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FFT IN CALCULATING NONPARAMETRIC REGRESSION
ESTIMATE BASED ON TRIGONOMETRIC SERIES!

EwArYST RAFAJLOWICZ*, Ewa SKUBALSKA-RAFAJLOWICZ*

In the paper the computational algorithm for nonparametric regression function
estimation is proposed. The algorithm is based on using the Fast Fourier Trans-
form method twice and is suited to calculate trigonometric series estimators. Its
computational complexity is 0(nlogn), which yields essential savings in comparison
to direct calculations of this estimator.

1. Introduction

The aim of this paper is to discuss computational aspects of nonparametric estimators
for a regression function. The study is motivated by the fact that the theory in this
field is now sufficiently rich for supporting possible computer implementations of these
estimators. In recent years theoretical results in the fixed design case concentrated on

a) kernel type estimators, investigated by Benedetti (1977), Cheng and Lin (1981),
Gasser and Muller (1979), Georgiev (1984; 1986), Georgiev and Greblicki (1986),
Priestley and Chao (1972}, Schuster and Yakowitz (1979),

b) orthogonal series estimators, discussed by Eubank and Speckman (1991), Greblicki
_and Pawlak (1985), Rafajlowicz (1984a; 1984b), Rafajlowicz (1987), Rutkowski
(1982),

¢) smoothing splines developed in Agarwal and Studden (1980), Cox (1984), Nussbaum
(1985), among others.

Extensive bibliographies on nonparametric regression estimation in the fixed design case
as well as when regressors are random variables can be found in Collomb (1985) and
Gyorfi (1981), while spline smoothing is exhaustively reviewed by Eubank (1988).

In the sequel, we concentrate our attention on case b) since computational aspects of
smoothing splines deserved much more attention in the literature.

The fast Fourier transform (FFT) algorithm seems to be the most natural tool
for calculating the trigonometric series estimate (TSE) of a regression function. We
shall discuss computational complexity (CC) of this method. Here CC is defined as the
number of floating point additions and multiplications which is necessary for calculating
an estimate for a large data set.

It should be mentioned that applications of FFT for calculating nonparametric ker-
nel type estimates have been proposed by Silverman (1982) for probability densities and
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by Georgiev (1986) for a regression functions. In both cases FFT is applied in order to
calculate convolutions more efficiently than by the direct summation. Although formally
TSE can be treated as a special case of kernel estimators, we choose a more direct way
of calculations. It consists of estimating the Fourier coefficients of the unknown function
from given data by FFT, truncating them at a point dependent on the number of measu-
rements and then finding the function estimate using inverse FFT. This approach leads
to some computational savings, since values of the Dirichlet kernel are not calculated.

It should be however noticed that Georgiev’s method is described in one—dimensional
case and it is not clear for the authors, whether it can be generalized to multidimensional
domains of independent variable.

The method presented here can be used in multidimensional case if multidimensio-
nal version of FFT is at our disposal (see, e.g., Dudgeon and Mersereau (1984)). The
paper is organized as follows. In Section 2 main assumptions are listed. Computational
version of TSE is presented in Section 3, while its CC is discussed in Section 4. Possible
generalizations are mentioned in Section 5.

2. Main Assumptions

Let X 2 [0,1] be the interval over which an unknown function f € L%(X) is defined.
Observations of f are taken at prescribed points

Ar) z; € X; 1=1,2,...,n equidistantly spaced in X;
A

H =T; —Tij-1-
As a result of measurements the data y;, i =1,2,...,n are obtained according to the
scheme
Ap) w=Ff(ze)+e 1=12,...,n (1)
where the errors ¢; are assumed to be uncorrelated random variables with zero
expectations and finite variances. Define wv1(s) = 1, vor(z) = ﬁsin(lmrm),
vok41(z) = \/icos(kﬂ':c) and let ar = [ fur be the Fourier coefficients of f;
k=1,2,.... Here and below we omit the domain of integration if X is involved.

We estimate coefficients ap by
n .
a=HY gu(w), k=12, (2)
i=1

where we omit the dependence of d, on n for brevity. The function f is estimated
as follows:

N

fal@) = Y arui(a) (3)

k=1
where N = N(n) is a sequence of positive integers such that

As) N(n) — o0 a n—o0

A few remarks should be made on the above assumptions.
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Remark 1. Formulae (2), (3) define the simplest version of TSE. In Rutkowski (1982)
and Rafajlowicz (1987) other algorithms of a similar type can be found. Their theoretical
properties are better than that of (2), (3), but they are similar from a computational
point of view.

Remark 2. Condition Aj) is necessary for convergence of fo to f as n — 00 in
any reasonable sense, provided that f does not have a finite expansion into the Fourier
series. Sufficient conditions are not difficult to obtain mimicking proofs presented in
Greblicki and Pawlak (1985), Rafajlowicz (1987) and Rutkowski (1982).

Remark 3. The fixed design case with equidistantly spaced points is considered here.
However, the algorithm can also be applied for nonuniform sampling if every obsevation
is rounded off to the nearest z;. Rounding introduces errors in independent variables but
consistency of TSE is in this case retained, as it is recently shown (Rafajlowicz, 1988).

3. Computational Algorithm for Trigonometric Series Estimate

Suppose that the data (z;,%), ¢=1,2,...,n arein our disposal. We are interested

in calculating f,, defined by (2), (3), at the same points «; where measurements have
been taken.

Algorithm A

Step 1. Calculate the discrete Fourier transform (DFT) of the sequence y;, ¢ =
1,2,...,n using FFT algorithm. Denote the result by Yi; k¢ =1,2,...,n.

