Appl. Math. and Comp. Sci., 1993, vol.3, No.4, 777-790

NEW ALGORITHMS FOR THE MULTIPLICATION OF
SERIES OF RECTANGULAR MATRICES _
AND THEIR PARALLEL IMPLEMENTATIONS

- RoMAN WYRZYKOWSKTI*, HENRYK PIECH*
Jurt KANEVSKI**, ViapiMiR LEPECHA**

In the paper, two algorithms are proposed for the multiplication of series of rectan-
gular matrices. Using the associative property of matrix multiplications, these algo-
rithms allow us to decrease the complexity of computations in comparison with the
direct algorithm. Parallel implementations of all the algorithms are then discussed
for a linear array architecture. Finalfy, the efficiency of these parallel implementa-
tions 1s discussed.

1. Introduction

The methods of linear algebra make a basis for mathematical models in various fields
of science and technology (Kung et al., 1986; Rice, 1981). Particularly, in solving some
problems from digital signal/image processing (Milovanovic and Stoicev, 1985; Stoicev
et al., 1990; Urguhart and Wood, 1984), a problem of practical interest is the multipli-
cation of series of rectangular matrices

¢ =TI 4)

where A; is an N; x M; matrix. When multiplying these matrices in the natural
order, we will face a large excess of computations. For example, when performing C =

(((A1[5 x 4]x A4 x 6]) % A3[6 x 3]) ¥ Aa[4 x 2]) * A5[2 x 3], where sizes of input matrices are

shown in brackets, 310 scalar multiplications have to be employed. However, using the
associative property of matrix multiplications and changing the order of multiplications,
the number of scalar operations can be considerably decreased. For example, for C =

(Al * (A2 * (Ag * A4))) * Ag, only 166 scalar multiplications are sufficient.

Matrix-multiplications are computationally expensive because O(N3) multiply—
add operations are required (Milovanovic and Stoicev, 1985; Urguhart and Wood, 1984)
for multiplying two square matrices of order N. As a result, matrix multiplication
algorithms require high computation rates to achieve acceptable execution times and
to meet the real-time constraints of many signal/image processing applications. To

* Dept. Comput. Sci., Technical University of Czgstochowa, Dabrowskiego 73, 42-200 Czestochowa,
Poland :
** Dept. Comput. Sci., Kiev Polytechnic Institute, Pr. Pobedy 37, 252 056, Kiev, Ukraine

778 R. Wyrzykowski, H. Piech, J. Kanevski, and V. Lepecha

satisfy these requirements, parallel implementations of matrix multiplications have been
studied and developed (Annaratone et al., 1987; Kung, 1982; Kung, 1988; Kung et al.,
1986; Moreno and Lang, 1992; Quinton and Robert, 1991; Urguhart and Wood, 1984;
Wyrzykowski, 1992; Wyrzykowski et al., 1992).

The drawbacks of general-purpose parallel architectures have led to the development
of application-specific architectures (Kung, 1982; Moreno and Lang, 1992) which are tai-
lored to particular applications. Among these architectures there are application-specific
processor arrays which can have different degrees of specialization. At one extreme there
are algorithm-specific arrays specially designed for one particular algorithm, whereas
class—specific arrays can be adapted (programmed) to a variety of algorithms. The
choice between these possibilities and other intermediate ones depends on the parti-
cular requirements of the applications. Systolic-type arrays (Annaratone et al., 1987;
Kung, 1982; Moreno and Lang, 1992; Quinton and Robert, 1991; Wyrzykowski, 1992;
Wyrzykowski et al., 1992) are examples of application—specific architectures that have
received much attention. Using massive pipelining, these arrays exploit the regularity
inherent in many algorithms to achieve high performance while keeping local communi-
cations and low 1/O requirements.

This paper is organized as follows. In Section 2, after describing the direct algorithm
with the natural order of multiplications, two new algorithms are proposed. They use the
associative property to decrease the complexity of computations. The next section deals
with parallel implementations of all the algorithms. These implementations are oriented
for class—specific arrays of systolic type with a fixed number of processing elements and
linear structure of connections between them. The efficiency of these implementations is
discussed in Section 4.

