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ON SELF-SYNCHRONISATION OF CASCADE-LIKE
COUPLED CYCLIC PROCESSES!

ZBIGNIEW BANASZAK*, KrzyszToFr JEDRZEJEK**

In this paper a unified framework is introduced for the study as well as for analy-
sing the performance of concurrently interacting cyclic processes. Conditions that
guarantee the periodicity of cascade-like interacting processes’ behavior are provi-
ded. Formulae determining the parameters of the steady-state cyclic behaviors are
proposed and are regarded as formal models of a self-synchronisation phenomenon.
The parameters change and priority rules selection are examined. Procedures aimed:
at the control and performance evaluation are suggested.

1. Introduction

Modelling and performance evaluation problems for distributed control systems have re-
cently been attracting considerable attention in the computer science community. As a
result, there have been proposed specific discrete—event systems based methods of sol-
ving the problems in order to fulfil some extra requirements such as deadlock avoidance,
priority rules’ selection, job sequencing and resources allocation, structural and functio-
nal redundancy of systems design (Dembele et al., 1992; Ramadge and Wonham, 1989;
Righter and Walrand, 1989; Viswandham and Narahari, 1992).

A study of discrete event systems (DEVS) has been carried out directed for-
ward to establish a mathematical description of performance evaluation oriented models
(Scheuring and Wehlan, 1991; Zeigler, 1989). However, the models actually available are
analytically intractable and computationally depended on the combinatorial explosion of
the searched states amount. As a consequence, almost all the proposed computational
or performance-oriented approaches to DEVSs incorporate stochastic effects as integral
parts of their modelling, and the performance measures are mostly formulated in terms
of continuous variables, such as average throughput, waiting time, profit, and inventory
(Cao, 1989; Ho, 1989). On the other hand, there has been a growing interest in deve-
lopment of a conceptuai-like sort of models aimed at examination of control theoretical
ideas such as controllability, observability, and realizability (Brave and Heymann, 1990;
Caspi, 1991).

The methods employed to deal with the modelling and performance evaluation pro-
blems come from Markov chains/automator (including Petri nets) and generalised semi—
Markov models as well as mini-max algebraic models and communicating sequential
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processes framework (Braker, 1991; Cohen et al., 1989; Hillion and Proth, 1989; Laftit
et al., 1992; Ramadge, 1990). Application of such methods to design and control pro-
blems has proved to be successful in a variety of systems ranging from the flexible manu-
facturing systems, through operating systems, to the computer/communication networks
(Carpenter, 1987; Viswandham and Narahari, 1992; Willner and Heymann, 1991). These
methods, however, in many cases become inadequate because of unrealistic assumptions
and rough approximations they apply.

The shortcomings may be overcome by methods providing more general framework
allowing both to encompass behaviors of continuous as well as discrete-time systems,
and easily determine quantitative as well as qualitative properties of DEVS performance.
Such a new perspective distinguishes itself by stating and examining performance eva-
luation problems in the context of more general problems and of structures of Loosely
Coupled Systems (LCS) (Wedde, 1983; Weick, 1987). The approach should not only
provide the DEVS theory with new results, but also may unify many specific results and
offer a deeper insight into long—standing problems.

This paper may be viewed as a contribution to the problem of modelling and perfor-
mance evaluation of LCSs that are composed of a set of cyclic processes interacting via
common, shared and reusable resources. In contrast to the way the problem has been
treated in DEVS theory until recently, this approach focuses on a self-synchronisation
concept viewed as a relationship linking some structural and functional properties of
concurrently interacting cyclic processes. Its main advantage lies in treating a periodi-
city of the steady-state behavior as a key factor of a performance measure. In other
words, providing the self-synchronisation conditions which make it possible to determine
a steady-state performance of interacting processes results in determination of dependen-
cies linking the so called global system performance with the local, component process
performances, e.g. cycle times.

The processes considered are typical for many man—made dynamic systems such as
production or assembly lines, distributed computer networks, and traffic systems. Their
evolution in time depends on the complex interactions of the timing of various discrete
events, such as the arrival or departure of a job or the initiation and completion of a task
or message. A system composed of a set of reusable resources such that each resource may
be replaced with some other ones, usually less efficient (Banaszak et al., 1992; Banaszak
and Chudy, 1992), could be considered as the relevant example.

It is also assumed that a whole system behavior (its performance measure) is implied
from its component subsystems, i.e. processes employing different subsets of available
resources. As a consequence, because processes interact with each other via the commonly
shared resources, the system performance depends on both the resources allocation and
processes interaction. Then, assuming that a number of items produced per a time
unit states a system performance measure, if a cycle is determined by a time elapsing
between the delivery moments of the two subsequent items, the system efficiency depends
on periodicity of component processes, their initial state, and the conflict-dispatching
rules applied. ‘

This approach allows us to consider different sorts of complex dynamic systems on
the same modelling basis of concurrently interacting cyclic processes. The main question
concerns the identification of analytical dependencies existing between structural and
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behavioral aspects of systems design and operation, i.e. conditions allowing to deter-
mine the system performance according to its component characteristics and component
interactions.

The proposed framework makes it also possible to consider the cascade-like interac-
ting processes as a class of LCSs that are characterised by a connotation of impermanent
and changing relationship. The LCSs are composed of a set of separate and in some sense
autonomous components which retain their identity, but which are linked in a more or
less informal manner. Their important characteristics include decentralisation and re-
lative lack of a co—ordinator. Within this framework the analytical models relating the
system dynamics to behaviors of component processes are mainly investigated. Some
suggestions concerning the model implementation to the design and control problems are
also proposed.

The paper is organised as follows. In section 2 we introduce illustrative examples of
cyclic processes specification and concurrent processes interaction, and then we provide
the model description and define related concepts such as a critical resource, critical
processes, and conflict states. Section 3 is devoted to presentation of the main results, and
formulates the problem and includes theorems providing self-synchronisation conditions
for cascade-like interacting cyclic processes. Section 4 shows how some procedures aimed
at performance evaluation of cyclic processes could be derived from obtained conditions.
Section 5 concludes the paper.

2. Concurrently Interacting Cyclic Processes

Processes specification is introduced and a model description is proposed which provide
the unified framework for the development of the self~synchronisation conditions.

2.1. Processes Specification

In order to introduce parameters that specify concurrent, cascade-like interacting proces-
ses let us consider a flexible Automated Measuring and Quality Testing System (MQTS)
as an illustrative example. As shown in Figure 1, this system consists of the following
resources: four inspection machines Mj, Mg, M3, and My, three industrial robots R;,
Rj, and Rg, three input buffers Bjj, B2; and Bai, and three output buffers By3, Baa,
and B32.

