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STABILIZATION FOR
NONLINEAR INTERCONNECTED SYSTEMS!

ZHENG-ZHI HAN, FENG GAO, ZHONG-JUN ZHANG*

The problem of decentralized stabilization for nonlinear interconnected systems co-
upled in the general form or, particularly, coupled in the lower triangular form are
investigated. The Lyapunov-Like conditions of stabilization for these interconnec-
ted systems are established, and the decentralized feedback laws for stabilization
are presented.

1. Introduction

In the 1970s the problem of stability of nonlinear large scale systems attracted much
attention. A lot of research papers were presented and a great deal of criteria for the
stability of nonlinear large scale systems were established. Among many significant achie-
vements, the contribution of Michel and Miller (1977) is outstanding. For the nonlinear
large scale systems in the general interconnected form, they established many criteria
so that one may judge whether or not a nonlinear large scale system is stable from the
properties of Lyapunov functions of its subsystems (Michel and Miller, 1977). For the
nonlinear large scale systems in the lower triangularly interconnected form, they verified
that stability of subsystems implies that large scale systems are stable if coupling func-
tions satisfy certain requirements (Michel et al., 1978). Their work laid a foundation for
further investigation. As a matter of fact, the major results obtained in the 1970s were
established on such a foundation.

However, the results of stabilization for nonlinear large scale systems obtained in the
1970s are not satisfying. It seems that the works carried out at that time were limited
to the analysis of stability.

In the last decade, the research of stabilization for nonlinear systems was developed
‘at speed. Many new stabilizing techniques have been présented, such as the method
of center manifold (Aeyles, 1985; Pan et al, 1990), factorization of nonlinear systems
(Verma, 1988) and relaxed controls (see e.g. Artstein, 1983; Sontag, 1989a; 1989b;
Tsinians, 1989). It seems that the technique of relaxed controls is more powerful than
others, since it may stabilize some nonlinear systems which cannot be stabilized by
smooth feedback (Sontag, 1989a). There is a number of contributed papers dealing
with such a control technique. . For instance, Artstein (1983) established a background
of relaxed controls, Tsinians (1989) and Sontag (1989b) presented two types of relaxed
feedback designs, a good survey was done by Sontag (1989a). These achievements make it
possible to investigate the problem of decentralized stabilization of nonlinear large scale
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systems. In (Han et al., 1992) the authors applied decentralized relaxed feedbacks to
locally stabilize nonlinear large scale systems. This paper will apply such feedbacks
to globally stabilize these systems. The outline of the designing scheme is that we
design decentralized relaxed feedbacks such that every subsystem satisfies the conditions
established in (Michel and Miller 1977, Michel et al., 1978), then the theorems proposed
in (Michel and Miller, 1977; Michel et al., 1978) guarantee the stability of these nonlinear
large scale systems.

This paper is organized as follows: Section 2 gives preliminaries, including notations
and necessary lemmas. In Section 3, we deal with the problem of stabilization of nonlinear
large scale systems in the general interconnected form. The stabilization for those with
the lower triangular interconnection is treated in Section 4. Final comments are given in
the last section.

2. Preliminaries

In this paper we consider nonlinear large scale systems of the form

T; = f,'(l‘i,t) + -]?i(:c,t) + g;(:c,',t)ui tEV (1)

where v = {1,2,...,v} and =7 = [z],...,2T]. Equations (1) may be considered as a
1 v

large scale system interconnected by v subsystems:
z; = fi(=i,t) + gi(zi, t)u; i€v (2)

with the coupling functions f;(x,#). In (1) and (2), = € IR® and u; € R™  are
sald to be the state and input vector of the i-th subsystem, respectively; g¢;(z;,t) =
[gi1(zi,1), ..., gim;(2;,1)] is an n xm; matrix whose elements are assumed to be smooth
functions for all z; € IR® and ¢t € T where T = [to,t1] for some t; > ty > 0.
If uj =0 forall : € v, then the i—th subsystem is called a free subsystem, the word
free means that this subsystem is not constrained. Let n = Z? 1 Mi. Suppose for all
i€ev f; . R*"xT —IR™ and f IR"* x T — IR™ are smooth vector——value functions.

