Appl. Math. and Comp. Sci., 1994, vol.4, No.1, 139-152

AUTOMATIC SYNTHESIS OF SELF-CLOCKED
ASYNCHRONOUS STATE MACHINES
AND PARALLEL CONTROLLERS

FaAruaD AGHDAST*

The classical methods for the design of asynchronous state machines are usu-
ally complicated due to critical races and hazards, and necessitate special state
assignment techniques and hazard free combinational logic leading to extra hard-
ware. The necessity for such special considerations prevents asynchronous de-
signs to take advantage of the CAD tools developed for synchronous machines.
The contribution of this paper is a novel approach to such designs which ena-
bles asynchronous state machines to be systematically synthesized with mini-
mum state variables and arbitrary state encoding. Multiple input changes are
allowed. The method uses a separate data driven clock per state variable. The
combinational logic is hazard free by default allowing flexibility of minimization.
Mealy and Moore outputs can be generated without hazards. Simple latches in
master—slave configuration are used as memory elements rendering the method
suitable for implementation in SSI or VLSI. It avoids extra delay elements often
necessary in self-clocked circuits. The simplicity of this method enables the de-
sign equations to be derived direct from the Algorithmic State Machines rather
than flow tables. The method is illustrated by its application to the design of
a VMEDbus requester. The methodology is then extended to parallel control-
lers represented by Petri nets and automated using state assignment techniques
already developed for synchronous parallel controllers.

1. Introduction

Asynchronous sequential circuits offer improved speed of operation when compared
with their synchronous counterparts since they respond directly to input changes and
do not have to wait for the arrival of the system clock. Moreover, they do not suffer
from the problem of metastability encountered when trying to synchronize inherently
asynchronous signals such as in interfacing two subsystems each running on a separate
clock. An asynchronous approach allows modular design and replacement of compo-
nents and adapts well to technology scaling. However, asynchronous state machines
are difficult to design correctly. The classical methods of design (Unger, 1969) require
careful examination of the flow table to cater for possible critical races and hazards,
complicating the design procedure and often leading to extra states and additional

* Department of Electrical Engineering, University of Zimbabwe, P.O.Box M.P.167, Harare,
Zimbabwe

140 F. Aghdasi

hardware. The necessity for critical-race—free state assignments, hazard free com-
binational logic designs and delay elements have persuaded many logic designers to
avoid asynchronous designs particularly since such restrictions render the CAD tools
of synchronous designs inappropriate for their asynchronous counterparts.

Over the past three decades a number of methods have been suggested to com-
bine the advantages of asynchronous and synchronous sequential circuits by locally
generating a clock and using it to self-synchronize the machine. Such clock signals
have been generated whenever an input changes (Bredeson and Hulina, 1971; 1973;
Ray and Vaucher, 1974) or by controlled excitation whenever a change of inputs ne-
cessitates a change of state (Chuang and Das, 1973) or whenever the present state
and the next state are different (Huertas and Acha, 1976). The main disadvantage of
these methods is the requirement of delay elements in the clock path which is difficult
to calculate accurately, cumbersome to add to the design. Inertial delays (Chuang
and Das, 1973) to allow multiple input changes have even more adverse side—effects.
The use of edge-triggered flip—flops in such methods, although enables critical race
considerations to be set aside, is unsuitable for VLSI designs where simple latches
are preferred (Aghdasi, 1991a; 1991b). Specific methods have also been suggested for
application with SST logic (Aghdasi, 1989), Programmable Logic Devices (Aghdasi
and Bolton, 1991) and Logic Cell Arrays (Aghdasi, 1990).

In all these methods hazard free Mealy outputs remain a problem unless exces-
sive additional hardware is used (Bredeson, 1975) or cumbersome classical methods
(Unger, 1969) are applied. Efforts to use mixed operating mode (Chiang and Radha-
krishnan, 1990) in order to remove essential hazards individually and then search for
critical race free state assignments lead to equally complicated design methods.

Recent advances in this area offer a design methodology (Nowick and Dill, 1991a)
which allows hazard free outputs from minimal or near minimal number of states
with a special case of multiple input changes. To prevent hazards, state minimization
algorithms are developed and automated (Nowick and Dill, 1991b). The methodology
continues to rely on delay elements to cover worst—case scenarios.