Three product types are inspected in the system. Each of them needs two machine
operations in order to complete the relevant inspection route. The inspection steps are
described as follows: For products of type 1 (type 2, and type 3) robot R; (R2, Ra)
takes an item from Bi; (B21, Bai1), approaches My (M4, Ms), and then performs the
first testing operation if My (Ma, Ms) is available, i.e. if the machine is not busy
inspecting other products. Next, robot Ri (Rz, Ra) moves the partially examined
product from Mj (M4, M3) and approaches M; (M;, My) if it is available. Then,
robot R; (R2, Rs) moves the tested part from M; (M;, M4) and places it in
Biz (Baa, Baz). Because robot R; (Ra, Rs) handles a product of type 1 (type 2,
type 3) through all steps of the inspection route, only one item of type 1 (type 2, type 3)
can be simultaneously examined. As a result, no more than three products of different
types are concurrently tested.
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There are four assumptions in the system:
() products of type 1 (type 2, type 3) are always available in Bi; (B3, Ba;),

(ii) products of type 1 (type 2, type 3) in Bjs (Bgz, Bsy) are carried away so that
B12 (B22, Bsz) cannot be overflowed,

(iii) any machine of MQTS that does not inspect a part is assumed to be available,

(iv) any robot that does not handle a product is assumed to be available, and is ordered
to take an available item from the relevant input buffer.

— | B;;

) —
-—| B, R, M, l
—— ]
=
$
By, |-—

(Bu]—

Fig. 1. A flexible automated measuring and quality testing system.

R,

It may be easily noted that only one operation can be simultaneously executed on one
resource, i.e. the robot or the measuring machine.

The rules provided determine the executlon of processes specified by the followmg
inspection routes:

IR; = (O1,1;R1, B11), (O1,2; R1), (O1,3; R1, M3), (O1,4; R1),(O1,5; R1, My),
(01,6;R1), (O1,7; R1, B12), (01,8, R1),

IRy = (02,1;R2,le),(og,2;Rz),(02,3;R2,M4),(02,4;R2),(02,5;Rz,Ml),
(O2,6;R2), (02,7, Ra, B22), (02 5; R2),

IR3 = (O3,1;Ra, Ba1), (O3,2; Ra), (O3,3; R3, M3s), (O3,4; Ra), (Os,5; R3, Ma), »

(O3,6;R3), (O3,7; Rs, Baz), (O3,8; Ra),

where (O;;;Ri,Bg) is the j-th operation performed by the i-th robot taking (or
placing) an item of the i-th sort product type from (in) the k-th buffer; (O;;;R;)

(1)
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— the j—th operation performed by the i-th robot: (i) carrying an item of the i-th
product type between buffers and machines or between machines and buffers; (ii) moving
its manipulator between output buffers B;; to input buffers B;z; (O;;;Ri, Mg) - the
j—th operation performed by the i-th robot and the k-th inspection machine.

Assumptions imposed encompass a quite realistic situation typical for the real-life
Flexible Manufacturing Systems (Laftit et al., 1992; Viswandham and Narahari, 1992).
In the case under consideration some of MQTS resources, i.e. M; and My, are
shared among the concurrently executed processes of the products testing. The processes
competition leads to the occurrence of delays during which processes wait for the access
to the commonly shared resources. This fact results in a process efficiency decrease. The
processes efficiency 7 will be used as a performance measure and it can be determined
by the following formula

A
=1-= : 2
n T (2)
where n is the number of all component processes, T' — a cycle time of the interacting
processes system, A = 0 (T —n;T;), T; — a cycle time of the i-th component
process, n; — a number of times the i—th process occurs during the period 7.

Efficiency close to unity means that the system resources are used effectively, low
efficiency means that they are wasted. In other words the efficiency allows one to know
how close he or she is getting to the best the system can do. Of course, in the case of
elementary component processes (where no delays occur) the efficiency is equal to 1.

In order to analyse the behavior of the MQTS considered let us assume that each
process specification is reduced to two stages only. Each stage contains preceding and
succeeding auxiliary operations as well as the main inspection operations performed on
machines M; — My, i.e. the only systems shared resources. Consequently, the time of the
first stage is equal to a sum of the first handling operation, and the first transportation as
well as the first inspection and the second transportation operation. In turn, the second
stage time is determined by a sum of the second inspection, the third transportation,
the second handling, and the input buffers approaching operations. In other words, each
process can be considered as a process consisting of two stages that follow each other
alternately. The graphical representation of the model considered is shown in Figure 2.

Before introducing the concept of the state space based processes representation
let us focus for a moment on the periodicity of a class of elementary processes under
consideration. According to rules (i) — (iv) each inspection process can be treated as
cyclic, i.e. such that the following condition holds

An, T € N,, Vi>m:V(t)=V(iE+T) (3)

where V(t) = {crd;V(t) : i € {1,2,...,n + 1}} is a vector V(t) restricted to its
first n+ 1 parameters; V(t) - the process value at the t-th instant of time, i.e.
V(t) = (v1,v2, ..., Unt1,t), vi — value of the i~th process parameter; T' - the cycle time;
No = NU{0}, N - the set of natural numbers, crd; A = a; for A = (a1, a2, ..., a;,...,an).
Note that introduced assumption ¢ € N results in treating time as a discrete-variable
whose value can be expressed as an integer. Such interpretation of the time nature is
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very often applied in real-world problems. As a consequence, the current process value
V(t) should be distinguished from the relevant state concept. The following expression
determines the relationship between both concepts

S; &L v(t) and ten (4)
where ;= J{rCN:r={k,k+1,..,k+r}, k,r € N} is a union of a family of sets
of times such that V(t) = V(¢'), for ¢,t' € ; S; — the i~th state of the process.

The same representation of cyclic behavior can be applied in the case of modelling
whole systems of cascade-like coupled elementary processes. In order to illustrate the
behavior of concurrently interacting processes, let us return to the example of the system
of interacting, simplified (i.e. reduced to two complex- operations) processes shown in
Figure 2.

P, 1 P, + Py l
~| | e

Mz Ml M4 M3

Fig. 2. Graphical representation of cascade like interacting cyclic processes.

Consider Gantt’s charts (presented in Fig. 3) which are obtained for the following
operation times

T(P1,R1) =25 T(P1,R2) = 1; T(P2,Ra) = 1;

5
T(Pz‘, RB) = 4; T(P3,R3) = ]_; T(PB; R4) = 3. ( )

where T(P;,R;) is the operation time required for execution of the j-th stage in the
i~th elementary process, e.g. T'(P1,R;1) is the operation time required by the operations
corresponding to resource R; standing for M;j.

Since both ”progess like” and ”resource like” representations are equivalent to each
other, thus they can be used alternately. In each particular case their use depends on the
application context considered. The state representation may be directly derived from a
‘given version of the Gantt’s chart.

