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TIME-OPTIMAL CONTROL OF PARABOLIC
TIME LAG SYSTEM'

ApaM KOWALEWSKI*, ANNA KRAKOWIAK**

A time-optimal control problem for a distributed parabolic system in which con-
stant time lags appear both in the state equation and in the boundary condition
is presented. Some particular properties of the optimal control are discussed.

1. Introduction

Various optimization problems associated with the optimal control of distributed para-
meter systems with time lags appearing in the boundary conditions have been studied
recently by Knowles (1978), Kowalewski (1987a; 1987b; 1988a; 1988b; 1988c; 1990a;
1990b; 1990c; 1990d; 1991), Kowalewski and Duda (1992), Wang (1975) and Wong
(1987).

In this paper, we consider the time—optimal control problem for a linear para-
bolic system in which constant time lags appear in the state equation and in the
Neumann boundary condition simultaneously. This equation constitutes a universal
mathematical model in a linear approximation for many diffusion processes in which
time—delayed feedback signals are introduced at the boundary of the system’s spatial
domain. Then, the signal at the boundary depends at any time on the signal which
escaped earlier. This leads to boundary conditions involving time lags.

Existence and uniqueness of solutions of such parabolic equations are discussed.
The optimal control is characterized by the adjoint equation. Using this characteri-
zation particular properties of the optimal control are proved.

2. Existence and Uniqueness of Solutions

Consider now a distributed—parameter system described by the following parabolic
equation:
dy

5?+A(t)y+b(x,t)y(x,t—h) =u reQ, te(0,T) (1)
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y(z,t') = Bo(z, 1) z€Q, t'e€[-h0) (2)
y(=,0) = yo(2) z€Q (3)
%:c(w:t)y(xst_h)-l'v ‘TEF’ tE(O,T) (4)
y(z, ') = Yo(z,1) z€l, t'e[-h0) (5

where © C R” is a bounded, open set with boundary T, which is a C°°-manifold
of dimension (n —1). Locally, ©Q is totally on one side of I'. Moreover, we assume
that
y = y(z,t;u), u = u(z,t), v = v(z,1)
Q=0x(0,T), Q=0x[0,T], Qo = Qx[—h,0)
L =Tx(0,T), To=Tx[~h,0)
T is a specified positive number representing a time horizon, b — a given real
C°°—function defined on @, c — a given real C®—function defined on X, h - a
specified positive number representing a time lag, ®o — an initial function defined on
Qo, ¥y — an initial function defined on X,.
0 . .
The parabolic operator 5 + A(t) in the state equation (1) satisfies the hypo-

thesis of Section 1, Chapter 4 of (Lions and Magenes, 1972: v.2, p.2) and A(t) is
given by

A== Y o (e, 20 ©

i,j=1
and the functions a;j(z,t) are real C*-functions defined on Q (closure of Q)
satisfying the ellipticity condition

n

3 aij(at)pipi 2@y ¢l a>0, V(zt)€Q, Vpi €R (7)

3,j=1 i=1

Equations (1)—(5) constitute a Neumann problem. Then, the left-hand side of
(4) is written in the following form

(9y i ~ (9y(m,t)
e ii(z,t J L) = ,1 8
s = 2 et sz 20 = o) ®

0 . o . .
where —3——y—- is the normal derivative of y at T, directed towards the exterior

na
of Q, cos(n,z;) ~ the i-th direction cosine of 7, with 7 being the normal at I'
exterior to 2, and

a(z,1) = ez, t)y(z,t — h) +v(z, 1) )



Time-optimal control of parabolic time lag system 21

For simplicity, we introduce the following notation:

E; ¥ (G-1h,jh), Q;=QxE;, Qo = Qx[—h,0)

Y =T x Ej, Yo =T x[~h,0) for j=1,..,K
The existence of a unique solution of the mixed initial-boundary value problem

(1)—(5) was verified by Kowalewski (1990d). It was shown that the following theorem
holds:

Theorem 1. Let yo, ®o, Yo, v, u be given with yo € H(Q), & € H>}(Qo), Yo €
H21/4(%0), v € HY2U4Z) and u € L*(Q). Then, there ezists a unique solu-
tion y € H*Y(Q) for the mized initial-boundary value problem (1)-(5). Moreover,
y(+,jh) € HY(Q) for j=1,.. K.