It is well-known that the interconnected system (1) corresponds to a directed graph
(Michel et al., 1978). If the directed graph is not strongly connected, then it can be
decomposed, into an interconnection of some strongly connected components with the
interconnection having lower triangular form, a program has been presented in (Michel
et al., 1978) to fulfil such a decomposition. The interconnected systems in lower triangular
form are described by

-1

fz z;,t Z 1'], +gz(zn ) i iEV (3)

where 7”- :IR™ xT — R™ are smooth vector-value functions for all 0 < j < ¢ and
for all i € w.

Assume that the origin of IR™ is the unique equilibrium of both interconnected
system (1) and system (3), i.e. for (1) we suppose f;(0,t) =0 and f;(0,t) =0 for all
t €T, andfor (3), f;(0,t)=0 and f;;(0,t)=0 forall teT.
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Let
u; = ¥;(zi,t), and ¢;(0,t)=0 forall teT, i€v 4)

Equations (4) are decentralized feedbacks of (1) or (3). The feedbacks are said to be
almost smooth if, for all i € v, ¥; are continuous for all (z;,t) € R™ x T and smooth
for all (z;,t) € (IR™ \ {0})x T. Closing (1) or (3) by feedbacks (4) yields

& = fi(zi,t) + fi(z,t) + gi(zi, )i(zi, t) i€V (5)
or
i-1
z; = fi(zi 1)+ Efij(ﬁj,t) +gj(zi, )i(zi,t), i€w (6)
j=1

Let IRt = [0,00). A function ¢ : Rt — R* is called of class K if ¢ is
continuous, strictly increasing and ¢(0) = 0. If in addition lim ¢(s) = oo, then ¢ is
called a function of class KR.

Let ||| denote Euclidean norm in R", ie. if =T

1
2
lzll = (Thea2?)
For the sake of convenience, we state some lemmas and their proofs are omitted and
referred to the corresponding references.

= (z1,..,&,) € IR", then

Lemma 1. (Michel and Miller, 1977): If for every i € v there exzists a continuous
differential function V; : IR™ x T — IR¥ and functions ¢;1, ¢i2 € KR, ¢i3 € K, such
that

1. qb,l(”.’m”) < I/i(;ci,t) < (f)iz(”.’L'iH) for all (Ei,t) e R™ XT;
2. VVi(zi,t)- fi(zi,t) < oidiz(||zi]|]) for some o: € R and for all (z;,t) e R™ x T}

3. VVi(zi, 1) Tolet) < [BiallzalN? (3 asbsslzs D)
for some a;; €IR, j € v, and for all (z,t) € IR]” x T

4. There exists a vector al = (a1,...,a,) with o; >0 for all i € v, such that, the
matriz S = (sij) specified by’

a;(o; + aii) for i=7j
5(%‘%’ + aja;i) for i# ]
is negatwe definite.

Then, when wu; = 0 for all i € v, the interconnected system (1) is globally
asymptotically stable. : .

Remark 1. If conditions (3) and (4) are replaced by the following ones:

(3') There exist almost smooth functions a;;(z,t) i j € v, such that

Vil ) Filo,8) < [Bealllail])] (Zm;(z Dlgsa(lle; D)
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(4') There exists a vector a = (ay,...,a,) with o; >0 i€ v and € > 0, such that,
the matrix S(z,t) + €l is negative definite where S(z,t) = (s;;(z,t)) and

a,'[a';-}-a,-j(x,t)] i :j
Sij = 1 .,
’2‘[asaij($,t)+aj“ji("”t)] i#]

Then, the conclusion of Lemma 1 still holds.

Remark 2. In Lemma 1 and Remark 1, it is not required that the subsystems are stable,
i.e. it is not assumed that o; < 0.