2. Overview

The general scepticism towards asynchronous circuits may be removed if the methodo-
logy compares well, in simplicity and reliability, with their synchronous counterparts.
Towards this end the following issues should satisfactorily be addressed:

e No special state assignments should be necessary to avoid critical races.
e No special combinatorial minimizations should be necessary to avoid hazards.
e Delay elements (inertial or otherwise) should be avoided.

e Memory elements, if used, should be simple latches rather than edge-triggered
flip—flops (for easy implementation in VLSI).

e The starting point of design should be comparable in complexity with the Algori-
thmic State Machines rather than primitive flow tables.

The contribution of this paper is to present a novel and automated method for
the design of asynchronous state machines which satisfies the above requirements.

Automatic synthesis of self~clocked asynchronous state machines ... 141

Additionally, it has been shown that the methodology can be extended to the design
of parallel controllers represented by Petri nets using state assignment algorithms
already developed for synchronous parallel controllers (Amroun and Bolton, 1989).

2.1. Multiple Input Change

Asynchronous sequential circuits respond to input changes as they occur and therefore
most methods developed for such designs (Unger, 1969; Chiang and Radhakrishnan,
1990) place restrictions on the input ‘changes to ensure that after the change of only
one input no other input changes until the machine has had time to respond to that
input change and has reached a steady state (fundamental mode operation). It is
advantageous to be able to relax this restriction such that multiple input changes can
be allowed. Obviously, reasonable restrictions can still be placed on the individual
signals since no physical device can be expected to respond to input changes of ar-
bitrary high frequency. Thus, although it may be assumed that some minimum time
separates consecutive changes in each signal, if two or more inputs change at the same
time the machine should respond in a predefined and desirable manner. It can be
argued that there is no such thing as “at the same time”, the machine should respond
to two input changes which have occurred within a small window ‘d’ as if they had
occurred at the same time. Methods that allow such multiple input changes (Chuang
and Das, 1973; Aghdasi, 1991a) have to suppress the spurious pulses, due to such
separation of the multiple input changes, by inertial delays. Such delays, as discussed
earlier, should be avoided if possible. Methods have been developed to cater for such
multiple input changes that when transition from one state to the next is dependent
on the change of several inputs at arbitrary times and no input burst in a given state
can be a subset of another (Nowick and Dill, 1991a). In fact, because of such a
restriction, no state change is effected until all the component inputs have arrived.
The state machine responds to such multiple input changes in the same manner as it
would to a single input change which has several components ANDed together.

Our proposed solution to the issue of multiple input change is in the manner of
the state machine specification and in its method of implementation. When a machine
in a particular state should respond differently to the change of either of two inputs,
the designer should establish that if the two changes are perceived by the machine to
have occurred at the same time which of the two responses takes precedence. This
decision can be incorporated in the state machine representation by testing the input
with the higher priority first. This choice can always be made since the simultaneous
arrival of the two inputs or precedence of one over the other (when their occurrences
are very close) is arbitrary and dependent on the delays in the various paths. It should
be noted that even in synchronous designs the condition for entering a successor state
cannot be a subset of the condition for entering another successor state (Sandige,
1990). In the proposed method, transition from each state to the next one is achieved
through generation of a pulse for each state bit which needs to change if the present
state and input levels necessary for that transition have been established. Therefore,
if a state change occurs and the new state finds that the input necessary to take it
to the next state is already established the necessary transition will take place. If
transition from one state to the next depends on the arrival of several inputs, no

142 F. Aghdasi

transition will happen until all the necessary inputs have arrived. An example of the
treatment of multiple input changes will be discussed later during the analysis of the
VMEDbus requester.

2.2. State Machine Specification

One of the obstacles in the classical design of asynchronous state machines (Unger,
1969) is the need to start from a primitive flow table. For practical designs of even
moderate size such flow tables can be very large and hard to manage. If the state
diagrams developed for synchronous designs can easily be used for asynchronous me-
thods, the designer would be in a position to compare the advantages of the two
approaches for various modules or the whole of the design. It is shown that our
design method can be implemented from any state machine specification which 1s
based on transition from one state to the next one when certain input levels are pre-
sent. This requirement is so minimal that any representation from algorithmic state
machines to Petri nets would be suitable. Such representations when prepared for
synchronous machines can directly be transferred for asynchronous implementation
merely by recognizing that in self-clocked methodology there is no global clock in the
machine and therefore no fixed cycle time. The transition from each state to the next
one takes place when the necessary input condition is established. Obviously under
such circumstances counters would have a different meaning unless there are certain
transitions that are being counted. In a synchronous counter, the count represents a
duration of time which is a multiple of the clock period. In our self clocked circuit,
in the absence of any external inputs, the movement from one count to the next one
would take place as soon as the previous transition is completed and therefore, it is a
measure of the speed of the system.