Next, we shall establish v € H/21/4(%).

3. Problem Formulation and Optimization Theorems

Now, we shall formulate the minimum-time problem for (1)—(5) in the context of
Theorem 1, that is

wel = {u € L¥Q): lu(z,t)' <1 a.e.} (10)
We shall define the reachable set Y such that
v ={ye @) |ly - zall ey < (11)

where zg and ¢ are given with zg € L%(Q) and ¢ > 0.

The solution of the stated minimum-time problem is equivalent to achieving the
target set Y in minimum time, that is, minimizing the time ¢, for which y(t;u) €Y
and u €U.

Moreover, we assume that
there exist T'>0 and uw€U suchthat y(T;u)ey (12)

In (Knowles, 1978) the following result was proven:

Theorem 2. If assumption (12) holds, then the set' Y is reached in minimum time
t* by an admissible control u* € U. Moreover

/(zd — y(t*;u*)) (y(t*;u) - y(t*;u*)) dz <0, YuelU (13)
Q
We shall apply Theorem 2 to the control of (1)-(5).

To simplify (13), we introduce the adjoint equation and for every u € U, we
define the adjoint variable p = p(u) = p(z,t;u) as the solution of the equation

o)

) A ()p(w) + bz, + Wp(a,t + i) =0, 5 €9, 1€ (0,8~ h)(14)
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2 L adyp) =0, mEd e —he)  (19)
p(z, 1 u) = za(z) — y(z, t*; u), z €0 (16)
ap(u)(w 1) = ¢(, t+ h)p(z,t + h;u), z€T, t e (0,t* —h) (17)
O0na-

p(u)
87;,4.(‘”)—0 zel, te(t —ht") (18)
where

op(u - =~ Ip(u

811)7(,1?( 1) = I.Z_:laij (z,t) cos(m, z;) gij)(f,t)

o 6 (19)

#(0p==3 5 (wa(=0,,)

The existence of a unique solution for problem (14)-(18) on the cylinder
Qx(0,t*) can be proven using a constructive method. It is easy to notice that
for a given zg and wu, problem (14)—(18) can be solved backwards in time starting
from t = t*, i.e. solving (14)—(18) first on the subcylinder Qk and then on Qk_j,
etc. until the procedure covers the whole cylinder 2 x (0,t*). To this end, we may
apply Theorem 1 (with an obvious change of variables). It is easy to verify that the
following result holds.

Theorem 3. Let the hypothesis of Theorem 1 be satisfied. Then for a given zq € L*(Q)
and any u € L%(Q), there exists a unique solution p(u) € H21(Qx (0,t*)) for the
adjoint problem (14)-(18).

We simplify (13) using the adjoint equation (14)—(18). After setting w = u* in
(14)—(18), multiplying both sides of (14), (15) by y(u)—y(u*), then integrating over
Qx(0,t* —h) and Qx (t* — h,t*), respectively, and then adding both sides of (14)
and (15) we get

//( ap(u *(t)p(“*)> (y(w) — y(u*)) dedt

= _ /p(m,t";u")y((z,t*;u) - y(w,t*;u*)) dz

1)
//p(u —g— (y(u) — y(u dzdt+//A* (y(uv) — y(u*)) dzdt

t*—h ’
+ 0/ /b(z,t + h)p(z,t + h;u”) (y(z,t;u) — y(z,t;u#‘)) dw‘dt =0 - (20) ‘v

Q
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Then, after applying (16), formula (20) can be expressed as

/(Zd —y(t*;u")) (y(t*; u) — y(t*;u*)) dz

/

*

/p )Bt y(u - y(u )) dzdt + / /A'(t)p(u*)(y(u) — y(u"')) dzdt
Q
0

I

0

+ b(z,t+ h)p(z,t + h;u*) (y(z,t;u) — y(z,t;u*)) dedt (21)

o\

Using equation (1), the first integral on the right-hand side of (21) can be
rewritten as

// ") g (u(u) — y(u")) dad

= [ [p) et / | [ P40 ) - y(w)) doc
0 a 0 a .

