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A FEEDBACK SYNTHESIS OF BOUNDARY CONTROL
PROBLEM FOR A PLATE EQUATION
WITH STRUCTURAL DAMPING

IRENA LASIECKA*, DanLARD LUKES*, Luciano PANDOLFT**

A boundary control problem for a Kirchhoff plate equation with a structural
damping is considered. A distinctive feature. of this problem is the lack of
strong coercivity with respect to control variable. It is shown that the optimal
control admits a pointwise state feedback synthesis via a solution of nonstandard
Riccati equation. The novelty of the problem with respect to the literature is
that both: the associated Riccati equation and the feedback control operator,
are nonstandard.

1. Introduction

1.1. Model

Let © be an open, bounded domain in IR2. It is assumed that the boundary of £,
denoted by T, is smooth (say C?). We consider the following model of a Kirchhoff
plate (see Lagnese, 1989) in the variable w representing the displacement of the
plate.

. 3

(1)  phwy — p’ll—QAwtt +aA?w; + DA2w =0 in Q= Qx(0,00)

(i) w=0 on ¥=Tx(0,00) (1)
(i) DAw =u on X =T x(0,00)

(iv) w(-,t=0)=wowi ,t=0)=w in Q

Here, the constant p is mass density per unit of volume, h represents the thickness
of the plate (assumed to be small). The modulus of flexural rigidity D is given by

D = Eh¥/12(1 — p?)

with g Poisson’s ratio (0 < g < = in physical situations), and E Young’s modulus.

The parameter o > 0 represents structural damping of the plate which in physical
situations is usually small.
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The function u € Ly(X) appearing in the second boundary condition (1iii)
represents boundary control which acts via a bending moment about the direction
tangent to the edge of the plate.

The second term in the equation (1i) represents rotational inertia and may be neglec-
ted in some studies of the system.

1.2. Control Problem

With dynamics represented by (1) we associate functional cost given by

J(w,u) = /Ooo/n{ﬂ%wz(t,x) +ﬁ%{Vw(t,m)|2} dzdt

+ /O ” /F W¥(t, 7) dedt @)

The control problem (P) to be studied is as follows: given wo, wy, in appropriate
spaces (to be determined later), and u(t = 0) € Ly(T), find an optimal control
u® € L4(0,00;Ly(T)) such that cost function (2) is minimized for all u €
L(0, 00; L2(T)) subject to the dynamics in (1).

The main goal of the paper is to determine a feedback structure of the optimal
control u°. This is to say, we are seeking representation of the form

u’(t) = CP(w°(t), wl(t)) ®3)
with a suitable (typically unbounded) operator C : La() x L3(Q) — L2(T) where
P is a solution of an appropriate (nonstandard) Riccati equation.

The control problem formulated above is not a standard LQR control problem.
The reasons are twofold:
(i) The presence of a boundary control coupled with structural damping gives rise,
as we shall see in Section 3, to an abstract model of the type

2zt = Az + Bu+ By, (4)
associated with the functional cost
o0
Jeu)= [ IRelg + ulf at )
0

(A, B, Z, U will be specified later). The above control problem is not coercive
with respect to control variable (which also accounts for welocity u;). As a result,
the standard LQR methods cannot be applied. Moreover, as we shall see later,
this problem leads to the so—called “non-standard” Riccati equations and “non-
standard” synthesis problem which appears to be new even in the context of
finite—dimensional theory.

(ii) Boundary controls appearing in (1iii) give rise to unbounded control operators B
in the abstract model (4). Handling of this problem requires a careful mathemati-
cal/PDE analysis of the problem. One of the consequences is that the synthesizing
operator C in (3) is also unbounded. Thus, it is necessary to develop requla-
rity theory for Riccati operators to ensure that the composition operator C'P is
meaningful, and it is properly defined.
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Boundary control problems for (structurally) damped wave equation were consi-
dered earlier in (Bucci, 1992). However, the problem treated in (Bucci, 1992) involves
penalization of the velocity of the control. This is to say that instead of (5), Bucci
(1992) takes

J(zu) = / 1C2% + [ul} + Juel} dt (6)

This problem is, of course, coercive and allows for application of standard LQR. theory
with unbounded control operators (see also Balakrishnan, 1976; Bensoussan et al.,
1992; Lasiecka and Triggiani, 1983).

Thus the two new features of our problem (see (i), (ii) above) make the techniques
developed in the literature nonapplicable, and solution of the problem requires a new
approach.