Lemma 2. (Michel et al., 1978) If for every i € v there ezists a continuous differential
function V; : IR™ xT — IRY and functions ¢;1, ¢in € KR, ¢i3 € K, such that for all
(2:,t) € R™ x T, the following requirements are satisfied simultaneously

L aleal) < Viles,8) < dellosl;

2. VVilai,t) e, ) <~

3. lim|[VWi(e, )/ il = 0

=l —o0

4. For every 0 < j < i and for every i € v, there exists a function ¢;; € K, such
that

IF35(z5, Ol < @i ll2s1)

Then, when u; = 0 for all i € v, the interconnected system in the lower triangular
form (8) is globally asymptotically stable.

Lemma 3. (Sontag, 1989b) Let a(z) and b(z) be almost smooth functions with the
following properties:

1. b(0) = a(0) = 0;
2. a(z) <0 forall £ #0 such that b(z) =0.
Then, the function k(z) is almost smooth where
a(z) + Vd?(z) + b¥(2)
b(z) = o) for b(z)#0
0 for b(z)=0

3. Decentralized Stabilization for Interconnected Systems

In this section, the problem of stabilization of interconnected systems (1) by decentralized
almost smooth feedbacks (4) is studied. To begin with we give the following definition.

Definition 1. If there exists an almost smooth function V; : R™ xT — IRt and
almost smooth functions ¢;1,¢;2 € KR and ¢;3 € K such that
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(1) dar(llz:ll) < Vi, t) < da(lles]]) forall (zi,) € R™ x T}
(2) For all (zi,t) € R™ xT if VV(zi,t)-g(z;,t) =0, then
VVi(zi, t) - fi(wi,t) < oidiz(||2:i])
for some o; € R. .
Then, we say that the i~th subsystem has a controllable Lyapunov function V;(z;,t).

The first condition of Definition 1 implies that V;(z;,t) = 0 iff z; = 0. In
Definition 1, we do not require that o; is a negative constant. If the i~th free subsystem
is globally asymptotically stable, then it has a Lyapunov function Vi(zs,t) with o; < 0.

Theorem 1. If the interconnected system (1) satisfies the ‘conditions that

(1) Ewvery subsystem has a controllable Lyapunov function Vi(zi,t);
(2) For every i € v, there exists a;; € IR, for all j € v such that

VVi(zit) - Fulz,t) < [Bas(ll])] (Zaij[qﬁjs(llell)]%)
j=1

(3) There emists a vector of = (ai,...,ay) with a; >0 for all i € v such that the
matric S = (si;) specified by
ai(o; + ai) forall i=j and i,jE€V
Si]' = 1

i(aiaij + ajaj;) forall i#j and i,jEV

1s negative definite.
Then, there ezist decentralized almost smooth feedbacks (4) such that the intercon-
nected system (5) is globally asymptotically stable.

For the sake of simplicity of notations, Theorem 1 is only verified for the case of
v = 2. Indeed, the general case can be proved in the same way.

Proof of Theorem 1 (for the case of v = 2):
Consider the following system

mi
(.81 = fl(wl’t) +.—fl(ml: :L'z,t) + Zglj(iﬂl,t)ulj
. i) Y
&y = fo(ea,t) + Falz1, 22, 1) + ) _g2j (32, t)us
j=1

Unlike (1), gi(®:,t)u; is now written in the form of Y., gij(®i,t)uij. Let us
introduce the following notations:

ai(:r,',t) = VV,‘(:L‘,',t) . fi(a}i,t) for all : ev
b,-j(:ci,t) = VV,'(:L';',t) . gij(:ni,t) forall 7,j ev

v (8)
Bi(zi,t) = Zb?j (zi,t) forall i€wv
j=1
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From the hypotheses about V;, fi and g;;, it is easy to see that a;, b;; and g;
are almost smooth functions. By condition (2) of Definition 1, we have a;(z;,t) <
oi¢ia(||zil]) for all (z;,t) € IR™ xT such that B;(z;,t)=0.