In the case of diagrams shown in Figure 3a and Figure 3c the following three—tuple
provides a relevant description state S

processes Py P, P
~ =~ =~
state §=( 51 , Ss2 , 83 ) ) (6)

resources R: R, Rs R4
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where
) if process P; is executed on R;
i+1 if process P; is executed on Rij1
§i=4 * if either process P; is suspended on R; and waits for R, (7

release or process P;_; is suspended on R; and waits
for R;_, release

However, according to the diagrams shown in Figure 3b and Figure 3d, the relevant
state can be determined as the following four—tuple

Tesources Ry Ro Rs Ry
o S S
state S=( s g s3 54 ) ) (8)
(S, -
processes P: P, Ps

where

if process P;_; is executed on R; or process P; is executed on R;
0 if process P; is executed on R,y and process P;_; is executed
on Fi-1 9)
* if either process P; issuspended on R; and waits for Riq1
release or process P;_; is suspended on R; and waits
for R;_, release

S,'——-ﬁ

Note, that last state representation has a very simple and clear form. Moreover, it
can be easily noted that both forms, i.e. (6) and (8) are equivalent to each other, both
of them can be deduced from each other. For the sake of simplicity, whenever it will not
lead to confusion, the former state notation S will be used.

According to rules (i) — (iv) a behavior of cascade-like coupled elementary (i.e.
having simplified form) cyclic processes are determined by the following rules:

e each elementary cyclic process P; can be treated as a sequence of
alternately repeating operations executed on the two associated resources
R;, and R;41, respectively;
e on each system resource only one operation can be executed simultane-
ously; (10)
e coupled processes that compete with access to the system shared resour-
ces can be either executed or suspended on one of the relevant (associated
to them) resources;
e a process can be suspended on a given resource only if the other one is
busy with its neighbor competing processes.

Thus, each state consists of unique i € {1,2,3,4} such that s; = 0. Its structure
easily expresses the encoded situations, e.g. the following state (1, *, 1,0) (in order to
simplify notation the following representation (1*10) will be further used) means that
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processes P; and Pj are executed on R; and Rag, respectively, while process P,
being suspended on Ry awaits for R3 release.

a) ©)

e

T=6 . T=10

L,
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Fig. 3. The Gantt’s chart of a process flow:
a) the ”process version” diagram for dispatching rule #1;
b) the ”resource version” diagram for dispatching rule #1;
¢) the "process version” diagram for dispatching rule #2;
d) the "resource version” diagram for dispatching rule #2.

Note that according to the above assumed rules (10) the states such as (0***) or
(1111) cannot occur. The reachability graph encompassing the case considered is shown
in Figure 4. Note that states of diagrams shown in Figure 3b and Figure 3d correspond to
the following (1110), (0111), (1011), (101%*), (*110), (01**) four—tuples of Figure 4.
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Fig. 4. Reachability graph of the MQTS model from Figure 2.

Moreover, comparing the considered reachability digraph with diagrams in Figure 3b
and Figure 3d it becomes evident that assumption of particular values of operation times
T(P;,R;) limits the whole state space to some of its subspaces. In the case considered,
it leads to the subgraph shown in Figure 5.

Ss

*110\

Fig. 5. The subgraph obtained from the reachability graph shown in Figure 4, for T(P;,R;)
shown in the charts in Figure 3b and Figure 3d.
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Charts in Figure 3b and Figure 3d describe the ways of executing two different.
processes. Their alternative representations, encompassing the relevant processes flow
are shown in Table 1 and Table 2, respectively.

Tab. 1. Alternative representation of the processes realisation shown in Figure 3b.

Time [t [[1 [2 |3 {4 |5 |6 |7 |8 |9 [10|11]12]13]|14]15
v |1 {1 {0 |1 {1 fo |1 |1 {0 |1 |1 |0 |1 |1 |0
v |1 {0 {1 Jo {o 1 |1 o1 o fo |1 |1 |o |1
v [[es|l1 |1 |1 |1 |1 |* |1 |1 |1 1 * {1 ]1 |1
va |0 [T [T [T [* |* Jo 1|1 {1 |*|*]o |11
State || Si || S1 | Sz | Ss | S2|Sa|Ss|S1|Sa|Ss|S2|Sa|Ss|5S1]|S2]|8s

Tab. 2. Alternative representation of the processes realisation shown in Figure 3d.

Time ||t ||1 |2 |3 |4 |5 7 (819 1101112 {13|14 |15
v |f1 |1 |0 |1 |1 0 |1 (10 |1 |1 (0 {1 {1
ve |1 |0 |1 {0 (O {1 |1 (O O |1 |1 {0 j1 {0 |O

V() ||vsfl1 |1 |1 |1 J1 {1 |1 {11 |1 |1 |1 |1 1
ve||O |1 {1 |1 [* ]0 [1 1 {1 |* [0 |1 (1 |1 |*

State || S; |{ Sy | S2|S3|S2|Sa|Ss|Ss| Sz |Sr|S1|S2|S53|S2|54

According to expressions (3) and (4), the following two sorts of cycles can be consi-
dered: '

o the cycle time T, associated with the sequence V(t) of process current values

e the cycle-state time T associated with the process states sequence (Sji 11 E€N)

For the process determined by charts in Figure 3b and Figure 3d, the relevant cycles
have the following values: T, =6, T, = 6, and T, = 10, T, = 9, respectively. It means
that for the same maximal efficiency of the component processes (i.e. equal to 1), the
resultant executions of cascade-like process have different coefficients of resource utilisa-
tion. In the first case, according to the performance measure determined by formula (2)
the efficiency of cascade-like interacting processes is equal to 0.833 while in the other
case it is equal to 0.9. So, system resources are better utilised in the case of the other
than in the case of the first execution of processes.

It is worth noting that ways of process realisation under consideration result in dif-
ferent implementations of dispatching rules. The dispatching rules determine the process
flow in the case of occurrence of .conflict events. Conflict events are defined as pairs of
states of the same first component and such.that there exist instants of time that all the
states directly succeeding the common state are simultaneously available. For instance,
events (S4, S5), (Ss, Se) are conflict events in the digraph shown in Figure 5.
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It means that the dispatching rules select a sequence of alternately following states
and events. So, the ways that dispatching rules are used influence the resultant pro-
cess which can be either cyclic or not. Moreover, the dispatching rules determine the
parameters of system steady—state behavior, especially its efficiency.

The dispatching rules applied are usually assumed to be deterministic ones, i.e.
either they are constant or their selection mechanism is determined by the explicitly
given recurrent procedure. The deterministic character of dispatching rules as well as a
finite state space guarantees a cyclic steady—state functioning of concurrently interacting
processes.