Step 2. Truncate this sequence at the point that corresponds to truncating the sequ-
ence a, k=1,2,... at N-th element. The remaining elements Y; multiply by
H and denote by é.

Comment. The sequence of complex numbers Y, &k = 1,2,...,n, being DFT
of a real sequence, exhibits symmetric real and antisymmetric imaginary part.
Thus, the correspondence between dr and H -Yi; k = 1,2,...,n reads as

follows. Elements H - (Y} + Ynj2-k) are equal to dy before cosine terms, while
H - (Yy — Ypja—1) represent those @, before sine terms, provided that n is
divisible by 2.

Step 3. Extend the sequence é to the length n by putting 0 instead of truncated
elements of H -Y}.

Step 4. Find inverse FFT of the extended sequence é; k¥ =1,2,...,n to get fn(z,-);
i=1,2,...,n.

Few commets may be useful in implementing the above algorithm.

Remark 4. As it is known, FFT algorithm is efficient when n is a“highly factorizable
number. In most frequently used implementations of FFT it is required n = 27 or
n = 37, p > 0. We shall not describe known tricks of handling sequences of different
lenghts. The same tricks can be used at Step 3 when values of f, are required at a grid
other than z;; 1=1,2,...,n.
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Remark 5. In Step 1 we calculate FFT of a real sequence and this fact should be taken
into account to make calculations more efficiently. One should also consult (Storn, 1986),
where fast discrete Hartley transform (FDHT) is advocated as a somewhat more efficient
tool for calculating DFT of real sequences than FFT. Further, however, we discuss CC
of the above algorithm without referring to FDHT, since computer codes of FFT are
easily available and sufficiently efficient (FDHT saves n multiplications). Furthermore,
hardware implementations of FFT are currently available (Mehalik et al., 1985).

Remark 6. For a given data set (z;,%); i = 1,2,...,n the estimate fn is usually
calculated several times in order to choose the truncation parameter N by cross—

validation or by the visual inspection. In such a case it suffices to perform Steps 2, 3, 4,
reducing CC by half.

Remark 7. Algorithm A provides a simple interpretation of TSE in terms of filtering
higher harmonics in the sequence 3 i=1,2,...,n.
4. Computational Complexity of the Algorithm

Let T,, T;» denote execution time of one real addition and multiplication, respectively.
By Tr(n) we denote the time of transforming a real sequence of the length n using
FFT. As it is known (see, e.g., Cooley et al., 1977),

Tp(n) =C -n-log,n (4)

where the constant C does not depend on n.
Now, CC of the algoritlim A can be evaluated as follows:

Step 1 requires Tp(n),
Step 2 takes 2- N -T,,,
Step 3 is negligibly short,
Step 4 needs Tp(n),
what results in thé total time
Ti(n) = 2Tp(n) + 2N - Ty, ' (5)

or more roughly Ti(n) = 2Tr(n), since usually N < n. If calculations are repeated
for different values of N, then additional computational burden takes, roughly, Tr(n)
every time.

5. Discussion

Concluding this paper we indicate that possible generalizations of A are the following:

1) A can directly be used in multidimensional case if the domain of independent va-
riables is a hypercube and multidimensional version of FFT is applied (see, e.g.,
Dudgeon and Mersereau (1984) for its description).
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2) Minor changes are required in order to use A for calculating estimates of the form

o
Fa(z) =) we(n)apvi(e). , : (6)

k=1
3) Flexibility of A can be enlarged if instead of trigonometric functions other ortho-
normal sequences vg, k =1,2,... are used, for which fast algorithms analoguous

to FFT are known.

In Table 1 results of testing algorithm .4 are summarized. The list column contains
the execution time (in seconds) obtained for sequences of various lengths (given in the
first column). The second column, called the Truncation Point, is related to the number
of terms N in the regression (3) in the following way:

n
N = 3~ Truncation Point.

‘Tab. 1. Execution time of algorithm A for data sequences of different lengths.

Number of data | Truncation point " Time in Sec.

4900 180.43
4000 154.28

10000 3000 124.79
2000 ©93.1

1000 61.79

2400 57.45

5000 2000 "~ 50.25
1000 32.51

900 14.83

2000 500 10.55
100 6.37

400 5.72

1000 200 4.12
' 100 3.35
240 2.52

512 200 2.2

100 1.54

50 0.55

128 30 0.39

10 0.28

The execution time has been measured using IBM PC/386/33 MHz computer with the
math coprocessor. Analysis of Table 1 shows that even for relatively long data sequences
n = 10%, the execution time is acceptable, being negligible for short data sequences. This
makes it possible to repeat calculations many times in order to find the best truncation
point.

Performance of algorithms based on trigonometric series expansion is well docu-
mented in the literature (see, e.g. Eubank, 1988). For this reason we provide only one
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example of behavior of algorithm .4 for a finite sample of length 300. The data in
Figure 1 were generated equidistantly from the regression function of the form:

f(z:) =5-sin’(;) +e, i=1,2,...300

where ¢; are pseudorandom numbers uniformly distributed in [-0.75,0.75]. Discrete
data points are joined by thin lines in Figure 1 in order to underline their variability.
The resulting estimate (thick line in Fig. 1) was not optimized with respect to N and
the value N =10 (Truncation Point = 140) was assumed.

Fig. 1. Example of algorithm’s performance.

As one can notice from Figure 1, even without a carefull optimization with respect
to N the estimation method gives a satisfactory result.
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