The following notation will be used in the paper. H®(£2) denotes, as usual,
Sobolev’s spaces at order s > 0. H§(2) is a completion of C§°(£2) with respect
to H*(2) norm. H™%(Q) = (H{(R)). D(A)-denotes a domain of a closed, linear
operator A : H — H. (D(A*)) denotes a dual (pivotal) space to D(A)), i.e.
D(A) C H C (D(A*))Y. If A is positive, |e|peayy = [A*"'z|g. A7 denotes
fractional powers of a positive operator A (Pazy, 1983).

(z,9)a = [,zy dQ, [z,y]r = [zy dl. v denotes an exterior normal to the
boundary.

1.3. Statement of Main Results

In order to present the main results, it is convenient to simplify the writing of the

D
system by making a change of the time scale ¢ — 1 prg Then (1) is brought to the
p

form

wit — YAwy + A?w 4+ aA?w; =0 in Q
w=20 on ¥
Aw=u on X
w(t = 0) = wo, we(t =0) = wy in Q
2
Here v is proportional to the square of the thickness of the plate, i.e., v = 12 We

shall consider separately two cases: case ¥ =0 and case y > 0. Case 7y >0 (resp.
v = 0) corresponds to the situation when rotational forces are accounted (resp. not
accounted) for.

Remark 1. We note that a strict positivity of ¥ changes the character of undamped
dynamics. Indeed, when o = 0 and ¥ > 0, model (1) is of hyperbolic type with a
finite speed at propagation while the case ¥ =0 corresponds to “Petrovski” type of
systems which is characterized by an infinite speed of propagation.
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Theorem 1. Assume that y=0 in (7) and B =0 in (2).

I. (Ezistence and Regularity) For any initial data wo, w1 € La(Q) x L2(Q), u(0) €
Lo(T), there exists a unique solution to control problem (P): u®(t), w°(t) such
that

u® € C((0,00); L2(T))
w® € G(]0,00); L»(R2))

1. (Riccati Equations) There exists a unique, positive, self-adjoint solution P €
L(L2(R) x L2(8Y)) satisfying the following Algebraic Riccati Equation.

(21, A’piy)a + (A’piz,1)a — (22, pry — aA’pay)a

— (mz — aA?pz,y2)a — Bi(z1, y1)a

5] 0
= [5 [~p2z+apiz —a’A’pyz] o [~p2y+apiy—a®A’p,y]
v r

for all z = (z1,22), ¥y = (y1,¥2) € L2(Q) x Ly(Q) where

— | P P12 Iy ne
P21 P22 T2 p2z

Moreover, for all z € Ly(Q) x La(Q),

~
—
8 8
[V -
~——
I

paz € HY(Q), p1z — aA’pyz € H*4(Q); Ve>0 (8)
III. (Synthesis) Define the operator K : Ly(T) — L2(T) by

1

= { =3, [( —p22 + ap1a — 02 Apy) Mul . 9)

where (Mu,€)q = — [u, &¢] for all ue Ly(T), £ e HY(Q) N HL(Q).

Then, K € L(Ly(T)) and, moreover, (I — K)~' € L(Ly(T). The optimal
control u® admits the following feedback representation

01) = [ = KT [ 2 [p2e(0) = apuz”(0) + o720
T

with 2°(t) = (W°(t), wd(t)).
Theorem 2. Assume v > 0.

I. (Ezistence and regularity) For any initial data wo, w1 € H}(Q), u(0) € Ly(T),
there ezists a unique solution to optimal control problem (P): u%(t), w®(2)
such that

u® € C((0,00); Ly(T))
w® € C([0,00); Hy(2))
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II.

I1I.

(Riccati Equations) There exists a unique, positive, self-adjoint solution P €
L(H}(Q)) satisfying the following Riccati equation

(e1,52y)a + 7(Vey, VEay)a = (22,p19)a — 7(Va2, VPiw)a
+ a(z2,729)a + av(Vza, VBal)a + (41,P2%)a
+ 7(Vy1, Vp2Z)a — (v2, 12)a — 7(Vy2, Vpiz)a
+ a(y2,P2%)a + a7(Vys, VD2T)a