We write feedbacks (4) in the component form, i.e. Vi(zi,t)
[1/),-1(:1:;,t),..., ¢,~m‘(a:1-,t)]T. Define u;; = 9;5(zi,t) as follows:

—0ij(@; (23 ¢ +\/c2(x“ ) + B (i, 1) if B;(x;
bty = { D ) FAEDED

0 if Bi(zi,t)=0

where c;(2i,t) = ai(zi, t)—oidis(||zi]]). As ai(wi,t), bij(zi,t) and Bi(zs,t) are almost
smooth, sois t;;(z:,t). Moreover, ;;(0,) =0 as §;(0,t) = 0. Hence, u;; = vij(zi,t)
is an almost smooth feedback.

Now consider the closed loop system described as

#1 = fi(zq,8) + Zylj(fb'l, 1 (21, t) + fi(z1,22,1)
Uiy (10)
&y = fa(xa,t +2923(w2,t)¢21($2, t) + fo(e1, 22,1)

i=1
Equations (10) may be regarded as a system interconnected by the free subsystems
m;
& = fi(@i,t) + Zgij(%t)l/)ij(xi,t) for i=1,2
ji=1

with the coupling functions f;(z1,2s,t) for i=1,2.

We now check that the conditions of Lemma. 1 are satisfied for (10). By Definition 1,
the first condition of Lemma 1 is obviously satisfied. For the second condition of Lemma 1,
we first consider the case of G;(z:,t) # 0, it yields that

VV(:B,,t) {fz(wut)'i'zgw 171, wq(w,,t)] = a; :!:,, +sz1 Tt "»bzy(xu ) (lla.)
j 1
< oidia(||zil]) — \/C?(%t) + B (2, t) < oudia(l|=:]])

For the case of B;(w;,t) = 0, we have

VV; (17:) ) [fz xz)t) +Zgz1 zlat)¢21(xta ) =

< VV,(a:,,t) fi(zi,t) < oidia(||2: )

(11b)

Inequalities (11a) and (11b) imply the second condition of Lemma 1. From the hypothesis
of Theorem 1 the last two conditions of Lemma 1 are obviously satisfied. Hence, (10) is
globally asymptotically stable. [ ]
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If we substitute conditions (3') and (4') of Remark 1 for conditions (3) and (4) given
in Lemma 1, then we can establish the following corollary.

Corollary 1. If the interconnected system (1) satisfies the conditions that
(1) Bvery subsystem has a controllable Lyapunov function V;(z;,1);
(2) For every i € v, there exist almost smooth functions a;;(z,t), j € v, such that for
all (z,t)eR"xT
v
3 1 Fe
VWil 1) Fil,) < isllzilD]E (3 (. Oss (s ]2 )
j=1
(3) There ezists a vector af = (ay,...,o,) with o; >0 and a constant € > 0 such
that the matriz S(z,t) + €l s negative definite where S(z,t) = (s;5(z,t)) and
ailo; + aii(z, 1)) forall i=j and 1,7 €v
S¢5 = 1
E[a,-a;j(z,t) + ajaji(z,t)]  forall i#j and i,j €v
Then, there exist decentralized almost smooth feedbacks (4) such that the intercon-
nected system (5) is globally asymptotically stable.

The proof of Corollary 1 is similar to that of Theorem 1 and omitted.

In the proof of the above theorems, the feedbacks are only used to improve the
behavior of subsystems. Indeed, these feedbacks can be applied to improve the behavior
of both subsystems and the interconnections. The further result is stated as Theorem 2.
But before stating Theorem 2, we need a definition.

Definition 2. Given an almost smooth function b(z,t), a(z,t) is said to be zero
- it
equivalent to b(x,t) if the limit lim a(z, )
z—zo b(z,t)

forall teT.

exists for every g such that b(zo,t) =0

Theorem 2. If the interconnected system (1) satisfies the conditions that
(1) Bvery subsystem has a controllable Lyapunov function V;(z;,t);

(2) For every i € v, there ezists a;; € IR, j € v, and an almost smooth function
vi(zi,t) which is zero equivalent to Bi(x;,t) such that

v

VVi(ai,1)  Fi(e,t) < aallolD)? (3 asldia(laslN? ) +v(est)

ji=1
(3) There ezists a vector aT = (a1,..,a,) with a; >0 for all i € v such that the
matriz S = (s;;) specified by
{ a;(o; + ai;) forall i=j and i,j €V
8ij =

%(aiaij + ajaj;) forall i#j and i,j €V
1s negative definite.