_//p(z,t;u*)b(z,t)(y(z,t—h;u)—-y(:c,t—h;‘u*))d:cdt
00

v:/t]p( N - ) dzdt—// ) A®) (y(w) — y(u")) dedt
0

t*—h

- / /p(z,t’ + h;u*)b(z, ' + k) (y(z,t';u) — y(z,t';u*)) dzdt’ (22)
“hoQ

The second integral on the right-hand side of (21), in view of Green’s formula,
can be expressed as

/ / A*(t)p(u*) (y(u) — y(u*)) dedt = / / p(u")A(t) (y(u) — y(u*)) dzdt
0 N ) (VI 9

N / /’p(u*)<8y(U)_3y(u‘)) drdt — / ) () — y(u?)) drdt (23)
0o r
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Applying the boundary condition (4), the second integral on the right-hand side
of (23) can be expressed as

/ / < ona 88(::;)> drde
[/

t

I

p(z,t' + h;u*)e(z,t’ + h) (y(z‘,t'; u) — y(z,t';u")) dTdt’ (24)

Il
\L’

/p t;ut)e(z,t) (y(z,t — hsu) — y(x,t — h;u*)) dldt
r

-

The last component in (23) can be rewritten as

/ / agéj* — y(u*)) dTdt
= 7h / 657(:?( (u) — y(u*)) dTdt + / / 3§£Zi — y(u)) dTdt (25)
0o T “Zh

Substituting (24), (25) into (23) and then (22), (23) into (21) we obtain
[ = vt ) 0 = w(e's)) e

Q

= / ‘ [ )= ) dae - / ‘ [ o)A@ (0 — ) e
0 N . 0

0
/ /b(z,t + h)p(z,t + h; u*)‘i(y(.fn,t; w) — y(z,t;u*)) dedt

—h

t*—h
- f /b(a:,t+h)p(:c,t+h;u*)(y(x,¢;u)—y(m,t;u*))dmdt

0 Q

+ / /p(u*)A(t) (y(u) — y(u*)) dzdt

0 Q
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0

+ / /p(:c,t + h;u*)e(z,t + k) (y(z,t; u) — y(z,t;u*)) dTdt

-k T

+ / /p(z»t'f‘h}u*)c(z‘,t+h)(y(1.‘,t;u)—y(x’t;u*)) drds

o T

_t‘_h Op(W") (N B ; op(ur)
b/r/(?"“' (y(u) — y(u")) drdt t[”/ a- (y(u) - y(u")) drdt

+ / /b(m,t+h)p(m,t+h;u*)(y(z,t';u)—y(z,t';u*))dwdt
00

/p (u—u*)dedt (26)

Q
(

0\

Substituting (26) into (13) gives

/ /p(u*)(u —u*)dzdt _<_‘ 0, Yuée U> (27)
0 N

The above result can now be summarized.

Theorem 4. The optimal control u* 1is characterized by condition (27). Moreover,
in particular case

u*(z,t) = sign(p(z,t;u*)), zeQ, te(0,t") (28)

where p(z,t) # 0.
This property leads to the following result:

Theorem 5. If the coefficients of the operator A(t) and the functions b(z,t), c(z,t)
are analytic in Qx [0,T], and Q has analytic boundary T, then there ezists a unique
optimal control for the mized initial-boundary value problem (1)-(5). Moreover, the
optimal control is bang-bang, that is |u*(x,t)| = 1 almost everywhere, and the unique

solution of (1)-(5), (14)-(18), (27).

