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OPTIMAL CONTROL OF HYPERBOLIC SYSTEM
WITH TIME LAGS!

ApaM KOWALEWSKI*

In this paper an optimal distributed control problem for a hyperbolic system in
which time lags appear in the state equation and in the boundary condition simul-
taneously is considered. The necessary and sufficient conditions  of optimality for
the Neumann problem are derived making use of Lions’ scheme.

1. Introduction

Various optimization problems associated with the optimal control of distributed — pa-
rameter systems with time lags appearing in the boundary conditions have been studied
recently by Wang (1975), Knowles (1978), Wong (1987), Kowalewski (1987a; 1987b;
1988a; 1988b; 1988c; 1990a; 1990b; 1990c; 1990d; 1991), and Kowalewski and Duda
(1992).

In this paper, we consider an optimal distributed control problem for a linear hy-
perbolic system in which time lags appear in the state equation and in the boundary
condition simultaneously. Such an equation in a linear approximation constitutes a uni-
versal mathematical model for many processes in which transmission signals are sent at
a certain distance with the electric, hydraulic and other long lines. In the processes men-
tioned above time delayed feedback signals are introduced at the boundary of a system’s
spatial domain. Then, the signal at the boundary of a system’s spatial domain at any
time depends on the signal which escaped earlier. This leads to the boundary conditions
involving time lags.

The sufficient conditions for the existence of a unique solution of the hyperbolic
lag equation with the Neumann boundary condition involving a constant time lag are
proved. The performance functional has a quadratic form. The time horizon is fixed.
Finally, we impose some constraints on the distributed control. The necessary and suffi-
cient conditions of optimality with the quadratic performance functional and constrained
control are derived for the Neumann problem. The flow chart of the algorithm which
can be used in the numerical solution of certain optimization problems for distributed
parameter systems with time lags is also presented.
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2. Preliminaries

Consider now the distributed—parameter system described by the following hyperbolic
equation

% +AQ) Y +b(z, ty(z,t—h)=u z€Q, te(0,T) (1)
y(z,t') = Bo(z,t") r€Q, t' €[-h,0) (2)
y(z,0) = yo(z) z el (3)
Y (,0) = yi(x) z € (4)
;Ti =c(z,t)y(z,t —h)+ v - z€el, te(0,T) (5)
y(z,t') = Wo(z,t") z €T, t' €[~h,0) (6)

where Q@ C R" is a bounded, open set with boundary T', which is a C® - manifold of
dimension (n —1). Locally, Q is totally on one side of T.

y=y(z, tu), u=u(z,t), v=v(z,t), Q=0x(0,T)
@:ﬁx[O,T}, Qo =0x[-h,0), E=Tx(0,T), Tg=Tx[-h,0)

b is a given real C* function defined on Q; ¢ — a given real C* function defined on
X; h - a specified positive number representing a time lag; ®, - an initial function
defined on Qp; ¥y — an initial function defined on X;.

The operator A(t) has the form

_ N 0y(z,1)
Atw=-3 5 (562,075, ) (7)
and the functions a;;(z,t) satisfy the following conditions in @ = Qx (0,7)
Zam(iﬂ,t)%%ZaZS"?; a >0, V(x)t)ea; SO;ER (8)
ij=1 - i=1
a;;=a; Vi, 9)

where a;;(z,t) are real C* functions defined on @ (closure of Q).
It is easy to notice that equations (1)-(6) constitute the Neumann problem. The left—
hand side of the Neumann boundary condition (5) is written in the following form

Oy _ Z aij(z,t) cos(n,zi)g%%? = q(z,t) (10)

Ona 53,
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where 8y/07, is a normal deriviative at T, directed towards the exterior of ; cos(n, z;)
~the i-th direction cosine of n, n-being the normal at I' exterior to Q;

g(z,t) = c(z,t)y(z,t — h) + v(z,t) (11)

First we shall prove the existence of a unique solution of the mixed initial-boundary
value problem (1)—(6). We shall consider the case where control u belongs to H%!(Q).
For simplicity, we shall introduce the following notations

T=Kh where K — a positive integer
L =((j—1)h,jh), Q;=9xI;, £;=TxI for j=0,1,..,K

The existence of a unique solution for the mixed initial-boundary value problem (1)-(6)
on the cylinder @ can be proved using a constructive method, i.e. solving at first
equations (1)—(6) on the subcylinder @; and in turn on @3, etc. until the procedure
covers the whole cylinder @. In this way, the solution in the previous step determines
the next one.