Then, there ezist decentralized almost smooth feedbacks (4) such that the intercon-
nected system (5) is globally asymptotically stable.
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Proof. For every i€ v, we denote v; = [, ..., ¥im,]¥. Let every component ¥;; take
the form of

uij = ij(zi,t) = iﬁg})(l‘i,t) + '/igf)(z‘i,t)
where ¢,(-;)(z,~,t) is the same as (8), and

vi(zi,t) .
¢(2)(x,,t) _ { _bij(xi’t)ﬂi(m;,t) if Bi(zi,t)#0
0 if Bi(zi,t) =0

From the above equation, ¢g)(0,t) =0 forall t € T and from condition (2) of
Theorem 2, w,(f ) (zi,t) is an almost smooth function, so is ;;(z;,t).
For all i € v, we regard z; = fi(zi,t )+Z lg,_,(z.,t)z/)” (zs,t) as the i-th

subsystem and regard f;(z;,t) + Z —19ij (:c,,t)w” (zi,t) as the coupling functions.
Repeating the same calculations as in (11) we have

VVi(zi, 1) [fi(xi,t) + Zgij(zi,t)‘/’gjl)(rnt)] < oiis(||=ill) (12)
j=1
We turn to consider the coupling functions. If f;(z;,t) # 0, then

VVi(ai, 1) [Filz,) +Zg (20, )] (21,1)]

VVi(zi,t)Fi(x, t) — Zb (2,1 ;:EZ:; (13a)

= VVili, ) file, 1) — iz, ) < [Bis(ll:])} (Zaij [¢ja(||wj||)]%)
Jj=1
If Bi(zi,t) =0, then the zero equivalence of «;(z;,t) and Bi(zi,t) leads to

VVi(z;,t) [?f-i(“’i:t) + igij (i, t)'/)g)(rnt)] = VVi(zi,t) f;(zi, 1)
, =1 (13b)
< [aalledI? (Y ais s (lle; 1)

i=1
By the conditions of Theorem 2, along with (12) and (13), we get that the closed-loop
system is globally asymptotically stable by using Lemma 1. |

To close this section, we state a result corresponding to Corollary 1. Its proof is also
omitted.

Corollary 2. If the interconnected system (1) satisfies the conditions that
(1) Every subsystem has a controllable Lyapunov function Vi(zi, t);
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(2) For every i € v, there exist almost smooth functions a;;(x,t), j € v, and ~;(z;,t)
which is zero equivalent to [i(z;,t) such that for all (z,t) e R* x T

3 1
VVi(ai1) - Fala, 1) < [BiallladD)E (3 ais (o, ) 850l DI ) + % (o)
j=1
(3) There exists a vector of = (ay,...,@,) with a; >0 and a constant € > 0 such
that the matriz S(z,t) + el is negative definite where S(z,t) = (sij(z,t)) and
| aifos + aii(z, )] forall i=3j and i,j€v

Sij =

’ %[aiaij(z,t) + oja5:(x,1)] forall i#j. and i,jEV

Then, there ezist decentralized almost smooth feedbacks (4) such that the intercon-
nected system (5) is globally asymptotically stable.

4. Decentralized Stabilization for Lower Triangularly
Interconnected Systems

This section turns to study the problem of decentralized stabilization for the lower trian-
gularly interconnected systems (3). The designing process is quite similar to what we do
in the last section, i.e. we design decentralized almost smooth feedback for every subsy-
stem (2) such that the closed loop system (6) satisfies all of the conditions of Lemma 2.
Then, its stability is implied.