2.2. Model Description

A system of processes that follows rules (10) and such that its structure matches the
scheme shown in Figure 6 is said to be a system of cascade-like interacting cyclic pro-
cesses.

Fig. 6. Model of cascade-like interacting cyclic processes: P; - the i—th simple process;
R; - the i-th system resource.

Let us remind that at any moment of time each simple (composed of two operations)
process P; is either executed or suspended on one of the following two resources R;

and R,,‘+1.

Let us introduce now a formal definition of the class of systems under consideration
which is based on a concept of a simple cyclic process.
Definition 1. A sequence of vectors SP = {V(t) : V(@) = (v1,v,t), tEN, v €
{0, 1}}, such that the following conditions hold is said to be a simple cyclic process
specified by a cycle time T (SCP(T') - for short).
(i) erd;V(t) =1 and crdaV(t) =0 or

crd; V(t) = 0 and crdy V() =1, Y crdsV(t) €N,
(i) 3m,T € No, Yt>m:V(t)=V(t+T),(V defined in (3)

where T = T(1) + T(2) is the cycle time of SCP(T), and

T
T()= Y adiV(t), T()=T-T(Q).

t=m+1
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Suppose that components v; and w; of vector V(t) reflect the operations
performed on the resources Ry and Rj, respectively. So, the SCP(7") can be interpreted
as a sequence of alternately executed operations. Therefore, the times required by the
operations are determined by T(1) and T'(2), and their sum specifies a cycle time T
of the process considered.

Further, for the sake of simplicity, the following notations P; and SCP(T;) of the
i-th simple elementary component process will be used equivalently (whenever it will not
lead to confusion).

Definition 2. The system composed of Ri,Rg,...,Rn41 resources which are accessed
by Pi,P3,...,P, simple cyclic processes SCP(T;) in the way following the scheme of
Figure 6 is said to be a system of cascade-like coupled cyclic processes specified by
sequence of time cycles T" = (T1,T3, ..., T}, ...,T;,) (CP(T™) — for short). :

The processes executed in CP(T},) are determined by the following definition.

Definition 3. The sequence of vectors

P, = {V(t) V(@) = (v1,v3, .., %), .., Vng1,t), tEN, v; € {0,1,*}},

such that the following conditions hold is said to be a process of CP(Z™) (PCP - for
short): :

© vien, 3je{1,2,...n+1}, v =0, and
(vji-1=vj41=1 for j€{2,3,...,n} or
vip1 =1 for j=1 or
vj-1 =1 for j=n+1),

(ii) if crdgV(t) = crdgV(t +1) =0, then Vit € N,

* if crd, V(2 * 1} f L2, .n+1}\{k—- 1,k k41
: 1if ed, V(t)=1 for r€{1,2,..n+ 1}\ {k}
(iii) if crdg V(t) = crd, V(t+1) =0 and k # r, then crdgV(t + 1) = 1, for ¢ € N, and
Vte N,

erd; Vit + 1) = *if erd;V(t) € {*,1} for j€{1,2,..n+ 1}\{k,r~1,r,r + 1}
! | L erd; V() € {*,1} for j € {1,2,..n+1}\ {k,r}

The relationship between simple cyclic processes V;(), i € {1,2,...,n+ 1}, and the
resultant process V(t) is determined by formula (9). It means that at each instant ¢
for V(t) and Vj(t), for i € {1,2,...,n + 1}, the following condition holds:
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(1 if ed Vi(t) =1 or erdyVioi(t)=1

0 if crdyVioi(t) =1 and erdpVi(t) =1

* if process P;is hanged on R; and

cd;V(t) = T (crd;Vici(t) =1 and crdiViga(t) =1 or
crd; Vioi(t) = 1 and crdiy V() =*  or
crd;_1V(t) =* and erdi Vigi(t) =1 or
crd; V(1) =* and erdi1 V() =*)

\

According to formula (4) the above mentioned concept of a PCP process can be also
considered in terms of a state space.

Definition 4. Let P, be a given PCP process. The following sequence of states is said
to be a state-process of CP(T™) (SPC — for short).

P,={5:5=V(t), V(t) € {crdiP, : i € N}},

where V(&) = (v1,v2,.,Un41) Is a vector V() = (v1,v2, o', Unt1,t) restricted to
V1, V2, -, Un41-

It is easy to note that P, does not allow one to determine-the ”source process” P,.
As a consequence, P, cannot be used for the quantitative evaluation of system perfor-
mance. However, because of its natural interpretation in terms of theory of automata, P,
representation seems to be a well suited tool for the interacting processes analysis and
the control procedures design.

2.3. Basic Concepts

In order to obtain formulae that provide quantitative evaluation of P¥ processes, the
following concepts of a conflict event, a critical resource, and a critical component process
are introduced.

Let P,(S*) = {P, : crdiP, = S*} be a set of all alternative P, processes specified
by a PCP process being, in turn, determined by the initial process value V(1) (that
corresponds to S$* = V(1) ), and a set of operation times

oT = {T(PiaRi)a T(P‘i) Ri+1) (i€ {1a2) "'?n}Y T(Pi)Ri)) T(PiyR'i+1) € N}
Consider the graph G(S*) = (SP*,() such that
SP* = {c1d;P, : P, € P,(S*), j€ N}, ( C SP*x SP*,

where

S(S' &% 3P, € P,(S*), Ik €N :5=adP,, §' = adi Py, V5,8 € SP*.

It is worth noting that

(i) from Definition 4 and assumptions concerning P +(S;) it follows that besides of S*,
the graph G(S*) = (SP*,() is also determined by a set oT;
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(ii) according to assumed rules (10) and formula (9) it follows that a finite number of
component processes implies a finite set of states SP*;

(iii) the graph shown in Figure 5 is specified by G(S)) which in turn provides two
possible process realisations to be shown in Table 1 and Table 2.

The following definition providing a concept of a Flow Graph enables us to introduce
a definition of conflict events.

Definition 5. Consider G(S*) = (SP*,(). The graph I'(S*) = (X*, A) is said to be
a Flow Graph (FG — for short) of possible and initialised at S* realisations of processes
P,(S5*), if the following conditions hold:

(i) X* = X*/. is a set of equivalence classes, where the equivalence relation
~C X*x X*, X*={(S,n):S € SP* neN},is defined as follows:
¢~z &L cdiz = crdy2’ and crdyz = crdyz’ + T, V2,2’ € X*;

(i) z Az’ &, crdyz (crdiz’ and crdjz [> crd;z’, where crd;z [> crdiz’ means that
crdyz’ is directly available from crdyz at the moment crd,z and cdyz’ =
crdaz + 1 holds; :

(iii) (crdyz ( crdyz’) & (crdaz = crdaz’+1 or crdya’ —crdez =nT), Vz,z’ € X*,
" Vne€eN.

