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INVERSE POLYNOMIAL MATRIX APPROXIMATION

JErRzZY KISILEWICZ*

A computational algorithm for matrix C(z) which approximates the inverse of a
given matrix Y(z) is described in this paper. Finite degree polynomials as the
entries of the matrices C(z) and Y(z) are assumed. The sum of squares of
coefficients of polynomials, which are the elements of difference C(2)Y(z) — I=~"
is assumed as a criterion of the approximation quality, where I 1is an adequate
unit matrix.

1. Introduction

The physically realizable inverse function approximation problems are solved in many
technical domains such robustness control design (Chen and Guo, 1990; Zhou and Gu,
1992), optimal control problems (Mutoh and Nikiforuk, 1992) and particularly optimal
control problems in Hardy space H* (Nyman, 1991; Ozbay and Tannenbaum, 1990;
Smith, 1990). The approximation problems of inverse matrices whose entries are finite
degree polynomials are solved for instance in computation of a state-space realization
of a linear dynamic system (Grasselli and Tornmbe, 1992) and in multichannel interfe-
rence equalization problems in data transmission (Clark, 1977; Dabrowski, 1979; 1982;
Kisilewicz, 1990; 1991; 1992). If equalizer is realized as a transversal filter network, then
elements of approximated matrix should be definite degree polynomials.

This equalization problem is described and solved for a single channel in (Clark,
1977; Dabrowski, 1979; 1982) and for more than one channel in (Kisilewicz, 1990; 1991).
Multichannel interference is given as Y (z) matrix of polynomials whose degrees are not
greater than G. Transfer function of equalizer is C(z) matrix of polynomials whose
degrees are equal to M. The C(z) matrix is computed so that product C(z)Y(z)

approximates the unit matrix multiplied by z~".

Different criteria of approximation performance are described in (Clark, 1977,
Dabrowski, 1982). The mean square error is mainly used as such a criterion in channel
equalization problems. The problem of multichannel equalizer C(z) synthesis giving
minimum of mean square error is described in (Kisilewicz, 1990; 1991; 1992). If the noise
level in transmission channels is low and can be omitted, then mean square error is equal
to the sum of squares of coefficients of polynomials, which are the entries of difference
C(2)Y(z) = Iz~", where I is the respective identity matrix.

An easy-to—compute algorithm giving the polynomials matrix C(z) minimizing
the mean square error is presented in this paper. The C(z) matrix, which is computed
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for assumed value h, is denoted later by C(z,h). Other matrices, polynomials and
coefficients for assumed value h are represented in the same way.

2. Problem Formulation

Let N be the number of columns and rows in a square matrix Y(z), whose entries are
not greater than polynomials of degree G

G
Ui() =) vl 1)
k=0

where 4,7 =1,2,...,N.

The matrix C(z,h) should be computed. The entries of C(z,h) are polynomials
of degree M

M

Gz h) =) (W)= (2)

k=0

C(z,h) = [&ij(2, h)] (4,i=1,2,..,N)

)
and should satisfy C(z,h)Y(z) = 2z~ "Iy, where Iy is the identity matrix having N

rows and columns. Matrix z"C(z,h) is close to the matrix that is inverse to Y (2).
Let E(z,h) be a matrix of polynomials
M+G
€j (Z, h) = Z e'k] (h)z_k (3)
k=0
E(2) = [ei(z,h)], (,i=1,2,..,N)
such that
E(z,h) = C(2,h)Y (2) = 27" In (4)

Computing matrix C(z,h) means computing such number h, (b = 0,1,..,,
M + G) and such coefficients ¢/ (h), (1,7 = 1,2,...,N, k =0,1,..,M + G) which
minimize the following criterion

N N M+4G

=122 (@mw) )

i=1j=1 k=0

Criterion (5) approximates the mean square error if noise level in transmission chan-
nels is very low and can be omitted (Clark, 1977; Dabrowski, 1979; 1982).

3. Matrix Form of Criterion Q,

To calculate the coefficients ¢ (h) (4,5 = 1,2,..,N, k =0,1,..,M + G) minimizing
Qr it is suitable to have a formula giving dependence of @ on ¢} (h). It is convenient
to write this formula as a relationship of matrices as shown in (Clark, 1977).
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Let
M+G

2H=33 (4m)’ (6)

j=1 k=0

and single row vector

Fij(h) = [ (), € (h), -, efpac ()] (7)

The criterion @ from (5) and (6) can be written as

N
Qn = Zﬁ(h) (8)

where

N
=" Ey(h)EL(R) (9)

i=1
and superscript 1" denotes the matrix transposition.