Theorem 3. If the interconnected system (3) satisfies the conditions that

(1) Every subsystem has a controllable Lyapunov function Vi(z;,t) with o; < 0;

2) ' llllm [|VVi(z,t)/éis(ljz:|)]| = 0 for all i€wv;

(3) For every 0 < j<i and for every i € v there exists a function wi; € K such
that || fi; (25, DIl < ¢is([l;]1)-
Then, there ezist decentralized almost smooth feedbacks (4) such that the intercon-
nected system (6) is globally asymptotically stable.

Proof. We rewrite (3) into the following form

i—1 ™mi
z; = fi(zi,t) + Z?ij(zjy t) + Egij(l‘it)uij (14)

ji=1 ji=1

Using the Lyapunov function V;(z;,%), we construct feedbacks wu;; = 9;;(x;,t) as
follows:

17” c\X;, 4 Z;, .
d)i]'(zi t) = ‘J(zl't) t)+ \,/Bz(fb'u ) * /6 ( t) if :Bi(mijt) ?é 0

0 if Bi(zi,t)=0

(15)
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where a;(;,t), Bi(2;,t) and c;(z;,t) are the same functions as those defined in the
proof of Theorem 1. Similarly, we can prove

VVi(xs,t) - [fi(il?i,t) + Zgij(wi,t)¢ij(mi,t)] < oidis(|]zi]) (16)

Since o; < 0, (16) together with conditions (2) and (3) of Theorem 3, the globally
asymptotical stability is implied from Lemma 2. ]

Remark 3. The first condition of Theorem 3 is implies that every subsystem is asymp-
totically stable.

It is obvious that the conditions of Theorem 3 are much weaker than those of The-
orem 1 and Theorem 2. If VV(z;,t)- g(z;,t) #0 for all (z;,¢) € R x T and for all

i € v, then we can further weaken the stabilizing conditions.

Theorem 4. If every subsystem of the interconnected system (3) has a continuous
differential function V;(z;,t) : R™ xT — IR* and functions ¢;1, ¢;2 € KR such that

(1) durll=:ll) < Vi(wi,t) < dia(lsll)  forall (z4,t) € R™ x T

(2) ||VVi(@i,t) - gs(mi, t)|| £ 0 forall (z;,t) e R™ xT\{0};

(3) For every j € 1—1 and i € v there exists a function pij € K such that
1fij (i Il < @i (llill) for all (zi,t) € R™ x T.

Then, there exist decentralized almost smooth feedbacks (4) such that the intercon-
nected system (6) is globally asymptotically stable.

Proof. Let ¢i3(r) = ”mlzla,i( IVVi(zi,t)|| - e". Then ¢;3 € K and [|VVi(zs,t)]| <
dis(|l=:|). Moreover, -
lim_I9ViGes Ol /i) < im o0 =0 o

flzs]|—o0
Let us take the decentralized feedbacks as follows:
ai(zi,t) + dis(||z:])
(@i, 1) = —by; (x; KNl 2)
w”(x“ ) ](IL' >t) ﬁz’(miat)

where a;(z;,t), b;j(z;,t) and f;(z;,t) are the same as those defined in the proof of
Theorem 1. Thus,

VVi(zi,1) [fi(xi,f) + 29ij(xiai)¢ij(wi, t)] = —is(||=:]]) (18)

j=1

From condition (1) together with inequalities (17) and (18), the validness of Theorem 4
is verified. H

5. An Example

This section will give an example to illustrate the application of Theorem 1. Although
only an example whose calculation is quite tedious is presented, the readers can construct
the examples for other Theorems by following this way.