As one can see, the G(S*) shown in Figure 5 may serve as an illustrative example of
the definition provided.

In the case of the example considered earlier (see Tab. 1 and Tab. 2), the following
set of processes is identified P,(S1) = {P(S1),P(S})}
where

P(Sl) = 51,52,53,52,54,56, 51,52,53,52,54,56, Sl,SZ,Sa, s
P(Si) = Sl,Sz,S3,S2,54,55,53,52,57,51,52,53,52,54, vee

Thus, according to Definition 5, the relevant FG has its graphical representation as shown
in Figure 7.

Definition 6. Consider I'(S*) = (X*, A) being a FG where each pair (z,2'), z,2' €
X*, such that z Az', is said to be an event. Two events e = (z,z') and €' = (2", z*)
are said to be the conflict events, i.e. e,¢’ € E if and only if crdie = crd;e’ holds,
where E C A denotes a subset of conflict events. )

The occurrence of conflict events indicates the possibility of alternative process exe-
cution. In the case considered (see FG shown in Fig. 7) there exist only two conflict
events, i.e. e = (z5,27) and ¢ = (x5, z¢).

Because alternative process executions lead, in the general case, to different values
of performance measure, thus the selection problem of an appropriate realisation plays
a primary role. For its solution, the dispatching rules are applied. It means that a
problem of optimal control of PCP processes can be treated as a problem of the relevant
dispatching rule selection.

In order to consider the quantitative properties of ‘PCP processes behavior let us
introduce the following definitions.
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z17 = (53,9)
210 = (52,10) S 1o = (52,8)
L1 = (S1, 7)
z7 = (Se, 6)

Iy = (54, 5)

T = (51,1) 12=i52,2) z3 = (53, 3) ;‘:r= (52,4)

T14 = (Sz, 13) T = (S51 6)
Tz = (53, 12) Ty = (53,7)
r12 = (52, 11) g = (52,8)

T11 = (S1,10) T = (57,9)

Fig. 7. The flow graph obtained from the graph shown in Figure 5.

Definition 7. Consider CP(T™) system. Let P, = 8;,,Sj,, S5, Sj;, ., be a SPC
process such that each state S;, has the form determined by rule (7). The k-th
component process P is said to be a critical component process (CCP-for short) if and
only if the following condition holds

crdg(crdmPs) #*, VmeN

Definition 8. Consider CP(T™) system. Let P, = S;,,S;,,8j;,--,5j;,... be a SPC
process such that each state Sj, has a form determined by rule (9). The k-th resource
R is said to be a critical resource (CR — for short) if and only if the following condition
holds

cdg(crdmP,) =1, YmeN

The process P, in Figure 2c and the resource M3 in Figure 2d can be considered
as the relevant illustrative examples of the concepts provided.

The concepts provided reflect the fundamental features of the class of processes
under consideration, which are the subject of the following proposition.

Proposition 1. Every CP(T™) system contains either a critical component process or
a critical resource.

In order to prove this thesis let us note that the simultaneous absence of a critical

resource and a critical process violates rules (10) which determine the CP(1™) system
behavior. The component processes compete with the access to common system resources
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in order to reach their performance before their connection. This results in occurrences of
either the most busy resource or the slowest process which, in turn, acts as ”bottlenecks”
in the P, execution. In other words, the concepts provided in Definition 7 and Definition
8 reflect the nature of CP(T™) system behavior which is aimed at the best utilisation of
system resources. '

Now let us introduce two new concepts of a steady-state and transient-state beha-
viors of CP systems. In the remainder of this paper, the following abbreviations SSB and
TSB will be used instead of the terms: the steady-state and transient—state behavior,
respectively.

In the case of the example considered earlier (see Tab. 1 and Tab. 2), the following
processes were identified

P, = 51, 53,53,52,54, 56,51, 52,53, S2, 54, S, ... — obtained for dispatching rule #1,
P; = 51, 59,53,852,54,Ss5,Ss, S2,57, 51,52, S3, ... —obtained for dispatching rule #2.
These processes are cyclic and contain the states that belong to steady—state behavior
of CP(T™), i.e. the sequence of states which follow formula (3) for m = 0. Usually,

the steady—state behavior is preceded by a transient-state behavior, i.e. the sequence of
states determined by formula (3) for m > 0.

As it can be seen, different operation times T'(P;,R;) lead to different cycles. For
example, the following operation times

T(PI)RI) = 1) T(P21R2) = 3, T(P3) R3) = 11
T(Pl,Rz) = 1, T(P2,R3) = 1, T(Pa, R4) =1

lead to the process P,, = 55,87,51,853,54,5s5,53,54, ..., where the sequence 53, S7,S5;
determines the transient—state behavior, and the relevant steady-state behavior is de-
scribed by the sequence Ss, Sy, S5, S3,S4,55,....

Also, different initial stages lead to different transient—state behaviors. For instance,
assuming the initial stage U1(1) =2 of the component process Vi (see former example)
leads to the following process

P, = 51,83,52,57,51, 52,53, 52,54, S6,51, S2, 53,52, 54, Ss, ...

where the transient-state and steady-state behaviors are determined by the sequence
S1,93,52,57 and S, S», S3,S52,54,56,51,52,53,5, ..., respectively.

Here we assume that U;(j) means a stage of the j—th operation executed in the
i~th component process at the initial moment t = 1; for example, the first operation of
the first component process P; has two stages U;(1) € {1,2}, and the second operation
of the process considered has just one stage U;(2) € {1}. Note that sets {1,2}, {1}
contains all natural numbers limited by the relevant operation times T'(P;,R;) =2 and
T(Pl, Rz) =1.

Many questions arise regarding the modelling and performance evaluation of the
systems composed of cascade interacting cyclic processes. For example: what are the
conditions that determine the CP(T") system steady-state behavior? Is a cycle of a
CP(T™) system an initial state invariant? What are the conditions of the transient-state
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occurrence? How does the cycle time of a steady-state behavior of CP(T™) depend on
the periodicity of its component processes? What are the conditions that guarantee
the absence of conflict events? How are the steady-state and transient—state behaviors
influenced by parameters determining values of initial stages of component processes?

3. Self-Synchronisation Conditions

The questions mentioned earlier inspire and motivate our further considerations that are
aimed at providing the conditions determining a self-synchronisation mechanism that
plays a primary role in the course of a CP(T™) control problem solving.

3.1. Problem Formulation

The objective of these investigations is two folded. The providing of the analytical
formulae that renders it possible to calculate an efficiency of CP(T") system is our first
goal. The other objective is to provide the conditions that are responsible for a self-
synchronised behavior of CP(T™) systems.