2. Algorithms for Multiplications of Series of Rectangular
Matrices

2.1. Natural Order of Multiplications

The direct algorithm for the multiplication of a series of rectangular matrices in the
natural order corresponds to the following program:

/* assignment of the first input matrix to an intermediate matrix AM */

AM = Ay,

/* step—by—step multiplication of the series */

for i:=2 to s do
AM = AM x A;;

C =AM 2)
Assuming that NMK multiply-add operations are required in the traditional

algorithm (Rice, 1981) for the multiplication of an N x M matrix by an M x K

matrix, we can estimate the time complexity W) of algorithm (2) in the following
way

W]_ = Nl iN;M;
1=2

We will use algorithm (2) as a building block in other algorithms.

New algorithms for the multiplication of series of rectangular ... 779

2.2. Algorithm with Searching for a Single Minimum

The multiplication of form (1) is now decomposed into the following three steps:

1. Search for the row size N; which is minimal among all the row sizes of input matrices
A;, where 1=1,...,s. If more than one matrix A; have the minimal size, then the
first among them is chosen.

2. Compute an intermediate matrix

j-1
Bl = H A{ (3)
i=1
which is a product of those input matrices which are situated between the first input

matrix and the matrix A;_;.

3. To find the product of those input matrices which are situated between the matrix
A; and the last input matrix, compute an intermediate matrix

B, = [4 4)

4. Compute the resultant matrix
C=B;*xB; (5)

As a result, for every multiplication of two adjacent matrices from the series,
one of the matrices being multiplied will have the minimal row or column size.
Algorithm (3)-(5), in spite of its simplicity, allows us to considerably reduce the amount
of multiply-add operations. For j # 1, W, is now estimated by the following expression

ji—2 8
Wa=Way+Waa+Was=M_1» NiM;+N; > N;Mi+NN;M, (6
i=1 1=j+1

where components Wy 1, Wy 2, W3 correspond to computations performed in steps
2-4, respectively. Note that in equation (6), searching for a minimum matrix is not
taken into account as being negligible. For example, when multiplying a series of such 10
matrices that each matrix Azz—; or Agx (k=1,...,5) has the size of 10x3 or 3x 10
elements, respectively, we have j = 2, so that the number of required multiply—add
operations reduces down to 1020 against 2700 operations in the .case when the natural
order is preserved. Algorithm (3)—(5) corresponds to the following program:

/* searching for the minimum */
min := Ny; j:=1;
for i:=2 to s doif N; <min, then {min:= N;; j:=14;}
By :=1I; /*11is the unity matrix */
/* multiplication of form (3) to derive By */
if 7> 1, then
{AM = A;_1;
for i:=j—2 downto 1 do
AM = A; x AM,

780

R. Wyrzykowski, H. Piech, J. Kanevski, and V. Lepecha

By = AM;}

/* multiplication of form (4) to derive By */
AM = Aj;;
for i¢:=j+1 to s do

AM = AM % A;;
By .= AM;
/* last step of the algorithm, when C' = By * B, */
C= Bl * Bz (7)

In algorithm (6), curly brackets {..} are equivalent to the begin..end construction

in PASCAL.

2.3. Algorithm Searching for All the Minima

In order to improve the efficiency of algorithm (7), we will search for all the matrices with
the minimum number of rows. Note that in the previous algorithm, a single matrix with
the minimal row size has been searched for. After such a modification, the algorithm will
consists of the following major steps:

1.

Search for the size Ny, which is minimal among all the row sizes of input matrices
A,', i = 1,...,5.

Create the list Ly, of all the matrices with Npin, rows.

3. Create a new list Lg, = {t; : 1 < j < r} by removing from the list Lnin those

matrices which are right-hand adjacent to the matrices with the minimal size.