Bi(z1, y1)a — B3 (Vz1, Vyr)a

0 _ 0 _
= [* [=p2z + oprz — &’P3z] , o= [-P2y + apry — @’Pa7]

ov r

for all = (z1,22) € H}(Q) x HY(Q), y = (y1,y2) € HE(Q) x H}(Q).
Here pax and pax are related in 1-1 manner through the following system of
equations

pazlr =0
and £ satisfies
—Al=Dpyx in Q (10/)
£=0 on T
Moreover, the following additional regularity holds
p2z € H3(Q)
p1T — apx € H34(Q) (11)
P2z € HY(Q)
(Synthesis) Define the boundary operator K : Ly(T') — Ly(T)
1 0 P
—Ku= — |(p22 —ap12 + @ p22)k]r (12)

o ov

where the relation between k and u is defined via duality
4 2
u, 56| =k Ea+v(VkVa, &€ H(Q)
r

Moreover, Pasx is related to poox via the same relations as in (10). Then,
K € L(Ly(T)) and (I — K)~1 € £(Ly(T)).
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The optimal control u® can be written in the following feedback form
0 L 90
u’(t) =[I- K]'lé;[mzo(i) — ap12°(t) + &’F2°()]r (13)

Remarks. (1) Notice that the structure of the feedback synthesis involves inversion of
the boundary operator I—K with K given by (9) or (12). This is a distinct feature
of the problem reflecting the fact that the control problem is not a standerd LQR
problem. This phenomenon appears new even in the context of finite-dimensional
theory.

(2) Regularity of optimal controls in parts I of both theorems, together with
regularity of Riccati operators in (8) and (11) represent the additional regularity of
the problem (i.e., this does not simply follow from minimization principle). These
regularity results are critical to: (i) assert invertibility of the boundary operator K
appearing in a feedback synthesis, and (ii) give the meaning to each term of Riccati
equation.

(3) Notice that the optimal control may admit a discontinuity at the origin.
The remainder of this paper is devoted to the proofs of Theorems 1 and 2.

2. Reformulation of Control Problem (P) as an
Abstract Control Problem

The goal of this section is to reformulate control problem (P) as an abstract control
problem. To accomplish this we shall introduce the following spaces and operators

: { A: Ly(Q) — Ly(Q) defined by (14)

Au = —Au, u € D(A) = HY(Q) N H3(Q)

{ D : Ly(T') — Ly(Q) defined by (15)

Dg=vif Av=0 in Q and vjr=yg

With the above notation, equation (7) can be rewritten as (see Lasiecka and
Triggiani, 1992),

{ wee + vAws + A(Aw + Du) + aA(Aw; + Duy) = 0 16)

w(t = 0) = wy, wy(t =0) = w,
Or, equivalently, using
(I+74)™ € £(La(Q)) (17)
as

wit + (I +7A) "L A%w + oI +7A) " A%w, + (I +7A)" ADu
+a(I +vA)"tADu, =0 (18)
w(t = 0) = wo, we(t=0)=w
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Case +>0. We define the following spaces and operators;

{ H = H} (@) x H}(Q) (19)
U=Lyl), Z=1Ly(R)x Ly(R) x Ly(Q)
A:H — H is given by
0 ~I
A= [ A, ad, ] (20)
where A, = (I +7A)"1A% , _
D(A) = {(w,2) € H}(Q) x H}(Q); Ay(w+az) € HI(Q)}  (21)

B : Ly(T) — Ly(Q) x Ly(Q)
[ 0 } (22)
Bu =
—(I+~vA)"*AD

With the above notation dynamics in (18) can be Wwritten in the variable z =
(w,w;) as

zz+Az+ Bu+ aBu; =0 in D(A*)Y (23)
2(0) = (wo, w1) € H . ‘
The performance index (2) associated with (23) takes the form
Ievu)= [ [Rell + luff] (24
0 .
where _
R= 25
and C: HA(Q) — [La(Q)]"+! is given by
Cuw = [Biw, B, V]
Case ~=0, B8,=0. We define the following spaces and operators:
H=L(Q)xLy(Q), U=LT), Z=H (26)
0 -I
A= ' 27
[ A? aA? } @7)

D(A) = {(w, 2) € Ly(Q) x Ly(Q); AX(w + az) € Ly(2)}
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0
B:[—AD:l (28)
| BT 0
e[ "

Conclusion. The original control problem consisting of minimizing (2) subject to
the dynamics (1) can be abstractly rewritten as minimization of (24) subject to (23)
with the operator and spaces defined by (19), (20), (22), (25) in the case ¥ >0, and
by (26)—(28) in the case v =10.