In order to fulfil the requirements of the first objective formula (2) is taken into
account as a performance measure. Its parameters, such as a cycle time T =T, and
n; determining a number of times the i—th component process occurs during the cycle
time Ty, have to be calculated. The problem considered is to find out an analytical model
describing the relationship existing between a CP(T™) system behavior (evaluated by n)
and cycle times T; of component processes SCP(T;) as well as an initial state. It means
that the problem considered consists of the following two subproblems.

The first one concerns finding out a formula that provides T, as afunction of initial
state S* and a set of operation times OT. The other problem can be stated as a task
of developing a procedure that expresses the dependence existing between n;, where
n; € N, and a set of a given data including a cycle T, a set OT, and CCP and/or CR
as well. Solution of the above mentioned subproblems provide the components of the
performance measure assumed.

As opposed to the goal discussed above the other objective concerns the evaluation of
qualitative measures of CP(T™) performance. The investigations of relationships existing
between the introduced concepts of PCP periodicity, conflict events, CCP, CR, SSB,
and TSB7 are the main subjects of further considerations. So, the problem considered
is how to find the conditions to predict the qualitative features of CP(T™) behavior.
Among others, the conditions ensuring the cyclicity of PCP executed in CP(7™) are the
conditions on which we will focus further attention.

Because of the space limits, the scope of the above declared investigations will be
restricted to the CP(T™) having the unique CCP. We believe, however, that the results
obtained will provide a formal framework to investigate the whole class of CP(T") as
well as other classes of concurrently interacting cyclic processes.

3.2. Periodicity

Let us consider a set of all states reachable in CP(T™) for T € N" and determined
as S(n) = {S = (51,52, -, 5i, ., 5n) : 8 € {0,1,*¥}} such that the following conditions
hold
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1) vSeS(n), ! ie{l,2,..,n}:5 =0

(i1) if s; =0 and i€{2,3,...,n— 1}, then s;41 =s;_1 =1, and
if s; =0, then s, =1, and if s, =0, then s,_; = 1.

Note that the above conditions directly follow from condition (i) of Definition 3 and lead
to conclusion that value crd;S =0 occurs uniquely in each state S € S(n).

As an illustration of the above introduced notion, the reachability graph G =
(5(4),() shown in Figure 4 can be considered. The relation ( is defined in section 2.3.

The concept introduced here of the set of states S(n) which are potentially rea-
chable in a class of CP(T™), T" € N™, as well as the following descriptions provide a
formal basis for further considerations:

e P, that provides a P, (according to Definition 4) is said to be a source process of
P,,

o Let I'(S*) =(X* A) beagiven FG. A set X. C X* is said to be a set of cycle
states, i.e. a set of nodes z € X, such that for each of them there exists a closed
‘path of nodes o = z,z/,...,z" and such that (z",z) € 4, z,2',...,2" € X..

Proposition 2. Consider CP(T™). Let I'(S*) = (X* A) be ¢« FG determined by
given P, such that crd;P, = S* S*€ S(n).

E =0 ifand only if ||P(SH|| =1 and cxd1P, = S* P, € P(S¥.

Proof. First, we assume that the set of conflict events E = §. Thus, from Definition 6 it
follows that the corresponding FG (see Definition 5) contains a unique cycle. Moreover,
each z € X has a unique successor z’ such that (z,z’) € A holds. Since there exists
a unique sequence A = z,z’,...,z* such that either z € X, or (z*,z) ¢ 4, Vz*€ X,
hence there exists a unique, infinite sequence of states P, = (S: S =crd;z and z € X)
such that crd;P, = S* and S* = crd;z. Consequently, unique P, yields || P,(S*)|| =1
and F =0 holds for I'(S*) obtained from G(S*). ||P(S*)|| =1, ctd;P, = S*, P, €
P(S*) implies £ =0 (see Definition 5 and Definition 6). =

Corollary 1. Consider the assumptions of Proposition 2. If E =0, then P, is e cyclic
process.

Since S(n) is finite, the proof directly follows from Definition 4, Definition 3, and
formula (4).

The following lemma leads to a theorem that provides the conditions allowing one
to search for the qualitative properties of CP(T™) processes.

Lemma 1. Consider a given system of cyclic processes CP(T") and the relevant set of
the potentially reachable states S(n).

If there exists P, such that ||P(S¥)|| =1, S*=crd,P,, S*€ S(n), P, € P(S¥), then
for each P such that S*# S** where S**=crd, P, the following condition holds

IP(S**)II =1, P, e P(S*). (11)

Proof. Assume that S** is such that there exists z € X*, I'(S*) = (X*, A) and
S** = crdy z. Thus, either X** N X* = X.* or X** N X* #£ X, *, ie. the intersection
of FGs generated by P, and P/ is either equal to a set of cyclic states or not. In
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the first case, because G(S*) has a unique cycle, then G(S**) has to have also one
(the same) cycle. In turn, the assumption that there exist more than one cycle leads to
contradiction with ||P(S*)|| = 1. The second case yields contradiction with assumption
IP(S*)|| = 1. Note, that the following case X**N X* =0 cannot occur because the
intersection of a set of states which are contained in a cyclic process, with a set of any
other process is not an empty set. This is because the finite operations times imply that
any process realisation must include at least two states S and S’ such that for each
one the following condition holds

Jke{l,2,..,n}V;je{l,2,..,n}\ {k} : cxde S=0 and crd;S =1, (12)

where n is a number of all the component processes P; of a:given CP(T™). Moreover,
any cyclic process contains at least n states such that condition (12) holds.
|

The above lemma provides the conditions that are sufficient for the existence of a unique
cycle in CP(T™). This fact is expressed in the following corollary.

Corollary 2. Consider a given system of cyclic processes CP(T".) and the relevant set
of states S(n).

If there ezists P, such that ||P(SH|| =1, S*= cxdiP,, S* € S(n), P, € P(S¥), then
every P such that S' € S(n) have the same unique cycle specified by a cycle time T,.
The following theorem provides the generalisation of the results obtained so far.

Theorem 1. Consider a given system of cyclic processes CP(T™) and a relevant set of
potentially reachable states S(n).

If there ezists P, such that ||P(.S'*’)|| =1, S*— cad,P,, S*€ S(n), P, € P(S¥), then
CP(T™) has a unique cycle which is an mztzal state and an initial phase independent.

Proof. The uniqueness of a cycle and its initial state independence follows directly from
Lemma 1 and Corollary 2.