We can assume from (4) that the vector E;;(h) contains coefficients e (h) of the
polynomials

2

51](2' h - Z ir Z h yr] Aijz—h (10)

r=1

1 if i=y
where Ay = 0 if id]

To obtain the coefficients of polynomials €;.(z, h)7,;(2), we create (M + 1)-row
convolution matrices Y,; (Clark, 1977; Dabrowski, 1982), the p-th rows of which
(p=1,2,..,M+1) contain M+ G+ 1 elements: p—1 nulls, G+ 1 coefficients
vy’ .. yg, and M +1—p nulls. These rows of matrices Y;; can be written as

[0) ’:'7 O)ygj:y;j)'“)yrGj>O) "‘)O]

Now we can write from (10)

N
= Cir(h)Yj — &ij(h) (11)

r=1

where Cj;(h), &;(h) are single row vectors
Cig(h) = [cf (), ] (R), - cHy(B)] (12)

Eii(h) = Ay [AomAm, ~--AM+G,h]A (13)
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Using (11) in (9) we finally obtain

0 = (3 Gl - £ Mzamm,muf (149)

j=1 r=1

4. Minimization of Criterion Q; for assumed h

To find matrix C(z,h) minimizing criterion Qn we have to find
(M + 1)-component vectors Cir(h) ((,r = 1,2,..,N), minimizing errors
§%(h) giving (14) for each i. Comparing to zero derivatives of 6§?(h) with respect
to ci*(h), we can obtain for each 4,j =1,2,...,N the following matrix equations

N N

N
Y3 Gy YE = 3 e (h)YE (15)
j=1

j=1¢=1
We can notice from (13) that &;(h) for ¢# j is a null matrix, so

N
Y (MY = Ex(h)Y (16)
ji=1
and
Z - [ ql’Yq21 “-7YqN] [K'11Y1'2: ~'~)Y1'N ! (17)

Defining matrix

Yii...in
v=[Yyl=| ... (18)
Yni...YnNn
and multiplying it by its transpose we obtain all sums of products Yy; V2 (17) necessary

in formula (15). We can now write this formula as follows

[Caa(h), Caath), ., Cin(h)] [r-th M + 1 columns of YYT| = £(h)Y,T (19)
for 4,7 =1,2,..,N. Combining (19) for all ¢ and r, we finally obtain,

C(h) (YYT) = &(h)YT (20)
where C(h) = [C.-j(h)] is the N row and N(M + 1) column matrix, Y - the

N(M +1) rowand N(M + G +1) column matrix,

En(h) 0 cee 0
Eh) = 0 Exa(h) ... 0 (20a)
0 0 ... Enn(h)
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E" isthe N rowand N(M+G+1) column matrix since &;(h) arethe (M +G+1)-
component row vectors.

Formula (20) represents the system of N(M + 1) linear equations with N right hand
side free values. This formula is suitable for computation of matrix C(h). Formally
matrix C(h) is given by formula

C(h) = E(R)YT (YYT) -

Defining E(h) = [E'ij (h)] (,7=1,..,N), we can write from (11) an equalized interfe-
rence matrix as

E(h) = C(h)Y — £(h) (21)

5. Computation Algorithm for Unknown h

Since value h is not given, it is necessary to solve equations (20) and compute Q
from (8) and (9) for each possible h=10,1,..., M 4+ G, and then to choose such value h
which minimizes criterion Q.

It is convenient to exclude matrix £(h) in practical computations. Rewriting (19)
for h=0,1,...M + G and defining

Ci; (0
J( ) 011 CIN
Ci;(1) ~ S
ij = . ) C= : : : ’ (22)
) C ... C
Cii(M +G) N1 NN

where C;; are the M +G+1 row and M + 1 column matrices and C is the
N(M + G +1) rowand N(M +1) column matrix, we obtain

[Cgl,C,-z, ...,C,-N] [r—th M +1 columns of YYT] = Yrq; (23)

for i,7 =1,2,..,N. Combining (23) for each i and r we obtain (like (20) from (19))
the following system of linear equations

G(YYT ) =y7 (24)

Matrix C is the solution of (24). Successive rows Cjj(h) of submatrices Cij (i,j =
1,...,N) of matrix C contain the solutions for successive values h (h =0,1,..., M +G).
The solution of approximation problem is the solution for such value h which gives least
value of the criterion Q. To find Q we compute E;j(h) (¢,5 =1,2,..,N) for each
h. Defining

Ei;(0)
Ei;(1)

E=] + (252)

Eij(M + G)
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& (0
i(© &1 &in
&i;(1) ~
& = : , €= , (25b)
) Eni ... €&
&'j(M + G) N1 NN

where E;; arethe M+ G+ 1 rowand M + G+ 1 column matrices and E is the
NM+G+1) row and N(M +G+1) column matrix. If we notice from (13), (20a)
and (25b) that & = In(ar4+c+1), then we obtain from (21) and (25)

E = 5’Y - IN(M+G+1)' (26)

The inverse polynomial matrix approximation problem can be solved using the following
algorithm.