. Compute intermediate matrices

tig1—1

Ci= [4, i=1..,r-1

i=t;

To find the product of all the previously determined intermediate matrices Cj
compute a new intermediate matrix

r—1
B, = H Cj.
i=1

. Compute an intermediate matrix

B3 = li[A,-

i=t,
in order to obtain the product of those input matrices which are situated between
the end of the list Lg, and the last input matrix.

. Compute an intermediate matrix

ti—1
Bl = H A,;
i=1

in order to find the product of those input matrices which are situated between the
first input matrix and the beginning of the list Lgy.

New algorithms for the multiplication of series of rectangular ... 781

8. Compute the resultant matrix C = (B; * By) * Bs.

The above—proposed algorithm corresponds to the following program:

/* searching for the size Nmin */
min := Ny;
for i :=2 to s doif N; < min then min:= Nj;;
/* creation of the list Ly, */
k:=1;
for i:=1 to s doif min=N; then {p;:=1; k:=k+1;}
/* creation of the list Lgn */
J=1
for i:=1 to k—2 doif (pjy1 —pi) #1 then {t; :=p;; j:=j+1;}
r:=j—1; :
/* deriving intermediate matrices C;, where j=1,..,r—1 */
for j:=1 to r—1 do {AM := A;;
for i:=t; to tj;1—1 do
AM = AM * A;;
Cj = AM; }
/* multiplication of all the intermediate matrices C; to derive the matrix B; */
AM = Cy;
for j:=2 to r—1 do
AM = AM * Cj;
By, .= AM;
/* deriving the matrix Bz */
AM = A¢ 41;
for i:=t,+2 to s do
AM = AM * A;;

Ba = AM;
/* deriving the matrix B; */
if t; =1 then By :=1 else {AM :=A;, 1 ;

for i:=t; —2 downto 1 do

AM = A; « AM;

Bl = AM,}

C:= (Bl * Bz) * Ba) (8)

Neglecting the creation of lists Lmin and Lgn, the time complexity of algorithm (8) -
can be estimated by the following expression (t; > 1)

Ws=Ws1+ Wsa+ Wss+Wsa+ Wss

r—1tjp1—1 -2
= Namin 3 9 NiMi+ (r = N3+ Nnin Y NiM; 9)
j=li=t;4+1 i=1

s
+Nmin E -Nl'Ms'+(N1NminNmin+N1NminMs)
i=t,+1

782 R. Wyrzykowski, H. Piech, J. Kanevski, and V. Lepecha

where components Ws,, Ws,, Was, Wszs, Wszs correspond to computations
performed in steps 4-8, respectively. Note that if ¢, = 1, then B; = 0, and
W3,5 = Nmin Nmin M;.

Algorithm (8) makes it possible to reduce the amount of computations in comparison
with algorithm (7). For example, when multiplying the same series of 10 matrices as
before, we have Lmin = Lan = {2,4,6,8,10}. As a result, it is sufficient to perform only
831 multiply-add operations. A drawback of algorithm (7) is the necessity to generate
and store the intermediate matrices.

3. Parallel Implementations of the Algorithms

In order to give a workstation or a personal computer a very high performance on special—-
purpose computation intensive algorithms, the computer must be provided with some
kind of hardware accelerator. This can be achieved in different ways. One of them
consists in using a class—specific VLSI array which can be adapted (programmed) to a-
variety of algorithms, Some arrays of this type are already on the market (for example,
linear systolic arrays Warp (Kung, 1982) and Matrix—1 (Foulser and Schreiber, 1987).
Other arrays like Mismacs (Quinton and Robert, 1991) are being designed. .

The general organization of the computer system with a class—specifi¢ VLSI array
is schematically shown in Figure 1. The kernel of the system is a linear array of sy-
stolic type with K processing elements (PEs). Such an array has several important
advantages over two—dimensional structure. First, it requires memory bandwidth which
is independent of the size of the array. Secondly, a large structure can be constructed
simply by concatenation of smaller arrays. Finally, a linear array allows us to minimize
the amount of I/O channels because they are connected only with the first or/and the
last PE.