In order to prove that the cycle is also the initial phase independent let us note that the
different possible initial phases of a given state S’ € §(n) that influence the process
execution are included in the reachability graph G = (S(n),(), i.e. they are encompassed
by a set of events {(S,S") : (S’,S") € ( }. Because for any initial phase of an initial
state S* the relevant P,(S*) is such that for the associated I'(S*) the following
condition E = @ holds, then the assumptions of Lemma 1 are satisfied. Thus, according
to Corollary 2, all processes P, beginning with S” have the same cycle. |

The above theorem provides the conditions sufficient for self-synchronised functio-
ning of CP(T") systems. It means that, if for CP(T™), there exists P, such that
S* = crd;P, which has a unique realisation (the relevant graph G(S*) has a unique
cycle), then all the possible processes initialised at any state of S(n) and at any possi-
ble initial phase will have a unique cycle specified by a cycle time T.. The considered
property reflects the so—called self-synchronised behavior of CP(T™), i.e. behavior accor-
ding to which any phase of any initial state results in a cyclic steady—state performance
characterised by T,.

Lemma 2. Consider assumptions of Proposition 2. Let a unique CCP component P
ezist for a given CP(T™) such that E = 0.
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1. If T.>T;, i € {1,2,...,n}\{c}, then the cycle time T, of the corresponding source
process P, 1is equal to T,

2. If there exists Ty such that k € {c—1,c+1} and Tp; > T;, i € {1,2,...,n}\ {k},
then the cycle ttme T, of the corresponding source process P, 1is equal to nT,
where (n— 1T, < T} < nT;.

Proof. From Corollary 2 it follows that the corresponding source process P, has a unique
cycle time T,. Thus, according to Definition 7 and Proposition 1, T, = mT,, m € N,
holds. The following two cases can be considered. First, the assumption T, = T,
yields the condition T, > T;, Vi€ {1,2,...,n}, because T, = n;T; +z;, z; #0, i €
{1,2,..,n}\ {c} holds. In turn, the assumption m > 1 yields T, = mT,. Moreover,
because mT, = n;T; +z;, z; #0, i € {1,2,..,n} \ {c}, then Ik € {1,2,..,n}, Vi€
{i,2,..,n}\ {k} : Ty > T; holds. Thus, the assumptions T} > T;, Vi € {1,2,...,n}\
{k},k € {c—1,c+1} implies that mT, = Ty + z, xx # 0 such that z; < Tc holds.
That is because either T'(Pey1,Ret1) < T(Pe,Re) or T(Pe—1,Re-1) < T(Pc,Re)
holds. Consequently, the following condition is true: (m — 1)T, < T}, < mT. [ ]

Corollary 3. Consider assumptions of Proposition 2. Let a uniqgue CCP component P,
ezist in a given CP(T") such that E = 0.

If there exists Ty such that k€ {c—1,c+1} and Tp > T;, Vi€ {1,2,..,n}\{k}, then
a cycle time T, of the corresponding source process P, is determined by the formula
T, = nT,, where n = Ty div T,, and adivb is an integer result of divide operation
between a and b.

The proof follows directly from Lemma 2.

The results provided so far present the conditions sufficient for CP(T™) cyclic beha-
vior as well as for calculation of a cycle time T,. In the next section their extension to
the conditions that allow one to design CP(T™) systems of a guaranteed presumed cyclic
behavior are presented.

3.3. Performance Measure

Besides the conditions making it possible to calculate a cycle time 7, in order to
apply the evaluation measure 7 the formulae determining n;, ¢ € {1,2,...,n}, are
required. First of all let us consider the following proposition stating that the number
n; describing an amount of the component process P; occurrences during the period 7,
is an integer.

Proposition 3. Consider a given CP(T™). Let P, be a SPC specified by a cycle time
T, of the corresponding source process P,. FEach component process P; occurs in
CP(T™), during the period T,, n; € N times.

Proof. We need to prove that n; € N, i € {1,2,...,n}. From Definition 4, Definition 2,
and formula (3) it follows that the cycle is finite. Thus, let us consider a matrix C
of size (m xn) such that each row describes the subsequent state of the form (7) and
where m determines the number of states occurring in the cycle, and n the number of
component processes, i.e. the length of a state vector §.

Note that the 7—th column of matrix C presents an execution flow of the relevant
component process P;. Thus, in the i—th column sequences composed either of ¢ or
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composed of i+1 or composed of * can occur. Consequently, because P, is cyclic,
then for the ¢—th column the number n; determining the occurrences of subsequences
composed of ¢ is the same as the number determining the occurrences of subsequences
composed of i+1. [ ]

The above proposition provides the results enabling us to consider an analytical
model of the performance measure 7. The conditions which support the procedure
aimed at calculation of n; are presented in the following lemma.

Lemma 3. Consider a given CP(T™). If T" = (T1,T2,...,T,) is such that Vi €
{1,2,...,n},
W) NO>T>Ts>....>Th > T,
(it) T(Pi, Rit1) < Tita,
(111) T(P,','RH.l) + T(P;+1,R.{+1) < T(P,’, R.,) + T(P,;+1, R.{+2), and
(iv) P, is a CCP process,

then T, =Ty and n; =1, ny =T, divTs, and for 7 > 2, the n; can be calculated
from the following recurrent formula

n; =n;_y xn., where n, =T;_, divT; Vi€ {1,2,..,n}

Proof. From the assumption the following equations hold
n; T+ 2 = nip i + g1, for 1€ {1,2{...,71 - 1} (13)

Because P; is a CCP process, then z; =0 and consequently ny = 1. Thus, T3 =T,
holds. From T = nyTy + z3, 2 # 0 and Proposition 3 it follows that no = T, divTy
holds.

In order to calculate n; for i > 2, besides formula (13) the following set of equations
should be considered

T; = nj 1 Tip1 + i, for ie{1,2,..,n—1} (14)
The solution of both sets (13) and (14) follows from the following formulae

ni=nixnhx..xni, Ti=z +zH+..+z; (15)
Note that because nj =n; =1 and z{ =z; =0 the following formula holds:

/ / / / ! ! / / ! / / !
3:1+zz+...+:c,;+111xn2x...xnilfl}:m1+z2+...+zi+ll+fll xnzx..xn,-+11T,-+1

-~ ~

Xy ng . :c::]_ n;_;l
Finally, n} = Ti_, divT; follows from the assumption T(P,-,R,,'H) < Tiy1 and
T(P;,Rit1) + T(Pit1,Rit1) < T(Pi, Ri) + T(Pij1, Rigo) for Vie {1,2,..,n}. =
Corollary 4. Consider a given CP(T"). If T" = (T1, Ty, ...,Tn) is such that Ty >
Ty > ..> T, and P; is a CCP process, then n3 < nz <ng <..<n,, where n; =1,

holds.
The proof directly follows from Lemma 3.
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Corollary 5. Consider a given CP(T™). If T" = (T1, T, ..., T,) is such that Ty < Ty <
i K Tpe1 < T > Thg1 > ... > Ty, and P is a CCP process and other assumptions of
Lemma 3 hold, then n; is determined by the following formula

ni_ixn. where ni=T;_1divI; fori>k
n; = t ]
i=
I !

nit1 xn; where ni =Ty, divI; fori<k

The above corollary simply generalises the condition provided in Lemma 3.