3. The Design Method

A block diagram of the proposed method for the synthesis of an asynchronous state
machine is shown in Figure 1. The machine consists of combinational logic blocks
fi, fa, -, fn and a pair of master—slave latches for each state variable. Each master—
slave flip—flop is connected in the toggling mode such that every input clock pulse
complements its output. Master latches are static, slave latches are dynamic. It
should be noted that unlike synchronous designs there is no fixed cycle time. There
are no clock pulses unless the established values of the inputs and present states
require a change in the next state values and, even then, the master latches of those
next state bits which do not need to change receive no pulses. The clock of each
master latch is a function of the inputs X and present states Y. The output of
the same latch is used to reset the clock forcibly without hazards once the change
has been effected. For example the combinational block f; generates the clock Ci
as follow:

Ci =0 f(Ay) + s f (V1) (1)

In this equation f(Ay;) represents the sum-of-products function of all the present
state and input conditions which require a 0-1 transition of the state variable y;.

Automatic synthesis of self-clocked asynchronous state machines ... 143

Similarly f(Vy:1) represents the sum—of-products function of all the present state
and input conditions which require a 1-0 transition of the state variable ;.

The notable peculiarities of this arrangement are that each state variable is being
clocked separately with its own data driven first clock phase only when that particular
state variable bit should be complemented and then the transfer to the slave latches
is synchronized (to ensure that possible critical races do not cause any problems) by
a single NOR gate which generates the second clock phase after all the first clock
phases have returned to their low level. The timing analysis and details of the critical
races and hazards are considered later.

Those outputs of the state machine which do not need to be hazard—free (perhaps
because they are being used only in other synchronous parts of the system and their
values are tested at the rising edge of the system clock after they have finally settled)
can be obtained in the standard manner (Unger, 1969) through combinational logic
as a function of inputs and state variables (Mealy outputs) or as a function of state
variables only (Moore outputs). This method of output generation has the usual pro-
blem of metastability associated with synchronous systems with independent external
inputs which is why Mealy outputs are seldom used in synchronous systems. Our pro-
posed method for hazard—free implementation of the outputs is shown in Figure 2.
There is a master—slave latch assigned to each output such as Z; and is connected
in the toggling mode so that the output is complemented on each arrival of the clock
pulse. The clock pulse is generated by the combinational logic g1 whenever the cor-
responding output should be complemented. This combinational logic is a function
of the input variables X and state variables Y. The output of the corresponding
master latch is used to forcibly reset the clock without hazards once the change has
been effected. For example the combinational block ¢; generates the clock C; as
follows

C1 = za19(Az) + zm19(V21) (2)

In this equation g(Az;) represents the sum—of-products function of all the present
state and input conditions which require a 0-1 transition of the output z;. Similarly,
g(Vz1) represents the sum-of-products function of all the present state and input
conditions which require a 1-0 transition of the output z;. The details of the hazard
free operation of the clocks are considered later.

3.1. Races and Hazards

Having looked at the functional synthesis of our proposed method it is necessary to
examine its operation at a lower level of logic and timing implementation to ensure
its hazard free operation and to ascertain that possible critical races do not cause
.malfunction of the machine. First we consider the state machine in Figure 1. Assume
the machine is in a stable state, no new input bursts have begun and all internal
logic is stable. Any input burst may occur, with inputs arriving in arbitrary time and
order. The following requirements have to be established:

1. If change of inputs does not require change of state, the output of the combinatio-
nal logic blocks which provide the clock signals should remain at low level without
hazards.

144 F. Aghdasi

2. If a change of input requires change of state, there should be a hazard free 0-1
transition on the clocks of the corresponding master latches of those state bits
which are required to change. ‘

3. Once each clock pulse has effected the required change on the master latch, it
should be reset without hazards.

4. To prevent possible critical races from causing the machine to malfunction, whe-
never a change of state requires the change of more than one state variable the
transition from one state to the next of the affected state variables should be
synchronized (McIntotsh and Weinberg, 1969).