Using Theorem 3.1 of Lions and Magenes (1972, v.2, p.103), the following lemma
may be proved. '

Lemma 1. Let

ue H*Y(Q) . (12)

fi € H"Y(Qj) (13)
where

fi(z,t) = u(z,t) — b(z,)yj-1(z,t — h)

G € H¥3I7(z)) (14)
and

gj(z,t) = c(z,t)yj—1(z,t — h) + v(z,1t)

yi-1(, (4 — 1)) € H*(Q) (15)
yi-1(, (G — 1h) € H¥*(Q) (16)
and the following compatibility relations be fulfilled
Oy;— . .
S (@, (j— 1)) = gj(2, (i = DR) on T (17)
Ona ’

%(x,(]’ — 1)h) + (%(5%)) Yi-1(2,(j — Dh) = %@U(r,(i— Dh) on T (18)

Then, there exists a unique solution y; € H>2%(Q;) for the mized initial-boundary
value problem (1), (5), (15), (16).
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Proof. For j=1, yj1 (:L‘t—h) do(z,t —h) and y;j_1 (:vt—h) Uo(z,t — h)

respectively. Then, a.ssumptlons (13),(14),(15) and (16) are fulﬁlled if we assume that
do € H2%(Qo), v € H3232(%) and ¥, € H323/%(L;). These assumptions are
sufficient to ensure the existence of a unique solution y € H?%(Q;) if yo € H%(Q),
y1 € H3%(Q) and the following compatibility conditions are satisfied

8y0 (z 0) = q1(=, 0) | on T (19)

ggi( ,0)+ (3 (63;1)) Yo(z,0) = gtql(:c 0) on T (20)

In order to extend the result to @, it is necessary to impose the compatibility
relations

%(I,h) = ¢a(z,h) on T 1)

%(m,h) + (% (%)) Yo(z,0) = %qz(z,‘h) on T (22)
and it is sufficient to verify that

fa € HOXQ,) -

n(-, k) € H3(Q) (24)

Y (-, h) € H¥*(Q) 5)
o € ) (26)

First, using the solution of the previous step and condition (12) we can prove immediately
condition (23).

To verify (24) and (25) we use the fact (by Proposition 3.1 of (Lions and Magenes,
1972, v.2, p.100)) that the function w; has the following properties.

wy € L2(Ly; HA(Q)), v} € L*(L; HA(Q)), w)’ € L*(Ly; H°(Q))

Then, from Theorem 3.1 of Lions and Magenes (1972, v.1, p.19) it follows that the
mappings t — wy(-,t) and t — w)(-,#) are continuous from [0,k] — H?*(Q) and
[0,h] — H3/%(Q), respectively. Hence, wi(-,h) € H*(Q) and wi(-,h) € H3/%(Q). But
from Section 3 of Lions and Magenes (1972, v.2, p.99) it follows that wy(-,k) = y1(+, k)
and w)(-,h) = y1(+, k). From the preceding results we can deduce that y;(-,h) € H? (Q)
and yi(-,h) € H3/2(Q) Again the trace theorem of Lions and Magenes (1972, v.2,

p.9) w € H??(Q,) implies that y; — y1| is a linear continuous mapping of
H2%(Q,) — H??3?(%;). Thus, y1I € H3?% 3/2(2 ). Assuming that ¢ isa C*
1

function and v € H3/23/2(%), condition (26) is fulfilled. Then, there exists a unique
solution y; € H?2(Q,). We shall now extend our result to any @Qj, 2<j < K.
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Theorem 1. Let 1y, yr, ¢o, Yo, v and u be given with yo € HQ),
yr € H32(Q), ¢o € H¥2(Qo), ¥o € H3/232(Zg), v € H3?3/2(T), u € HOY(Q) and
the compatibility relations (19), (20) be fulfilled. Then, there ezists a unique solution
y € H»*(Q) for the mized initial- boundary value problem (1)-(6) with y(-,jh) € H*(Q)
and y'(-,jh) € H3?%(Q) for j=1,.. K.