Outline of the proof. We have to verify that p(z,t) # 0 for almost all (z,t) €

2 x (0,2*). We shall show this fact by contradiction. Therefore, we suppose that
p(z,t) =0 for (z,t) € K CQx(0,t") (29)

where K # 0.
Let us denote by k- the largest nonnegative integer & such that ¢* —kh > 0.
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Apart from that, we suppose that K NQx (t* — h,t*) # 0.
Then p(u*) satisfies the following adjoint equation in the cylinder Q x (t*—h,t*)

3P(gt ) +A*(t) ( ) 0, e, te (t* _ h,t*) (30)
ap(u*) = m * — *
a0 €L, te(t"—ht) (31)

It is easy to verify (Tanabe, 1965) that p(u*) must be analytic in the cylinder
Q x (t* — h,t*). Then, from (29) it follows that
p(z,t)=0  for  (z,t) € Ax (t* — h,t*) (32)

Using Theorem 3.1. of (Lions and Magenes, 1972: v.1, p.19) we can verify that
p(u*) € H>1(Q) implies that t — p(t;u*) is a continuous mapping of [0,77] into
HY(Q) C L¥(Q). Thus, p(t;u*) € L*(Q), and so

p(t"u") =0 =y(t"u") — 2 (33)
Hence (33) leads to a contradiction that zg # y(t*;u*).

Now, we shall extend our result to any cylinder Q x (t* —kh,t* —(k— l)h), k=
2,3,..., ko.

It is easy to notice that p(u*) satisfies the adjoint equation

6pcgt Lt A" (@p(u) + b + W)p(e,t 4 hiut) = 0
z€Q, te(t*—2ht" —h) (34)
Op(u”) _ -
v c(z,t+ h)p(z,t + h;u”)

z€l, te(t"—2ht —h) (35)

in the cylinder Qx (t* — 2h,t* — h).

Then, p|n z,t+h;u*) and p|r, z,t+h;u*) are analyticfor =z €Q, t € (t*—2h,t*—h)
and ¢z €T, t € (t*—2ht - h) respectively, and consequently p(u*) must be
analytic in ﬁx (t* — 2h,t* — h), since (34), (35) have analytic coefficients (Tanabe,
1965). Thus, p(u*) must be analytic in any cylinder

Qx (t* —kh,t* = (k—1)h), k=2,3,..,ko, and Qx(0,t" — koh)
Now we suppose that
p(u*) =0 for (z,t) € KNQx (t* — kh,t* — (k- 1)h) (36)

for some k = 2,3, ..., ko.

Then, by analyticity and continuity, it follows from (36) that
p(u*) =0 for (z,t) € Qx (t* —kh,t" — (k- 1h) (37)
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Substituting (37) into (17) gives

op
Ona-

(z,8) =0 for (z,t) €T x(t*—(k—1)h,t* —(k—2)h) (38)

We can observe that p(u*) satisfies

—Q?i%l + A*(t)p(u*) =0, z€Q,te (t*—(k—1)h,t*—(k—2)h) (39)

a;ﬂ*—)(x,t) =0, z€T, te(t—(k—1)h,t* — (k—2)h) (40)
na*

p(-,t* — (k- l)h;u*) =0 . (41)

in the cylinder Qx (t* — (k — 1)h,t* — (k — 2)h).

Then, using the property of backward uniqueness, we have
p(u*)=0 in Qx (t* — (k= 1)h,t* — (k —2)h) (42)

We repeaf this procedure again until p(t*;u*) = 0, which leads to a contradiction
that zg # y(t*;u*). |

4. Conclusions

The results presented in the paper can be treated as a generalization of the results
obtained by Knowles (1978) onto the case of additional constant time lags appearing
in the state equations. Moreover, the time-optimal control problems presented here
can be extended to certain cases of nonlinear control without convexity and to certain
fixed—time problems (Knowles, 1978).

Using condition (12), we can also prove that the parabolic system (1)~(5) is
approximately controllable in L?(f2) in any finite time 7' > 0, that is the set

{y(T; u):u€ LZ(Q)} is dense in L%(Q2).

Finally, one may consider time—optimal control problems for hyperbolic systems
in which constant time lags appear both in the state equations and in the boundary
conditions.
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