The above requirements ensure that the operation of the machine is hazard free and
that possible critical races do not cause the machine to malfunction. For the outputs
shown in Figure 2, corresponding réquirements 1 to 3 as above (any reference to state
bits should be replaced by output variables) ensure hazard—free operation. Require-
ment 4 falls away since, unlike the state variables, the outputs are not fed back and
therefore they do not need to be synchronized.

3.2. Logic Implementation

In this section it is shown that a simple AND-OR (sum-of—products) implementation
of the combinational logic blocks of the state machine and the outputs is hazard—free
by default without any special considerations and that all the above requirements to
cater for hazards and critical races are satisfied. It is assumed that arbitrary fan—in
AND blocks and OR blocks are available where a number of AND blocks feed directly
into a single OR block. Multi-level realizations of these blocks are discussed later.

The AND-OR implementation of the combinational blocks have only 0-0 and
0-1 transitions during the input bursts. An AND-OR realization is hazard—free for all
0-0 and 0-1 transitions (Nowick and Dill, 1991a). For a 0-0 transition, each product
term remains disabled since it must have some literal that remains 0 throughout the
transition. If this were not true, then when certain inputs in the input burst have
changed, every literal in a product term would become 1. This can only occur if
the corresponding bit was supposed to change and therefore a 0-1 transition was
intended which is not the case. Therefore, the requirement 1 above is satisfied. For
a 0-1 transition, each product either makes a 0-0 or 0-1 transition. Using the same
argument as above, a product making a 0-0 transition will be hazard—free. Remaining
products make a 0-1 transition; since input changes are monotonic and the literals to
such products will all be 1 only at the end of an input burst, no hazard is possible.
Therefore, requirement 2 above is satisfied.

Requirement 3 above is satisfied since, following the rising edge of any of the
clock signals and the toggling of the output of the corresponding master latch the
clock signal is forcibly reset by the AND function of the toggling term and the output
of the master latch as shown in equations 1 and 2.

Requirement 4 above is satisfied since the transfer of the changes from the master
latches to the slave latches will only be effected after all the clocks have been reset
and all the inputs of the NOR gate are at low level. Therefore, whenever a change of
state requires the change of more than one state variable the transition from one state

Automatic synthesis of self-clocked asynchronous state machines ... 145

to the next of the affected state variables is synchronized. It is, however, necessary to
ensure that there are no unreasonable delays in any of the combinational logic blocks
since by the time the first generated clock pulse has passed through the corresponding
master latch, toggled its output, whose signal is fed back to the combinational logic
and has reset the clock, the second clock pulse (if it is meant to appear) should have
started its rising edge. In effect, if the maximum and minimum delays through the
combinational blocks are 65 and é,, respectively, and the minimum delay through
a latch is d,;,, then the condition which needs to be satisfied is

6ar < 26m + dm (3)
Master Slave
latches latches
L s
X D1 th] - 0
- 7
N fi C ™ p—
Y :
Y
Ymir ——
— K
X D, {2 - Y2
g : I
\ fa : G, T e p—
Y
-7
Ymz —— . .
L] [] L]
[]
X LDF WUMn - Y
: P
I Cyp P p—
= |
yMn ..

Fig. 1. Block diagram of an asynchronous state machine.

146 F. Aghdasi

It is clear from the above discussion that the combinational logic blocks can be desi-
gned in any implementation style, including multi-level logic, so long as it avoids 0-0
and 0-1 hazards and (in the case of the state machine section) the very reasonable
delay requirement stated above.

Master Slave
latches latches

I—»Dl M1 - 21

U

g1 Cy p—

ZM1 {>oi ‘-‘

X > D2 EM2 > 29
g2 C, p—

ZM2 — > .

X) « Mo - L 2
g C

Y __5\ q q

ZMn {>¢

Fig. 2. Hazard—free outputs of an asynchronous state machine.

4. Design Example

4.1. VMEbus Requester

The method presented in this paper can be illustrated by a self-clocked design of a
VMEbus Requester. Bus requesters are used in common bus systems that support
multiple processors controlling bus transfers. The function of a bus requester is to
request permission to control data bus transfers and to indicate to the master when
control has been granted. The VME Bus is a common, high performance asynchronous
bus that supports multiple bus masters. A self-clocked design approach to a VME bus

Automatic synthesis of self-clocked asynchronous state machines ... 147

requester is appropriate because the VME Bus is asynchronous and high—performance.
The bus request function is asynchronously initiated and sequential. A synchronous
approach requires an external clock to synchronize and time the sequence. The VME
Bus provides a 16 MHz system clock. Our proposed self-clocked design is much higher
performance than a synchronous design using the system clock.