3. Problem Formulation. Optimization Theorem

Now we shall formulate the optimal control problem in the context of a case where

u € H%Y(Q). Let us denote by U = H*!(Q) the space of controls. The time horizon
T is fixed in our problem. The performance functional is given by

2 2
I(u) = X\ Lly(m,t;u) - zdl dz dt + Aguul Ho(Q) (27)
where X; >0 and .A\; + Az > 0; z5 is a given element in L*Q) and
2 T T/0u du 92
‘ = dt —, = dt = - — t
“u‘ HO1(Q) _/0 <u’u>L2(n) +/0 < ot’ ot >L2(n) /Q[( atz)”] udzd
A%\ at '
vuen(Z) £ {uiue FOT @), uz,0) = (1) =0} (29
Finally, we assume the following constraint on controls
u € U,y is a closed, convex subset of U (29)

Let y(z,t;u) denote the solution of (1)-(6) at (z,t) corresponding to a given
control u € Ujgq. We note from Theorem 1 that for any u € U,q performance
functional (27) is well-defined since y(u) € H>%(Q) C L*(Q). The solution of the
stated optimal control problem is equivalent to the search for an - ug € Usq such that
I(uo) < I(u) V u € Usa.

From Lion’s scheme (Theorem. 1.3 of (Lions, 1971, p.10)) it follows that for A; >0
a unique optimal control wu, exists; moreover uo is characterized by the following
condition

I'(ug)(u—up) >0 Vu€Uu (30)

. Using the form of the cost function (27) we may express (30) in the following form

M / (y('uo) - Zd) (y(u) — y(uo))d:c dt + /\2<u0, u— u0> >0 VueUyg (31)
Q » : H>Y(Q)

To simplify (31), we introduce the adjoint equation and for every u € Uag we define
the adjoint variable p = p(u) = p(z,t;u) as the solution of the following equation

32;;(21!) + A(t)p(u) + b(z,t + h)p(z,t + h; u) = A (y(u) — 24)

z€Q, te(0,T—h) (32)
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5261;(2 u) + A)p(u) = At (y(u) — z4) teQ, te(T-hrT) (33)
p(z,T;u) =0 reQ (34)
Pz, T;u)=0 r € (35)
56”;“)(3 t)=c(z,t+h)p(z,t+ h;u)  z €T, te(0,T—h) (36)
ool , _

oy (1) =0 €T, te(T—hT) (37)

where
Op(u) v NIO)
a (z,1) —'_;1 aij(, ) cos(n, 2;) 2 oz, (z,t) (38)

It is easy to prove the following lemma.

Lemma 2. Let the hypothesis of Theorem 1 be satisfied. Then, for a given zq € L%(Q)
and any u € H®Y(Q) there ezists a unigue solution p(u) € H4(Q) for (32)-(37).

We simplify (31) using the adjoint equation (32)—(37), multiplying both sides of (32)
and (33) by (y(u) — y(uo)), then integrating over Qx (0,7 —h) and Qx (T — h,T),
respectively, and then adding both sides of (32) and (33) we get

M ]Q (u(wo) = 2a) (y(u) — y(uo)) da e
= [ (Z52 + 010) (s0) - vlao)) do
/T h/ b(z,t + h)p(z,t + h;uo) (y(z, ¢t u)—y(z’,t;uo))dxdt (39)
/ (u)&z( y(u) - (uo))dxdt+/ A)p(uo) (y(w) — y(uo))dz dt

T—h
+/0 Lb(z,t + h)p(z,t + h; uo) (y(z, t; u) — y(z,t;uo))dx dt

Using equation (1), the first integral on the right-hand side of (39) can be rewritten as

/(; uo) ETP (y ug))dz dt

= / p(uo)(u — ug)dz dt — / p(uo) At) (y(u) — y(uo)) dz dt
Q Q
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/ / p(z,t;uo0)b(z,t) (y(z,t — hyu) — y(z,t — hyuo))dz dt (40)
= / p(uo)(u — ug)da dt — / p(up)A(t) (y(u) — y(uo))d:c dt
) Q Q
T—h _
- /;h l‘/Q.p(z,t' + h;uo)b(z,t' + ) (y(z,t';u) — y(z,t'; uo))dz dt’

Using the Green’s formula, the second component in (39) can be written as

/ A(t)p(uo) (y(u) — y(uo))da dt = / p(u)A(t) (y(u) — y(uo))dz dt
Q Q

/ / Pl 69(“). ag(nA)]dth— /0 Fap(”") [v(w) - w(uo)]drar (1)

Using boundary condition (5) the second integral in the right-hand side of (41) can be
expressed as