3. Nonstandard Riccati Equations Associated with
Abstract Control Problem

We consider an abstract differential equation given by

{ zt+ Az +Bu+aBu; =0 in D(A") (30)

2(0)=20 € H

where we are given: H, Z, and U Hilbert spaces, the operators (generally unbo-
unded)

A:H— H with D(A)CH
B:U — D(A*Y

With (30) we associate functional cost

I = [ CIRD, + lu(®)?] &t (31)

Our abstract control problem is formulated as follows: given z(0) € H and u(0) € U,
find the optimal u® € L2(0,00;U) such that (31) is minimized subject to dyna-
mics (30).

Remark. In order that state variable z(t) be uniquely defined with controls
u € Ly(0,00;U), it is necessary to prescribe the value u(0). Thus, the variables:
u(0) € U and u € Ly(0,00;U) are two independent variables.

The following technical assumptions are imposed on the data of the problems.

(H-1) A is a generator of an analytic, stable semigroup et on H.

(H-2) There exists 1>+, >0 such that

A-7"B e L(UH)
A~YB:U — H 1is compact for v > 7

(H-3) RA™ € L(H;Z) forsome 71 >70
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Under the above assumptions, it was shown (Lasiecka et al., 1994; Triggiani,
1993) that there exists a unique optimal solution to the control problem such that

{ i) u® € C[(0,00);U]
(

i) 2% € C[(0,00); D(A*Y] (32)

Moreover, it was shown in (Lasiecka et al., 1994) that the optimal solution u° can

be synthesized “on line” via a state feedback operator. Precise formulation of this
result is given below.

Theorem 3. (Lasiecka et al., 1994) Assume (H-1)-(H-8). Then

(i) (Existence of the solution to the Riccati Equation) There ezists a positive, self-
adjoint operator P € L(H) which satisfies the following Riccati Equation:

—(Az, Py)g — (Pz,Ay)g + (R*Rz,y)n
= (aB*R*Rz + (B* + aB*A*)Pz,T; '(aB* R* Ry + (B* + aB*A*)Py))v
Vz,y € D(A™) (33)
where Tyt = (I +?B*R*RB)~ € L(U)

(it) (Regularity of P) The operator P € L(H) satisfies the following regularity
property:

A*M™TPAY € L(H), v<m (34)
hence
B*PA"Y € L(H;U) (35)

(iii) (Uniqueness of (33)) The solution P to (33) is unique within the class of self-
adjoint positive operators in L(H) subject to the regularity property in (34).

(iv) (Synthesis of the optimal control) We have
[I — a(B* + aB*A*)PB]™* € L(V) (36)
Moreover, for each z(0) € H, t > 0,
(v) w’(t) = [I — a(B* + aB*A*)PB] ' [@B*R*R + (B* + aB*A*)P]2°(t) (37)
(Vi) um{?&go 0 J(z,u) = (P(z0 — aBu(0)), zo — «Bu(0))x (38)
|

4. Proof of Theorem 1 and 2

We shall apply abstract result of Theorem 3 to the problem in hand. To this end, we
need to verify assumptions (H-1)-(H-3).



14 I. Lasiecka, D. Lukes and L. Pandolfi

4.1. Proof of Theorem 1 (Case ~=0)

Assumption (H-1). Since A% is a positive, self-adjoint operator, analyticity and
stability of the operator A defined by (26) follows from Chen and Triggiani (1990)
(see also Chen and Russell (1982) for related results). :

Assumption (H-2). We shall show that (H-2) is satisfied with v > %, ie.,

3
A™"B: U — H is compact for 7o > 3 (39)
where A, B are defined by (27), (28) (without loss of generality we take o = 1).
Since
-I -2 0 A™1D
—A"'B = A = (40)
I o ||4D 0

(39) is equivalent showing that

- A-1D .
AT 0 : Ly(T) — H = Ly() x Ly(Q2) is compact (41)

1 .
By using compactness of APD : Ly(T') — La(Q) for p< 7 (see Lions and Magenes
(1971) or Grisvard (1985)), (41) will follow from the boundedness of '

1—v0
A 8

A-1-r . 3 1
0 : Ly(Q) — H isbounded for v >z, p< n (42)
This boundedness is established by the claim that

DA(q,2)={( N ) EH;x+y€D(A2“)} (43)
Y
where (see Triebel, 1978)
oo 2
Da(g,2) = {xEH;/ M}i‘(tt’AJ—lidt<oo} (44)
1