The state diagram for a simple VMEbus Requester is shown in Figure 3. All
inputs and outputs are active low indicated by a dash following each signal name.
Notice that since in the absence of any clock pulses the state variables retain their
values in their respective latches, contrary to the classical asynchronous state diagrams
(Sandige, 1990), each stable state does not need to have a path to itself in order to
sustain the system in that state.

SYSRESET-

00
BR-,BGOUT-

BBSY—-,0BG-

01

11

BGOUT- BR-

1 ' | 10
BBSY -

BR—-,0BG~

<QBR-.BGIN—-.AS=

Fig. 3. VME bus requester state diagram.

148 F. Aghdasi

The state diagram of the VMEbus requester shown in Figure 3 shows how mul-
tiple input change is catered for in our proposed method. Transition from state 10
to 00 depends on the arrival of three inputs. The system remains in state 10 and no
clock pulse is generated until all three inputs have assumed the desired values. The
inputs can arrive at arbitrary time and order. Only after all the input conditions are
established the machine moves to the next state. Next we consider the situation when
the machine is in state 00. If a request is made (OBR-=0) the machine moves to state
01. If a request is not made (OBR-=1) but a grant signal is asserted (BGIN-=0),
indicating that another device had requested the bus, the grant signal is passed down
the daisy chain by moving the machine to state 11. A situation can arise that OBR-
and BGIN- are both asserted at the same time. This can happen if another machine
has requested the bus and exactly at the same time that the grant signal was being
asserted the present machine has requested the bus. In this case since OBR~- is being
tested first, the VMEbus requester will be granted first. If the BGIN- was tested first,
the othet machine would have received the bus first. This decision is rather arbitrary
since the sensing of the two inputs by the machine to be simultaneous is a function
of the delays in their respective paths. It should be noted that the restrictions on
the change of inputs amounts to the “fundamental mode” for multiple input changes.
If input changes occur before the system is stable there is naturally the possibility
of a metastable condition. However, the probability of such a condition occuring is
a function of the frequency of the independent signals involved. In the absence of a
high frequency clock the probability of a metastable condition is much less than in
its synchronous counterpart.

4.2. Implementation

To implement this VMEbus Requester using our proposed method, the equations for
the clocks (1) should be obtained. The state assignment is arbitrary and minimal. The
inputs OBR~, BGIN- and AS— are shown as «;,z; and z3 respectively to conform
to the notation of our model. Due to the simplicity of the method, the equations
can be directly written from the state diagram or from the state and excitation table
shown in Table 1.

Tab. 1. State and excitation for VMEbus requester.

Present Inputs Next ‘Excitations
state state

my: |1 T2 z3 | niy2 | Ay Vyi Ay Vi

00 1 0 - 11 1 0 1 0
00 0 - - 01 0 0 1 0
01 - 0 - 10 1 0 0 1
10 1 1 1 00 0 1 0 0
11 - 1 - 00 0 1 0 1

Automatic synthesis of self-clocked asynchronous state machines ... 149

C1 = 21Z2Y1Ypr1 + TaU1Y2Unn + T12283Y1YM1 T+ T2Y1Y2UM1 (4)
Co = T1Y1UsUpm2 + T2T1 Vo Unro + T2U1Y2ym2 + T2Y1Y2UM2 (5)

To simplify the equations for the clocks C; and C3, Karnaugh maps or any
other logic simplification method can be used. The design must respond to the system
reset signal, SYSRESET- , taking the state machine to state 00. Therefore, the
asynchronous reset inputs of the flip—flops should be connected to SYSRESET-. The
implementation of this design is shown in Figure 4.

I_'Dl UM 1 > U

T1T2Y1Yp + T291 Y2Unn + G . L

T1T2T3Y1YM1 + T2y1Y29M1

'—- D, a2 Y2

T101 Y2 Umz + T2U1 V22 C, Lo b

[
+T2Y,y2yM2 + T2y1Y2YM2

LD RM1

Y1y22M1 + Y, Y, ZM1 Ca " -

>

Fig. 4. Design of VMEbus requester state machine and output sample.