HOST

1U
PE J PE | . ., PE
1 2 K

Fig. 1. Computer system with a class—specific VLSI linear array.

An important part of the system is also the interface unit IU, which is in charge of
generating data and control to the array. This unit may contain a buffer memory for
storing elements of input and intermediate matrices. Alternatively, the host computer
can provide this memory.

The internal architecture of each PE is greatly influenced by a class of application al-
gorithms. Since real class—specific VLSI arrays are basically oriented to signal processing
and matrix algorithms, each PE of these arrays (Kung, 1982; Quinton and Robert, 1991)

New algorithms for the multiplication of series of rectangular ... 783

usually contains a local memory, some general-purpose and I/O registers, a multiplier,
and an arithmetic/logical unit capable of performing elementary operations such as ad-
dition, subtraction, etc. All of these components are interconnected through a crossbar
switch (Kung, 1982) or a system of buses (Quinton and Robert, 1991). To implement
such a PE architecture, either signal processing chips, application specific integrated
circuits (ASIC) or general-purpose chips like Transputers can be used.

The above—described organization of both the system as a whole and each PE covers
that specific architecture which is required by the algorithms for the multiplication of
series of rectangular matrices. The required PE architecture is shown in Figure 2 (without
control paths), where R, SW, M and A are register, switch, multiplier and adder,
respectively.

: SW :
: LOCAL . 5
{ | MEMORY i
a A a
i INPUT DATA 2 OUTPUT DATA

Fig. 2. PE architecture for matrix multiplication algorithms.

3.1. Parallel Implementation for the Natural Order of Multiplications

We will consider two variants of parallel implementation of algorithm (2): with unboun-
ded or bounded parallelism. The first variant corresponds to that case when the number
K of PEs is greater or equal to the row size N; for the first input matrix. The second
variant corresponds to the case when K < Nj.

Variant 1.

The elements of the matrix A; are fed into PEs in such a way that after completing
the loading, the i—th PE contains the i—th row of A;. Then the elements of the matrix
Ay are pipelined in the columnwise order between PEs of the linear array. As a result
of this pipelining, the intermediate matrix A’ = Ay # Ay is formed in such a way that
the i—th row of A’ is obtained in the i—th PE. Next, the elements of A3 are pipelined
between PEs, and the intermediate matrix A" = A’ * A3 = A; * Ay x Az is computed,
etc. Therefore, not taking into account the unloading of the resultant matrix C' from
PEs of the array, the execution time T' for algorithm (2) is

T:N1M1+ZQA;:ZQAg (10)
=1

=2

784 R. Wyrzykowski, H. Piech, J. Kanevski, and V. Lepecha

where Qa, = N;M; is the number of elements in the matrix A;. Moreover, we assume
that during one step a single multiply—add operation is performed.

Variant 2.

Having been fed into corresponding PEs, the first K rows of A;—matrix are multiplied
by all the columns of A;—matrix, which are pipelined between PEs. In this way, the
first K rows of the matrix A’ = A; * Ay are obtained. Next, all the columns of Aj
are pipelined between PEs, and the first K rows of the matrix A” = A; * Ag x A3
are computed, etc. As a result, we obtain the first K rows of the resultant matrix C.
The other rows of matrix C' are computed in a similar way. The execution time for this
variant can be estimated by the following formula

T=Qa +IL1 EQ.‘h (11)

i=2

where L; =[N;/K], and [z] is the nearest integer greater or equal to z.

3.2. Parallel Implementation of the Algorithm Searchmg
for a Single Minimum

While implementing this algorithm, the matrix A;_; is first fed into PEs in the co-
lumnwise order. Then the rows of the matrix A;_o are pipelined between PEs. As a
result of this pipelining, the columns of the matrix A’ = Aj_ox Aj_, are accumulated
in PEs of the array. Next, the rows of A;_3 are pipelined between PEs in order to
provide the accumulation of columns of the matrix A” = A;_z* A’, etc. In this way, the
intermediate matrix B; = {;11 A; is computed. Its elements are saved in the buffer
memory. Next, the first A; matrix of the series having the minimum row size is fed into
PEs in the rowwise order, and then multiplied by columns of the subsequent matrices.
These multiplications are performed in the same way as those described in subsection
3.1. As a result, the intermediate matrix B, = [];_; is computed, and saved in
the buffer. In the last stage, the resultant matrix C 1s computed by multiplying B;

and B,.