/0 _Lp(uo)[agéj) - Z;A)]dl‘dt

T -
= / /p(z;t; uo)-c(zjt) [y(z,t - h; u) - y(m,t - h; U())] dF dt (42)
0 r

T—h v
= / /p(:c,t’ + h;uo)e(z,t' + k) [y(m,t’; u) — y(z,t'; ’U.())] drdt’
-h Jr

The' last component in (41) can be rewritten as

/ / 31;1;:0) (ug dI‘dt / o Fags;f)[ (u) - (uo)]drdt
N

Substituting (42), (43) into (41) and then (40), (41) into (39) we get

N (a0 26) (o) — () e
= [ pluo)(u— uo)dedt ~ | plus)A(H)(u(w) - y(wo))da dt
Q ) Q

_ /0 / b(z,t + h)p(z,t + h;uo) [y(z,t; u) —‘y(z,t;uo)] de dt
—-nJo
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T—h
_/ / b(z,t + h)p(z,t + h; ug) [y(:c,t;u) —y(z,t; uo)] dz dt
0 Q

+ /Q p(uo) A(t) (y(u) — y(uo))d= dt

+/;h [‘ c(z,t+ h)p(z,t + h;uo)(y(z,t;u) — g)(z,t; ug))dl dt (44)
T—h

+./0 /FC(z,t + h)p(z,t + h; uo)(y(x,t; u) — y(z, t; uo))dF &

T Op(uo)

T
= [ [ [y, t50) - oty v

T—h
+/ / b(z,t + h)p(z,t + h;uo) (y(z,t; u) — y(z,t;u0)) dz dt
0 r

= / p(z,1; uo)(u — ug)de dt
a

Using formula (28) and substituting (44) into (31) gives

L[p(uo) + A (1 - %25) uo] (u — up)dzdt >0 (45)
Vue Uy
VYue D(gtiz) E {u ru € H*(0,T; L3 (), u(z,0) = u'(z,T) = 0}

Theorem 2. For problem (1)-(6) with cost function (27) with 24 € L*(Q) and A3 >0
and with constraints on controls (29), there exists a unique optimal control ug which
satisfies condition (45).

We must notice that the conditions of optimality derived above (Theorem 2) allow
us to obtain an analytical formula for the optimal control in particular cases only (e.g.
there are no constraints on controls). This results from the following: determination of
the function p(z,t) in the maximum condition is possible from the adjoint equation if
and only if we know yo which corresponds to the control wug.

These mutual connections make practical use of the derived optimization formulae
difficult. Thus, we resign from the exact determination of the optimal control and we
use approximation methods.

In the case of performance functional (27) with A; > 0 and Ay = 0, the optimal
control problem is reduced to minimizing the functional on a closed and convex subset in
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a Hilbert space. Then, the optimization problem is equivalent to quadratic programming
which can be solved by the use of the well-known algorithms, e.g. Gilbert’s (1966). In
this case we can show the calculation procedure on the flow chart (see Fig. 1).

The practical application of Gilbert’s algorithm to an optimal control problem for a
parabolic system with boundary condition involving a time lag is presented in Kowalewski
and Duda (1992). Using Gilbert’s algorithm, a one-dimensional numerical example of
the plasma control process is solved.

Start

Date — in
,UO

, & 1=

T
Y

7+ Solving the
system of equations

i=t+1

Computing 7 from the
maximum condition

o' Looking for

the point y* -
using Gilbert’s vy =y
algorithm

Solving the

adjoint equation y

The end of computing
o° — an arbitrary initial control (¥° € Ua4)

llv* = za]| = A - an error in the i-th iteration

Fig. 1. The flow chart of the algorithm which can be used in the numerical
solving of optimization problems for distributed systems.
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4. Conclusions

The results presented in the paper can be treated as an extension of the results obtained
by Kowalewski (1988b) onto the case of additional constant time lags appearing in the
state equation.

In this paper we have considered the optimal hyperbolic system where time lags
appear both in the state equation and in the Neumann boundary condition. We can also
derive conditions of optimality for a more complex case of such a hyperbolic system with
the Dirichlet boundary condition.

We can also obtain estimates and sufficient conditions for the boundedness of solu-
tions for such a hyperbolic system with specified forms of feedback control.

Finally, we can consider a more complex case of optimal boundary control for a
hyperbolic system in which constant time lags appear in the state equation and in the
boundary condition simultaneously.

The ideas mentioned above will be developed in forthcoming papers.
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