» 2]
(BGOUT-)

For the design of the outputs of the VMEbus requester it should be noted that
BGOUT- is specifically required to be glitch free. Using the proposed method, the
combinational logic for the clock signal of this output which is only asserted during
11 state can be derived in two ways as follows:

1. The output can be asserted (z; = BGOUT— = 0) when the machine has entered
state 11 and released when the machine has entered state 00. This is the Moore
type where the output is only the function of the present state.

Ca1 = yiyazm + Y1 Y22m1 . (6)

2. The output can be asserted when the state and input conditions for entering the
state 11 are established and it is released when the input condition for leaving the
state 11 is established. This is the Mealy type where the output is a function of

150 F. Aghdasi

the inputs and the present state. Outputs generated in this manner may require
more combinational logic but are established faster. Moreover, when the output
is not associated with any state and is Mealy type in the state diagram it has to
be a function of the inputs.

C.1 = T1T2Y Y2 2M1 + T2Y1Y2ZM1 (7)

The other outputs can either be derived in the same manner or as described 1in
(Aghdasi and Bolton, 1991).

5. Parallel Controllers

A sequential controller has only one active state at any one time. When several such
state machines. are interacting they form a system of parallel controllers which can
have several active local states simultaneously. Parallel controllers are best represen-
ted by interpreted Petri nets (Pardey and Bolton, 1991). Parallel controllers can be
designed using our proposed self-clocked method with the state assignment algori-
thms or decomposition techniques developed for their synchronous counterparts. This
ease of application is made possible by the fact that our self-clocked method behaves
similar to a synchronous machine with the exception that there is no fixed clock cycle
time. A clock pulse is generated as soon as the machine is ready to move to the next
state and there are no restrictions on state assignment or minimization of the feedback
logic due to critical races and hazards normally associated with asynchronous circuits.
It is this similarity that allows the same state machine representation prepared for
synchronous systems to be interpreted and used for our self-clocked systems.

5.1. Decomposition

A parallel controller represented by an interpreted Petri net can be decomposed into
two or more subnets similar to FSMs where each state machine has only one active
state at any one time (Pardey and Bolton, 1991). Each of the component state
machines can then be designed using our self—clocked method. '

5.2. Parallel State Assignment

A parallel controller represented by an interpreted Petri net can be implemented by
state assignment algorithms which ensure orthogonality, thereby avoiding concurrent
local states having conflicting state variables (Amroun and Bolton, 1989). This pro-
cedure can directly be implemented using our self-clocked method. The same state
encoding can be used and transition from one state to the next one is defined by the
present state and the required input values.

5.3. Isomorphic Encoding

The simplest state assignment of parallel controllers which have several local states
active concurrently is isomorphic encoding. This assigns one flip-flop per state in the
same manner as one-hot encoding of FSM synthesis, except that now several flip—flops
can be active simultaneously. This method is particularly attractive with Logic Cell

Automatic synthesis of self-clocked asynchronous state machines ... 151

Arrays where there are an abundance of flip—flops (Aghdasi, 1990). Our self-clocked
method can directly be applied to parallel controllers with isomorphic encoding since,
although each state flip—flop is being clocked separately, the transition from one state
to the next one is synchronized.

6. Conclusions

A novel design method has been presented for asynchronous state machines and pa-
rallel controllers which does not require special considerations and non minimal state
encoding to avoid critical races and hazards. Such race and hazard considerations
which had long plagued asynchronous designs have been rendered irrelevant through
the design approach. This feature makes asynchronous designs comparable in com-
plexity and reliability with synchronous designs while retaining the basic advantages
of asynchronous methodology. Through combining data and local clocking the need
for delay elements often associated with self—clocked circuits has been eliminated.
The method allows implementation from Algorithmic State Machines or compara-
ble specifications used for sequential designs, or Petri net representation for parallel
controllers. Mealy and Moore hazard—free outputs can be obtained. CMOS power
consumption is minimal since only the bits which need to change receive a clock signal.
The method uses combinational logic and simple latches and, therefore, is suitable
for implementation in SSI or VLSI.

The automated design procedure is being added to SIS, which is a recent version

of the MISII logic synthesizer (Brayton et al., 1987) supporting sequential circuit
synthesis.

References

Aghdasi F. (1989): Design of asynchronous sequential circuits using interface protocol asyn-
chronous cell (IPAC) PAL device. — Proc. Int. Symp. Computer Architecture and
Digital Signal Processing, CA-DSP’89, Hong-Kong, pp.426-430.