As in the case of the natural order of multiplications, we will consider two variants
of implementing this algorithm: with unbounded or bounded parallelism. The first case
corresponds to K > N;, N1, while the other one corresponds to K < N; or K < Nj.
The execution time for both variants can be estimated as follows (j > 2)

j-1 s s
T=Ti+T3+T5=) Qa+ Y Qa;+Ni(N1+ M) =" Qua, + N;(N1 + M,) (12)

i=1 i=j i=1

T= T1+T2+T3—(QA,_ +LJZQA)+(QA,-+L]' z’: QA;)

i=1 i=j+1

+N;(N1+ LiMs) = Qa; +Qa,, + L; (JZQA + Z QA)+N(N1+L M,)(13)

i=j41

New algorithms for the multiplication of series of rectangular ... 785

where Lj = [N;/K], and components T3, T3, T3 have the same meaning as those in
equation (6). Note that if j =2, then 73 = 0 in equations (12)—(13).

3.3. Parallel Implementation of the Algorithm with Searching
for all the Minima

For the given linear architecture with a fixed number of PEs, algorithms (8) should be
modified at the stage of searching for the " minimal” matrices. Rather than to a matrix
having the minimal row size, this definition is now referred to such a matrix for which
the time required to multiply it by an arbitrary matrix is minimal. In searching for such
matrices, it is necessary to determine the interval of sizes N; such that Luyin K' < N; <
(Lmin+1)K, where Lmin = [Nmin/K]. Indices i of all matrices whose size N; falls into
the above interval compose the list Ly, of minimal mattices, which is formed in step
2 of the algorithm. The remainder of the computations closely corresponds to algorithm
(8). Its execution time for the variant with unbounded parallelism can be estimated by
the following formula (¢; > 2 and ¢, <s)

to—1 t—1
T=TN+T4+T3+Ts+T5 = ZQA +(r-1)NZ, + ZQA +ZQA

i=ty i=t,

s

+(N1Nmin + NminNmin + NminMa) = ZQA.‘ + Nmin("'Nmin + Nl + Na) (14)
i=1

where components T1-T5 have the same meaning as those in equation (9), and r is
the number of "minimal” matrices in the list Lg, = {t; : j = 1,..,r}. For the variant
with bounded parallelism, when K < Nyin, or K < Nj, we have the following:

5 re1tip1—1
T= Z = (Z QA, + me Z Z QA) mm lenNmm(r 2))
i=1 j=li=t;+1
t,—2 s
+(QA‘1_1 + Lmin Z QA.') + (QAt,. + Lmin Z QA,‘) (15)
i=1 i=t,+1

+(N1Nmin + Ll(NminNmin + NminMs))

Note that if ¢, = s, then in formula (15) we have T4 = 0, and T5 = NiNmin +
L1 Npin Npin- Also, if t1 = 1, then T3 =0, and T5 = N1 Nmin + L1 Nmin M;. Finally, if
t, =2, then T3 = 0.

4. Comparison of the Algorithms

To compare the efficiericy of parallel implementation of algorithms (2), (7), and (8) we will
base on the estimations from the derived formulae (10)—(15) for the algorithm execution
time. They allow us to conclude first that in the case of unbounded parallelism, the direct
algorithm (2) is more efficient than the proposed ones. This surprising conclusion can

786 R. Wyrzykowski, H. Piech, J. Kanevski, and V. Lepecha

be explained by the necessity of computing some intermediate matrices in algorithms
(7), (8). However, this case appears to be important only from the theoretical point
of view. Practically, we usually deal (Kung, 1988; Kung et al, 1986) with bounded
parallelism. In this case, the advantage of the proposed algorithm (7) over the direct
algorithm (2) results from the fact that the majority of matrices are pipelined through
the array not [N1/K] times but only [Nmin/K] times. At the same time, the advantage
of algorithm (7) can be explained by the fact that not only two but all the ” minimal”
matrices are pipelined through the array only once. However, the necessity to compute
all the intermediate matrices decreases this advantage.