Algorithm:

1.

Choose degree M of polynomials of approximating matrix (recommended M > 3G
should be greater for greater computational precision).

. Create matrix Y given by (18) and containing convolution matrices Y;; (3,5 =

1,2,..,N). Each matrix Y;; contains M +1 rows. Each p-th (p= 1,2,..,M+1)
row contains successive M +G+1 components: p-1nulls, G+1 values yy,...,y2,
M —p+1 nulls. These rows are as follows

[0+ 0, 98,97, 6,0, .., 0]

. Compute N(M +G+1) rowand N(M +1) column matrix C (22) solving the

system of N(M + 1) linear equations, each with N(M + G + 1) right hand side
free values

(rv7) (&) =y (27)

Successive rows Cjj(h) (h = 0,1,..,M + G) of submatrices Ci; of matrix C
contain solutions for successive values h.

. Compute matrix £ from

E=Cv - IN(M4c41)

where In(pmig41) is the N(M + G+ 1) row and column identity matrix.

. Compute mean square errors 62(h) (h = 0,1,....,M + G) for each i=1,2,..,N
from
N(M+G+1) 2
HOETED RN | (28)
k=1

where €. are the components of matrix £ and

r=@GE-1)(M+G+1)+h
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6.

6.

Compute the value of criterion @ from (8) for each value h and choose h*
minimizing this criterion, that is, @+ = min{@x}.
. Rows

Cl = | ("), (h*), .y (r®)|  (,5=1,2,.,N)

contain the searched solution of inverse matrix approximation problem.

. If the obtained value of criterion Qg+ is too large, then increase M by G and go

to point 2 of this algorithm unless last increase of M gives unsatisfactory decrease
of criterion value.

An Example

Let N=2, G=1, M =5, and

1-05271 0.5+ 0.125z71

Y(z)=
(=) 0.5—0.1252"1 140521

Matrix C is the 14 row and 12 column matrix, and matrix & is the 14 row and 14
column matrix. The obtained C contains

1.332 0.665 0.413 0.201 0.118  0.042
-0.001 1.329 0.660 0.402 0.188  0.081
—0.003 —0.006 1.321 0.644 0376  0.135
Ci1=| —0.004 -0.014 —-0.020 1.285 0.602  0.261
—0.009 -0.021 -0.040 —-0.072 1.203 0.433
—0.014 -0.044 -0.063 —0.155 -0.208 0.834
-0.029 —0.066 —0.127 -0.232 —0.416 —0.748

—0.666 —0.166 —0.206 —0.049 —0.059 —0.005 |
0.000 —0.664 —0.165 —0.198 -—0.047 -—0.031
0.002° 0.003 —0.660 —0.155 —0.188 —0.015

Ciz= 0.002 0.010 0.005 —0.633 —0.150 —0.100

0.005 0.010 0.020 0.037 —-0.602 -0.048

0.005 0.030 0.016 0.107 0.0562 —0.321

0.018 0.033 0.064 0.117 0208 0.378
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—0.666  0.166 —0.206 0.049 —0.059  0.005
—0.000 -0.664 0.166 —-0.198  0.047 -0.031
0.002 —-0.003 —-0.660 0.1556 —0.188  0.015
Co1= | —0.002 0.010 —0.006 —0.633 0.150 —0.100
0.005 —0.010 0.020. —0.037 —0.602  0.048
—0.006 0.030 -0.016  0.107 —0.052 —0.321
0.018 -0.033 0.064 -0.117 0.208 —0.378

1.332 -0.6656 0.413 —-0.201 0.118 -0.042
0.001 1329 -0.660 0.402 -0.188  0.081
—0.003 0.006 1321 -—-0.644 0376 —0.135
Caa = 0.004 -0.014 0.020 1.285 —0.602 0.261
—0.009 0.021 -0.040 0.072 1.203 —0.433
0.014 -0.044 0.063 —0.155  0.208 0.834
—0.029 0.066 -—0.127 0.232 -0.416 0.748

The values of @; are given in Table 1.

Tab. 1.