The explicit computations for the resolvent yield

L [orvanr (2, -2)  R(R5-4)
R(XA) = R

AT e (,-) R (A7)

hence

AR(), A) ( ; ) | (55, 2 -2 (357,47 (45)
A+1 ,\AZR(:\%:—I,——AZ)(Z+Z‘/)+A2R(X¥I:‘A2)y
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It is clear that the “dominant” term in (45) is

A 9 A2 9 )

Thus

2
z  [11A2R (5, -4) (= + )2,
€Du(g,2) <= " dt < oo
Yy 1
By (44), this is equivalent to
z+y € Da2(q,2) = D(A%)

as desired for (43).
Applying (43) to (42) and recalling (see Triebel, 1978)

Da(q+¢,2) CD(AT) CDalq,2) for G€(g,q+¢) (46)

we 1nfer that

A-1-r .
( . w) € D(Al—'YD) for we LZ(Q)’ Yo > -:Si’ p< Z <= we rD(Al-Zvo—-p)

which is satisfied as long as 1 -2y —p <0 or o >1—p > 2, which holds with
Yo > g This completes the proof of (42), hence of (39), as required for (H-2)j
Assumption (H-3). From (27) and (29) we have

RA:(E "€II> (47)
hence clearly RA € £L(H). Assumption (H-3) holds with 4, = 1.

Since all the assumptions (H-1)-(H-3) are verified, we are in a position to apply
conclusions of Theorem 3. To this end we note that an application of Green’s formula
gives

. 0
B v = E/.’UZIFJ v = (vlyUQ) (483')
Moreover, it can be easily verified that
0 A?
A* = 48b
[ -1 aA? ] (480)
B*R*R=10 (48¢)

Performing now rather straightforward computations and taking into account the
above relations (48), we obtain the result of Theorem 1. u
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4.2. Proof of Theorem 2 (Case ~>0)

It is convenient to use the following topology on Hg(f)
(z,v)mr(n) = / zv dQ + 7/ VeVvdQ = (I +yA)z,v)a (49)
Q a

Assumption (H-1). With respect to the norm induced by (49), A, is self-adjoint
on HE(). Therefore, the argument of (Chen and Triggiani, 1990) applies to assert
the analyticity of the generator A defined by (20).

. : . . 1 .
Assumption (H-2) is satisfied with the value of o > T To prove this, it suffices
to show that

1
AV B : Ly(T') — HY(Q) x H)(Q) is compact for vy > 1 (50)

with A and B given by (20), (22), respectively.

As before, we compute

AT1B = { ol —AF } { 0 ] - [ ATID } (51)
-1 0 —(I +7A)""AD 0

By virtue of (51), (50) is equivalent showing that the operator
A~1D
Al=o { 0 } . Ly(T) — HY(Q) x Hy(R) (52)

is compact for 70 > ;.

1. :
Since APD : Lo(T) — Lo(2) for p < 7 compact (see Lions and Magenes, 1971),
it suffices to show that

e | AP 1 1
e | A La() - HY(@) < B () (53)

is bounded for 7o > % and 0<p < .

By the same arguments as those used to prove (43) (replacing A? by A,) we obtain
the following characterization of Da(q,2)

Dalg,2) = {( Z ) € Ho(Q) x Hy(Q); Af(z+y) € Hé(ﬂ)} (54)
From (54) and (46) we infer that

[ A-1-r
( ’ 0 " ) € D(AIT) = AP AT e € Ho(Q) (55)
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Since A,A~! is an isomorphism on H}(Q), (55) is satisfied provided
APz € Hi(Q) for z € Ly(Q) (56)

.. 1 . 1 .
But this-is true for v, +p > 3 iff v > 7 as desired.

Hypothesis (H-3). From (25) and (20)

0 C

0 0

Since C € L(H(R); L2(Q)), RA€ L(H,Z) and (H-3) is satisfied with y; = 1.

We have verified hypotheses (H-1)—(H-3), hence the conclusion of Theorem 3 is
applicable to our case. Calculating the adjoints of the operators A and B we obtain

A* — 0 A'Y
-I oA,

B*v = vy, v=/(v1,02)

ov
B*R*R=0

RA =

Introducing the change of variables

Pz = Aypaz = (1 +7A) " A’pyz

and specializing the result of Theorem 3 to our problem yields the assertion of
Theorem 2. ] '
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