— — ikt vvr ) 1 A i .d
/Z oy [( oy + ayk) ayk] w;dy 2 nAn(d1v¢)w w;dy

Q%

Oy, ((?wi Ow;  Ow; aw,-) 1 / :
— e LV dy— = | Ag(divy)w;w,d
/n; oy \ Oy 0w | Oy om) ° 2 Q aldivyJuw;dy
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Ow; Bw; | Ow; 6wJ> / (6 w; 6w] 0%w; &ui)
..I_
/an ™ <<9yk Oy~ Oy Oy QZ% oy} oy + Oyf Oy

Kl
5% 52w
+¥k (awi Dwj | Ow; 0w )dy— %/ Agq(divip)wiw;dy
Q

Oy Oyidyr Oy OOy
/ (3(»1 6w1 Ow; B_wL> do
80 k7 Oy, Oy 51/1 Oy
Ow; Ow Ow; Ow
A i J l) / ( 1 ]> d
* O/ Ed)k (w Jayk o047 Oy Oy 7

BT/J)C (&ui 6wj) 1/ .
— 2L )dy—-= | Agp(d swid
/nk, By \ow ow ) VT 2 Jg aldivi)uiw;dy

Hence we obtain
Ow; Ow;  Ow; Ow; Ow; Ow
o= \NT i 0w | T 0% Owi 0W; | 4
& /m{f*”’“ 5o e 5 ‘;[;W’k] o0 ay,} ’

Ow; Ow; Ow; Ow;
di *——Ldy / [ i -—z]d
+/n( 1V'(/))Za By + o n; w B0 +w]3yk y

1 .
- / Aq(dive )wiw; dy
2 Ja
If 4, is the component of 1 with respect to the vector v, we have:

Yy :1—/; v= Z¢ka

k

and then
o Ow; Bw] awi Ow; (9w1 an
pij = f {Zwk [ R e ] Zw 5o (47 (37)
We can observe that the term
Ow;
}:wk o

is proportional to the derivative of w; with respect to the vector . Thus, in the case
where 9 is tangent to dQ and with the condition w;|,n =0 we obtain g;; =0 and
in the other case we can consider a function «(-) defined by

{wk(ﬁ)s v, €£€0Q -
¥y (€) = a(€)
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then we can reduce expression (37) to
_ Ow; Ow;
wi= [ ale)GaTde (39)

Remark 4. If ) is an eigenvalue of multiplicity m > 1 of Ty = —Ag and
{w1,w3,...,wnm} an orthonormal system of the associated eigenspace to Ay and if

all the eigenvalues of T'(g), Aj(e) = Y, Ag-k)ek with  A;(0) = Ag are equal for
every deformation of the domain 2, then for every % € C3(IR") we have the matrix
A= (Hijhigiggn = pl.

If «(€) denotes the component of 1(£) with respect to the normal vector v to 0Q,
there exists at least one 7 # j such that p;; # 0 and then A # pI. The reason for this
30),' an'

comes from the fact that ———2 is a continuous nonzero function on 9.

ov ov
We have the following theorem of splitting of the eigenvalues:
Theorem 2. Let
o Q be a bounded domain of class C® in IR™,
e )Xo an eigenvalue of the operator —Agq of maultiplicity m > 1,
and
e U be an open bounded interval such that U Na(—Aq) = {Xo},

then there exists, a function 1 € C3(IR™) and &9 > 0 such that, setting F, = I + ey
and Q. = Fy(Q) for |e| < €o, the set U No(—Aq,) is given by a finite number of
distinct eigenvalues {A,)5,...,Ai} where i > 1 and each of these eigenvalues has
multiplicity r; > 1 and Ej.zl ri=m

3.2. Extension to All the Eigenvalues of —Aq

Let us consider now the space F3 defined by

diffeomorphism f/f = I+ with ¢ € C}(IR™)
F3={ and (40)
|4 (z)|| — 0 when ||z|| — oo, i=1,2,3

where ¥() denotes the i-th derivative of 1.
Then we have the following result (Courant and Hilbert, 1962).

Definition 1. Consider the decomposition in the group (F3,0) of F and F~!