Theorem 2. If {n; : i = {1,2,...,n}} such that n; < ny < ... < n, and T,

are given, then there exists a CP(T™) such that T" = (T1,T2,....,Tn),Th > T2 > ... >
T, T(Pi,Riy1) < Ti41 and T(P;,Rit1) + T(Piy1,Riq1) < T(Pi,Ri) + T(Piy1, Riga)

for i €{1,2,...,n}, Ty = T,, and the cycle times T;, i € {1,2,...,n}, are the solutions
of the following set of equations

n:’ = ﬂ—l divﬂ)
n; =n;_1 xnj, Vie{2,3,..,n}

Proof. Note that the considered cycle times T, i € {1,2,...,n} under consideration,
are the solutions of the following set of equations, provided by Lemma 3,

/ / J / / / / / / / I !
itz + .tz tnixnyx x0Ty =z) +zh+ o+ x40y xnyxoxni T

where zi +z)+...+z, = z; and nj xnhx..xnj=n; for a given n;, i € {1,2,..,n}
(following the above assumption), 7y = Ty, n; = 1, and =z = Ti_; — niT;, i €
{1,2,..,n}. [ ]

The above theorem provides the conditions that are sufficient for the calculation of 7.

4. Performance Evaluation

Let us consider once again the performance measure introduced in Section 2. Now,
according to the conditions submitted in Lemma 1, Lemma 2, and Lemma 3 the analytical
formulae allowing us to calculate components such as 7, and n; can be used to provide
an analytical model of the performance measure 7. Because of the recurrent character
of its component formulae, the finally proposed model has the following form

ﬂ:fl(Tl,Tz, ...,Tn) forTh < T <...< T > Tk+1 >..>T, and T, =T. =T, (16)

where f; is determined from the following expression

L n n
2Ty — T nT, — Y T yonT;
n:1_i=1 =1- i=1 :i=1
nT, nT, nTy,

Function f; that is written in a Pascal-like pseudocode has the following form
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Function fl (T17T27 ceny 1;1) (17)
function nl(é) { for i < k}
begin

if i#k then nl=nl(i+1)x (Tiy1 divT;)
else nl=T, divl,
end

function nr(é) { for i> k}
begin
if 1#k then nr=nr(i — 1) x (Ti-1 divT;)
else nr =T, divT;
end

begin
for j=1 to k do WT WT + nl(5) x T;
for j=n downto k do WT = WT + nr(j) x T;

WT =WT+T,{ for j=1}
fe WT
' kx

end {fi}

It should be remainded that the model developed is valid only in the case when assump-
tions of Lemma 3 hold.

In order to illustrate the application of procedure (17), let us consider the follo-
wing example. Let P, be a SCP process executed in CP(T™) such that 7™ =
(Tl,Tz,T3,T4,T5) where

=1, T(P1,R1) =5, T(P3,R4) =4
T, =9, T(P1,Rz) =2, T(P4,R4) =2
T3 =12, T(Py,Rs) =6, T(P4,Rs) =3 -
T, =5, T(P,,R3) =3, T(Ps,Rs) =1
Ts = 3, T(Ps,R3) =8, T(Ps5,Re) = 2

Consider P3 as a CCP process. Because assumptions of Lemma 3 and Corollary 6 hold,
then T, and n are determined as T, = 12 and 7 = 0.6. The Gannt’s chart of the
above considered process is shown in Figure 8.

In general case, the value of 5 can be determined by using computer simulation
methods. Let us recall, for instance, the processes specified by Table 1 and Table 2.
Because the processes violate the conditions provided in Lemma 3, the efficiency is cal-
culated using simulation techniques. The values obtained, viz. 7 = 0.833 and 52 = 0.9,
correspond to realisations determined by dispatching rule #1 and dispatching rule #2,
respectively. That means that the measure introduced may be used directly as a tool for
evaluation of dispatching rules. Moreover, it may serve as a criterion in the process of
decision making that follows from the optimal control problems.

Besides the performance measure 7 other ones may also be considered. Because of
the space limits let us focus on two of them, i.e. an average cycle time AT} of the i-th
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component process P;, and the system stability margin SM. The first of them is defined
as follows

AT, = = (18)

where T, is a cycle time, n; — a number determining the amount of occurrences of the
component processes P; in the period T,.
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Fig. 8. The illustration of possible processes with one CCP.

The other measure is defined by the following formula

SM = ie{lrglg’n}{x,- cx; # 0} (19)

where z; =T, — n;T;, and n;, T; follow from the assumptions of Lemma 3.

The average cycle time AT; provides information about the ”disturbance” of the
nominal cycle time T;, i.e. about the difference AT; — T;. Such information can be
valuable for the efficiency evaluation of P; usage. In turn, SM provides information
about the possible changes of the cycle time T; that may eventually lead to new critica!
processes, i.e. to the new cycle time T, and 7 values.

The performance measures provided will be the subject of further investigations,
particularly from the view point of more general classes of CP(T™), i.e. classes including
simultaneous occurrence of more than one critical process and/or critical resource.
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5. Concluding Remarks

The paper presents a new approach to the modelling and performance evaluation of
systems of discrete processes, sharing a set of reusable resources. The approach is il-
lustrated on the basis of the cascade-like coupled processes. It can, however, be also
applied to create models of more complex systems either belonging to or which can be
reduced to the class considered.

The analysis of the behavior of the concurrently interacting cyclic processes leads
to the conditions determining the periodic performance of the whole system. It has
been proven that a unique P, belonging to- CCP processes is the sufficient condition
for CP(T™) self-synchronised functioning. It means that the functioning of a system is
specified by the same cyclic steady—state behavior being independent of an initial state
and/or its initial phase.

Besides the results having a qualitative character, the conditions sufficient for a
cyclic performance, i.e. having a quantitative character, have been provided. Thus, we
proposed an analytical model aimed at performance evaluation of a system composed of
a set of cyclic processes as well as we provided the conditions sufficient for the synthesis
of the systems encompassing a presumed cyclic performance.

The work presented in this paper is of great interest for evaluation and synthesis of
a wide range of systems composed of a set of independent and loosely interacting cyclic
processes. The manufacturing systems, computer/communication network. systems, as
well as ecology and sociological systems that are specified by their cyclic steady—state
behavior, can be modelled and analysed using the approach proposed above.
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