Aghdasi F. (1990): Application of logic cell arrays in design of self-clocked sequential cir-
- cuits. — Proc. IEEE TENCON’90, Computer and Communication Systems, Hong—
Kong, pp.519-523.

Aghdasi F. (1991a): Synthesis of asynchronous sequential machines for VLSI applica-

tions. — Proc. Int. Conf. Concurrent Engng. and Electronic Design Automation,
CEEDA’91, Bournemouth, U.K., pp.55-59.
Aghdasi F. (1991b): Pass—transistor self-clocked asynchronous sequential circuits. — Proc.

Int. Conf. Very Large Scale Integration, VLSI 91, Edinburgh, Scotland, pp.9.1.1-9.1.9.

Aghdasi F. and Bolton M. (1991): Self-clocked asynchronous state machine design with
PAL22IP6 device. — Microprocessors and Microsystems, v.15, No.1, pp.35-41.

Amroun A. and Bolton M. (1989): Synthesis of controllers from Petri net description and
application of Ella. — Proc. IFIP Workshop Applied Formal Methods for Correct
VLSI Design, North Holland, pp.57-74.

Brayton R.K., Rudell R., Sangiovanni-Vincentelli A. and Wang A.R. (1987): MIS: A

multiple-level logic optimization system. — [IEEE Trans. Comp.-Aided Design, v.6,
No.6, pp.1062-1081.

152 F. Aghdasi

Bredeson J. (1975): Comments on ’synthesis of multiple input change asynchronous ma-
chines using controlled excitation and flip—flops,” — H.Y.U. Chuang, S. Das Author’s
reply. — IEEE Trans. Comp., v.C-24, No.11, pp.1142-1144.

Bredeson J.G. and Hulina P.T. (1971): Generation of a clock pulse for asynchronous sequen-
tial machines to eliminate critical races. — IEEE Trans. Comp., v.C-20, pp.225-226.

Bredeson J.G. and Hulina P.T. (1973): Synthesis of multiple input change asynchronous
circuits using transition—sensitive flip-flops. — IEEE Trans. Comp., v.C-22, No.5,
pp-524-531.

Chiang J. and Radhakrishnan D. (1990): Hazard—free design of mized operating mode asyn-
chronous sequential circuits. — Int. J. Electronics, v.68, No.1, pp.23-37.

Chuang H.Y.H. and Das S. (1973): Synthesis of multiple input change asynchronous machi-
nes using controlled excitation and flip—flops. — IEEE Trans. Comp., v.C-22, No.12,
pp-1103-1109.

Cypress Semiconductor (1988): CY7C331 application example: asynchronous, self-timed
VME bus requester.

Huertas J.L. and Acha J.I. (1976): Self-synchronization of asynchronous sequential circuits
employing a general clock function. — IEEE Trans. Comp., v.C-25, No.3, pp.297-300.

McIntotsh M.D. and Weinberg B.L. (1969): On asynchronous machines with flip—flops. —
IEEE Trans. Comp., v.C-18, No.5, p.473.

Motorola (1982): VMEbus Specification Manual. — MVMEBS/D1.

Nowick S.M. and Dill D.L. (1991a): Synthesis of asynchronous state machines using a local
clock. — Proc. Int. Conf. Computer Design, ICCD’91, IEEE Computer Society
Press, pp.192-197.

Nowick S.M. and Dill D.L. (1991b): Automatic synthesis of locally—clocked asynchronous
state machines. — Proc. Int. Conf. Computer Aided Design, ICCAD91, IEEE
Computer Society Press, pp.318-321.

Pardey J. and Bolton M. (1991): Logic synthesis of synchronous parallel controllers. —
Proc. IEEE Int. Conf. Computer Design, pp.454-457.

Ray C.A. and Vaucher . (1974): Self-synchronized sequential machines. — IEEE Trans.
Comput., v.C-23, No.12, pp.1306-1311.

Sandige R.S. (1990): Modern Digital Design. — New York: McGraw-Hill.
Unger S.H. (1969): Asynchronous Sequential Switching Circuits. — New York: Wiley.

Unger S.H. (1971): Asynchronous sequential switching circuits with unrestricted input chan-
ges. — IEEE Trans. Comp., v.C-20, pp.1437-1444.

Received October 6, 1992
Revised September 7, 1993