Qo (93} Q- Qs Qa Qs Qs
0.0013 | 0.0044 | 0.0128 | 0.0448 | 0.1315 | 0.4585 | 1.3468

As we can see, the least value of criterion @ is for h = 0. The solution is then given
by first rows of matrices Cj;. Then C(z) = C(2,0) contains polynomials

c11(2) = 1.332 4+ 0.66527 + 0.413272 + 0.20127% 4 0.11827* + 0.0422~°
c12(2z) = —0.666 — 0.1662~1 — 0.206272 — 0.049272 — 0.0592~* — 0.005z~°
ca1(2) = —0.666 4 0.1662~1 — 0.2062~2 4 0.0492~2 — 0.0592~* + 0.0052~°

coa(2) = 1.332 — 0.665271 4 0.413272 — 0.20127% 4 0.1182~* - 0.0422°

Matrix E(z) = E(2,0) = C(2)Y(2) — I, contains polynomials
e11(z) = —0.0006 — 0.001z~1 — 0.002272 — 0.004z~% — 0.0062~* — 0.01z~° — 0.022~°
e12(2) = 0.00022~1 4 0.00032~2 4 0.00052~2 + 0.00092~* + 0.00172~° + 0.0032~°
e21(2) = —0.0002271 + 0.00032™2 — 0.00052~2 + 0.0009z~* — 0.00172~° + 0.0032~°

e2(2) = —0.0006 + 0.0012~ — 0.0022~2 + 0.00427% — 0.0062™* + 0.01z~° — 0.022™°
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7. Final Remarks

The algorithm presented in this paper is simple and suitable for computations. The
optimal solution is chosen from among M + G + 1 solutions of N(M + 1) linear
equations of system (27), with N(M + G + 1) right hand side free values. The so-
lution is then obtained using the well known methods after the matrices Y,C and
E  are defined. For the problem described above, the computational algorithm needs
memory for N3 M + 1)(2M + G + 2) real numbers. For instance, assuming
N =9 G=19, M = 23, the required memory is 384%B, if one real number occu-
pies 4 bytes. The number of equations is 216 in this case.

In the example described in this paper, the optimal solution is for A = 0.
This is true when all the polynomials in Y(z) have maximal module coefficients
v (i,5=1,2,..,N) standing by z°. Many real examples of multichannel interference
are described by matrix Y (z) whose polynomials have maximal module coefficients y;;j
standing by common z~¥, mostly with & > 0. In this case the optimum solution will
be expected for A > 0.

References

Chen H. and Guo L. (1990): Continuous-time stochastic adaptive tracking-robustness and
asymptotic properties. — SIAM J. Control and Optimization, v.28, No.3, pp.513-527.

Clark A.P. (1977): Advanced Data-Transmission Systems. — London: Pentech Press.

- Dabrowski A. (1982): Detection of a data—transmission signals in the presence of intersymbol
interference and noise. — Chapter 4, Edited by Z. Baran: Principles of Data-Transmission.
— Warszawa: WKL, (in Polish).

Dabrowski A. (1979): Signal equalization. — Chapter 5, Edited by Z. Baran: Problems of
Data—Transmission. — Warszawa: WKL, (in Polish).

Grasselli O.M. and Tornmbe A. (1992): On obtaining a realization of a polynomial matrix
description of a system. — IEEE Trans. Automatic Control, v.37, No.6, pp.852-856.

Kisilewicz J. (1990): Multidimensional interference equalizer giving the minimum mean—
square error. — Electronics and Telecommunications Quarterly, v.36, No.3—4,
pp-663-671 (in Polish).

Kisilewicz J. (1991):  Data transmission fidelity improvement problems in computer
networks. — Sci. Papers of the Inst. of Control and Systems Engng., Technical
University of Wroclaw, No.9, Monographs No.6, PWr, Wroclaw (in Polish).

Kisilewicz J. (1992): An algorithm for design multichannel equalizer giving the minimum mean—
square error. — Electronics and Telecommunications Quarterly, v.38, No.1 , pp.67-76
(in Polish).

Mutoh Y. and Nikiforuk P.N. (1992): Inversed interactoring and triangularizing with an
arbitrary pole assignment using the state feedback. — IEEE Trans. Automatic Control,
v.37, No.5, pp-630-633.

Nyman P.O. (1991): Equalizer principle of H* — optimal control and its application to super-
optimization. — Int. J. Control, v.54, No.2, pp.393-415.



730 J. Kisilewicz

Ozbay H. and Tannenbaum A. (1990): A skew Toeplitz approach to the H™ optimal control
of multivariable distributed systems. — SIAM J. Control and Optimization, v.28, No.3,
pp.653-670.

Smith M.C. (1990): Well-posedness of H™ optimal control problems. — SIAM J. Control and
Optimization, v.28, No.2, pp.342-358.

Zhou K. and Gu G. (1992): Robust stability of multivariable systems with both real parame-
tric and norm bounded uncertainties. — IEEE Trans. Automatic Control, v.37, No.10,
pp-1533-1537.

Received March 12, 1993
Revised December 15, 1993