F=(I+fa)o---o(I+fi) where n€IN is given (41)

Fl=(I4g.)o---0o(I+g1) where n €N is given (42)
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and let
d(I,F) = ijngIIfillcs +i;1,f2|lgfllcs (43)
'i=1 7 =1
d(F,G)=d(I,Go F71) (44)

then formula (43) defines a metric in F3 and (F3,d) is a complete metric space.

Consider now

G={FecFF(Q)=Q) (45)
and

A={Q cR™/3F € F* with Q' =F(Q)} (46)
(A,d) is a complete metric space where d is the Courant metric defined by

d(Q1,0) = inf d(FioG,Fyo0) (47)

G,Geg

where

Q1 =F(2) and Q= F(Q) (48)

3.2.1. Construction of the Sequence ()

Proceeding now as in the last paragraph in order to find a domain Q* such that all the
eigenvalues of —Agq« are simple, we obtain (Micheletti, 1976).

Lemma 1. Let Q be an open bounded subset of IR™ with a smooth boundary 0Q and
let {er}r>0 be a sequence of positive numbers. Then there exist:

(i) a sequence {Fi}r>o of diffeomorphisms in C*(IR"),
(i) a sequence {Qi}r>o0 of open bounded subsets of IR™ with Qo =,

(i) a sequence {Ux}r>o of open bounded intervals with UpNU, =0 if p#q
such that

1. Qp = Fp(Qe-1),
2. “Fk — I“Ca < €,
3. M* e Uro(—Agq,) for i>0.
Let us consider the sequence {Qi}r>o defined in the last lemma and consider now the
sequence
.;tk =FkOFk_1O---OF1
We have then
Qr = Fe(Q)
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3.2.2. Convergence of the Sequence (1)
Lemma 2. The sequence {Fi}li>o converges to F* in the complete metric space
{F3,d} if we take

1
e =1°  with 0<r<7

The above lemma is proved in (El Yacoubi, 1990).
We consider now the domain Q* = F*(Q), then we have

Theorem 3. If Q s an open bounded domain of IR", then there ezists a
domain Q* € A such that all the eigenvalues of the operator —Aq« are of multiplicity
rn=1VYn.

Proof. Since the map
A—TR
Q— A0

is continuous, we have

Qk(ﬂ,)g* when k£ — o0 = A?"——))\?‘ when k — o0

If we assume that there exists 7 # j such that

Q' _ y0*
AL =
then
7,' ﬂﬁj 7{—' )
and this is not possible by the previous lemma. [ ]

3.3. Controllability Problem

Let us consider the system (S,) defined on the new domain Q* obtained by a small
perturbation of Q as defined in the previous section.

G- ay= i‘l gi()ui(t) @ x]0,TY
y=0 89* x 10,7

Then we have the following result (El Yacoubi, 1990):
Proposition 3. The system (S;) is weakly controllable by p =1 actuator (0, g0)
with Qo CQ* if and only if

(90, Pn)L3(a0) # 0 Vn

where (pn) are the eigenfunctions associated to the eigenvalues (A,) with homogeneous
Dirichlet boundary conditions on Q* (solutions of (3) on Q*).

For the proof we use Proposition 1 and Theorem 3.
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Remarks

o If we consider the problem (P) with Neumann boundary condition, then the same
result can be achieved.

e For more general elliptic operators than (—Ag) the results can also be extended.

e No numerical results have been developed for this problem but it is clear that for the
case of a simple geometry we can decide easily for a modified domain which ensures
the result.

o These results are also valid in the case of pointwise actuators or boundary actuators.

e The previous results can be applied to the observability of the system (Sp) aug-
mented with an output

2(t) = Cy(.,1) (49)

where the operator C designates the sensors structure. As the observability rank
condition is of the same type as the controllability one (EI Jai and Pritchard, 1987;
1988), the system (S,) — (49) can be made observable by means of one sensor.

4. Conclusion

In this paper we have used theoretical results of domain deformations for the control-
lability problem of a parabolic system. From these results we obtain a new domain on
which the spectral problem (P) gives eigenvalues of multiplicity equal to one. Then, the
characterization result of controllability leads to a possible controllability by means of
one actuator.
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