Stabilization for nonlinear interconnected systems 709
Consider the decentralized system described as
[ ] [ 3 3 2
. T11 —Zy — 51712 T11T22 Ty —T12
& = = ) s , | @ (14a)
T2 Z11%7y + 272 Z12T21 T11 — T
[ . ] [ 2 1,2
- T2 Ty 2211 2x21 + T2z
Lo = = 1 s U2 (14b)
T22 —22 5T7o. L322
L 742 ] L
Using the notations defined in Equation (1), we denote
[ _ .3 3 [ [ 2
N kit 5x7, — | #za IR Kt R st
fl("’l) = 2 s | f1(-’51,172) = ) 91(1'1) = 5
112719 + ©15 T12T21 T11 — T13
[ 2 (1,2 [
| *2 - | %11 _ 2z91 4 x99
fz(:gz) - ) fz(@'l; 172) - 3 92(12) =
1,2
| —T22 | 2%12 T2

Let Vi(z1) = 1(z} +2%;) and Va(za) = @3, + (221 — 222)>. We now use the
notations established in the proof of Theorem 1. The functions b;(z1) and ba(z3) are
calculated as follows:

bi(z1) = VVi(e1)g1(z1) = 23; ~ 23,
ba(z2) = VVa(22)g2(22) = 425,

Obviously, bi(z;) =0 iff ‘z1; = z12 (note: z; is a real vector) and by(x2) =0
iff 57 = 0. The functions a;(z1) and az(zz) are

ay(z1) = VVi(e1) fi(21) = —2}; — dei12d, + 2
az(23) = VVa(2) fa(x2) = 223 — 231222 — 23,
When b;(x;) = 0, we have
ay(z1) = —da) = =2(zt; + 21,) < —(2}, + o1y)® = =
Similarily, provided that bs(z3) =0,
az(z3) = —23, = —(23; + 23,) = —[lea|®

The above discussion shows that Vi(z;) and Vi(z2) are exactly the controllable
Lyapunov functions with oy = a3 = =1, @13(|lz1]]) = ||z1||* and @aa(]|22]) = ||z2]|?-

The interconnected functions are now estimated by using Cauchy-Schwarz inequa-
lity.

VV1»(171)?1(1:1,:02) = 17%11}22 + :cfzle
< Ve ety Vag +ady < (ah +2d) - Vzh + 2k

1 1
= ¢is(lle1l]) - p3all=21l)

(15a)
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and
VVa(@2) fa(21,22) = 3231821 — J2di202 + J27520,
< \/i-m‘lll + 15211 + 5212 - Vah + 3, +d
< @\/x?l + ety - V2d 23, < l/41——0(“7%1 + zf,) - \/“m
= Y002 (zall) - ehs(llz21)

(15b)

From (15a) and (15b), we obtain that @13 = @22 =0, ai12 =1 and ag = @. Taking
a = (1,1)T, the discriminating matrix S is

R
%(1+@) -1

It is easily verified that matrix S is negative finite, hence by Lemma 1, system (14)
with the following feedbacks

2 .2 _ 3 4 2 22 _ 3 4 2 3 _ 58
257,21, 4::111:12-}-2::12-}-\/(2111:1:12 Az 03,+20,)2 +(5), —23,)*

23 g3 z11 # T12
'ul(z'l) = 11 12
Z11 = T12
and
205, = 3,822+3 5, /(253 3 w22+203 )2+ (423 )* z # 0
4z2 21
ug(zg) = 21
0 To1 = 0
is asymptotically stable. [ ]

Remark. If we add  [Z3!7212]  to the right side of Equation (14a) and/or add

s —Th
[mgfélzzz] to the right side of Equation (14b), then this system may be stabilized by
using decentralized feedback from Theorem 2.

6. Conclusions

In the paper, the problem of decentralized stabilization by using almost smooth feedbacks
for two classes of interconnected systems has been studied. The Lyapunov-like conditions
for such stabilization were obtained and the decentralized feedbacks were given using
these Lyapunov functions. Although only the globally asymptotical stability is considered
and only four theorems are verified, the authors are sure that there is no difficulty to
extend the designing technique developed in the paper to the decentralized stabilization
for other stable requirements such as Lyapunov stability, bounded stability, exponent
stability and so on. With the use of such a technique, the most results established
for the analysis of stability of interconnected systems may also be applied to design
decentralized feedback laws.
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