Considering the case of bounded parallelism, in Tables 1-4 we estimate the execution
time required to perform these algorithms on a linear array with K PEs for a-series of
15 matrices. The sizes of the matrices being multiplied are shown in the upper part of
each table, while figures placed in the lower part have been obtained using formulae (11),
(13), (15). These results are illustrated graphically in Figures 3-6. However, for better
understanding, we show on the graphs not the algorithm execution time, but a much
more reasonable criterion which is the efficiency E of a parallel algorithm with respect
to the best sequential algorithm. Following Ortega (1988), we have

E =Wg/(KT)

where Wpg = min{Wi, W,, W3}, and T is the execution time for an algorithm imple-
mented on K PEs.

These tables and graphs allow us to conclude that the natural order of multiplications
becomes justified when the row size N; of the first matrix is minimal in comparison
with the matrices of a series (see Tab. 1 and Fig. 3), or N; is close to Npin (see
Tab. 2 and Fig. 4). In the second case, however, the number K of PEs should not
be too small in comparison with Nj. In other cases, it is advisable to use one of the
proposed algorithms searching for ”minimal” matrices. The algorithm searching for all
the ”minimal” matrices substantially increases the efficiency of computations only in the
case when a series features a sufficiently large number of ”minimal” matrices and the
minimal Nmi, size of matrices considerably exceeds the number K of PEs (see Tab. 4
and Fig. 6). If these conditions are not satisfied, then algorithm (8) might even lead
to a certain decrease in the efficiency of computations as compared with the algorithm
based on searching for a single "minimal” matrix (see Tab. 3 and Fig. 5). Taking into
account that the above—described linear architecture allows us to perform any of these
three algorithms, we can always choose the most efficient algorithm depending on the set
of matrices being multiplied.

Acknowledgment

The authors gratefully acknowledge the valuable comments of the anonymous reviewer
in improving the first version of the paper.

New algorithms for the multiplication of series of rectangular ... 787

References

Annaratone M., Arnould E., Gross T., Kung H.T., Lam M., Menzilcioglu O. and Webb J.A.
(1987): The Warp computer: architecture, implementation, and performance. — IEEE
Trans. Comput., v.C-36, No.12, pp.1523-1537.

Foulser D.E. and Schreiber R. (1987): The Sazpy Matriz—1: A general purpose systolic com-
puter. — Computer, v.20, No.7, pp.35-43.

Kung H.T. (1982): Why systolic architectures ?. — Computer, v.15, No.1, pp.37-46.
Kung S.Y. (1988): VLSI Array Processors. — Englewood Cliffs: Prentice Hall.

Kung S.Y., Whitehouse H.J. and Kailath T. (Eds.) (1986): VLSI and Modern Signal Proces-
sing. — New York: Prentice-Hall. .

Milovanovic I.Z. and Stoicev M.K. (1985): Matriz multiplication in computer graphics. —
Proc. 30-th Intern. Wiss. Coll., TH Ilmenau, (Germany), pp.151-154.

Moreno J.H. and Lang T. (1992): Matriz Computations on Systolic~-Type Arrays. — Boston:
Kluwer Academic Publishers.

Ortega J.M. (1988): Introduction to Parallel and Vector Solution of Linear Systems. — New
York: Plenum Press.

Quinton P. and Robert Y. (1991): Systolic Algorithms and Architectures. — Englewood Cliffs:
Prentice Hall.

Rice J.R. (1981): Matriz Computations and Mathematical Software. — New York: McGraw-
Hill Book Comp.

Stoicev M.K., Milovanovic E.I. and Milovanovic I.Z. (1990): An algorithm for multiplication
of concatenated matrices. — Parallel Computing, v.13, p.211-223.

Urguhart R.B. and Wood D. (1984): Systolic matriz and vector multiplication methods for
signal processing. — IEE Proc., Part E, v.131, No.6, pp.623-631.

Wyrzykowski R. (1992): Processor arrays for matriz triangularisation with partial pivoting. —
IEE Proc., Pt.E, v.139, No.2, pp.165-169.

Wyrzykowski R., Kanevski Ju.S. and Ovramenko S.G. (1992): Dependence graph transforma-
tions in the design of processor arrays for matriz multiplications. — Microprocessing and
Microprogramming, v.35, pp.539-544.

Tab. 1.
N; | 20 40 40 60 80 20 100 60 20 50 40 20 60 40 60
M; | 40 40 60 80 20 100 60 20 50 40 20 60 40 60 50

K natural order a single minimum all the minima
2 324 800 324 800 309 800
5 130 400 130 400 127 400

10 65 600 65 600 66 600

15 65 600 v 65 600 66 600

20 33 200 33 200 36 200

788 R. Wyrzykowski, H. Piech, J. Kanevski, and V. Lepecha

Tab. 2.
N; |60 80 80 50 80 60 80 50 80 100 50 100 50 100 80
M; | 80 80 50 80 60 80 50 80 100 50 100 50 100 80 100
K natural order a single minimum all the minima
2 2 284 800 1 981 000 1 847 500
5 916 800 799 000 755 500
10 460 800 405 000 391 500
20 232 800 244 400 250 800
40 156 800 166 600 170 100
60 80 800 88 800 98 800
Tab. 3.
N; | 100 100 100 100 40 80 20 60 20 80 20 40 100 20 100
M; | 100 100 100 40 80 20 60 20 80 20 40 100 20 100 100
K natural order a single minimum all the minima
2 2 670 000 708 800 697 600
5 1074 000 286 400 284 800
10 542 000 145 600 147 200
15 382 400 139 600 140 000
20 276 000 © 75200 78 400
25 222 800 - 73 200 76 000
40 169 600 71200 73 600
Tab. 4.
N; | 200 200 200 200 50 100 50 800 60 500 50 600 60 800 50
M; | 200 200 200 50 100 50 800 60 500 50 600 60 800 50 400
K natural order a single minimum all the minima
2 41 740 000 13 075 000 11 292 500
) 16 720 000 ' 5 245 000 4 587 500
10 . 8 380 000 2 635 000 - 2 352 500
15 5 878 000 2 073 000 1 654 500
20 4 210 000 1 551 000 1278 500
25 3 376 000 1 069 000 1011 500
40 2 125 000 1 009 000 880 000

New algorithms for the multiplication of series of rectangular ...

789

0.8

0.7

0.6

1,2

B S S S S

10

Fig. 3.

IllIIIlII]IIIlIlIIIlIIIIIIIIIIl|lllllll|llIIlI|Il|l|l|lll|l|llIIIIlIT‘

0.4

6IIIIIIIII|IIIIIIlllllllll|lll|l|IIIIIIIIllllllllllll|lllllll

10

20

30

Fig. 4.

40

K
60

790

R. Wyrzykowski, H. Piech, J. Kanevski, and V. Lepecha

0.8

0.6

0.4

0.2

0

+E
1 -
0.8
0.6
3 2
= 3
0.4
0.2-3 1
E K
0 IIIIIIIII|IIIIIIIII|I!I1IIIIIIIIIIIIIII|IIIlIIIIIlIlIlIIIIIiIlIIlIlII|l|l||l|||lll|llll|||
0 5 10 15 20 25 30 35 40 45
Fig. 5.
E
3
2
'——'\/.\ 1
K
|IHHIIII|IIIIIIIH|IIIIIIIII11III|IIIIIIIIIIIlIllII|IllllllllllllllllIIHIIIIIIIIHIIIII[
0 5 10 15 20 25 30 35 40 45
Fig. 6.

Received March 18, 1993
Revised December 17, 1993

