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MINIMIZATION OF ENERGY LOSSES ON THE
TRANSMISSION LINE

MaciEs SIWCZYNSKI*, MARIAN PASKO**

The paper formulates and solves the problem of matching the receiver to the
source in the way which minimizes the losses of active power on the transmission
line at given active power supplied to the receiver. The existence and uniqueness
of the solution have been shown and the convergence of iterative procedure has
been proved. Thanks to functional analysis the problem has been solved for a
large class of signals and linear systems. A simple example has been presented
for sinusoidal signals in the system invariable in time.

1. Introduction

An important problem of the theory of any signal power is minimization of unfavorable
effects of electrical energy transmission. It has been of a great interest for many
years, but it still cannot be said that it has been solved satisfactorily. Previous
works on it (Czarnecki, 1984; 1987; Kusters and Moore, 1980; Page, 1980) did not
take into account the losses on the line of the transmission and they were limited
to ideal sources. Their aim was to minimize apparent power of the source, and
that was achieved by decomposition of the current into orthogonal components, from
" which only one ensured active power for the receiver. The current was determined
by intuition, and it did not result from mathematical analysis of a given physical
situation.

In subsequent works (Pasko, 1991; Siwczynski and Klosinski, 1991; Walczak,
1991) the losses in the source due to adding inner impedance have been gradually
considered. Variation methods applied there proved the uselessness of orthogonal
current and reactive power notions connected with it. In these works unfavorable
effects of energy transmission were determined in a certain square functional, which
contained averaging current and its derivatives with weights (Walczak, 1991). Such a
functional did not show properly the losses of active power on the transmission line,
because it did not contain the receiver voltage and possessed undeterminate weights.
There was no criterion of selecting these weights.

The present paper tries to determine the functional of the losses on the trans-
mission line. The problem of the conditional minimization of the functional has been
formulated and also possibility of the unique solution has been proved. Some ite-
rative procedures of solving the minimization equations have been given and their
convergence has been proved. The results obtained enable us to determine the signal
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of the receiver current called an optimum current, at which the losses in a two-port
network modeling a transmission system are minimal. It is necessary to know this
current in order to give the conditions of matching the electrical energy receivers, the
source and the transmission line. A pair-optimum current and optimum voltage of
the receiver—makes the selection of connected optimizing circuit possible.

A functional analysis applied here enables us to consider large classes of time
signals and continuous or discrete frequency signals. The problem,which is formulated
and solved here, may be applied not only for electroenergetic systems, but also for
load optimization of high frequency systems in filters, wave-guides and parametric
amplifiers.

2. Problem Formulation

A system under consideration consists of a signal source with voltage e; and with a
positive definite linear operator of inner impedance Zi, which transforms the signal
space into itself. The transmission system is presented in the form of a two-port
network described by a matrix of chain linear operators

A A
Agr Aa

The optimization problem consists in selecting the current so as to minimize total
losses of active power inside the two—port network modeling the line at a given stream
of active power P supplied to the receiver.
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source transmission line receiver

Fig. 1. Model of the source and the transmission line.

Active power losses inside the two—port network are defined by scalar products:
AP = (u1,41) — (u,1) (1)
Taking into account that

u; = Ajju+ Aot
) , (2)
iy = Agju+ Aaai

we obtain

AP = (Anu, A21u) + (Alzi, Aggi) + (Allu, Agzi) + (A21U; Alz‘l:) —_ (u, Z) (3)
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After rearranging, formula (3) has the following form:
AP = (A;2A12ia 'l) + (A;lAllu, u) + ([A;2A11 + A;2A21 - ]l]u,z) (4)

where adjoint operators are marked with an asterisk and 1 is the identity operator.

Between the voltage signal u and the current signal i there is a relation
u=e—2Zi (5)

where e is a voltage signal on the open terminals a — @', Z — an operator of
impedance seen from the terminals a—a’ at the closed terminals source of the signal
e1. It can be shown that

e= (A1 + Z1A21)_161 (6)
Z = (A1 + Z1An) " (Ara + 21 Ag) (7)

In formulae (6), (7) and later the symbol (-)~! denotes the inverse operator. Mo-
reover, multiplication should be done in sequence, because the operators may not
commute in a general case (with respect to multiplication). In a particular case when
Zy is a zero operator (the source on the left to the transmission line is ideal), we have

€= Al_llel (8)
7z = AfllAlz (9)

Formula (4) defines the functional ¢ — AP(%), i.e. value of total losses inside
the two—port network of the transmission system is assigned to each current signal 1.
The functional has the form:

AP(i) = %(L;i,i) + -;-('LUu,u) + (Duru,d) (10)

where Ly, Ly, Lyy are the operators described by the following formulae

Ly = A5 A10 4+ Al Ag (11)
Ly = A} A1 + Al Ay (12)
Lyr = Aj A1+ ATy A — 1 (13)

Operators L;, Ly are self-adjoint, i.e. Ly = L} and Ly = L§. Minimization
problem is as follows

1 U : .
5([412, 1,) + E(LUU’ u) + (LU]U., Z) — min (14)

subject to

P—(u,i)=P—(e—Zi,i)) =0 (15)
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This problem is solved by means of the Lagrange-multiplier method. The Lagrangian
functional takes the form

®(i,\) = %(Lli, i) + %(Luu,u) + (Luru, ) + A[P — (u,1)] (16)

Eliminating the voltage u in formula (16) by using expression (5) we obtain

1 1
®(i,)) = {—LI 4 -2 LyZ — LyiZ + ,\Z]i,i
2 2
~([7Lo = Lur + 22e,i) + 2P (17)
The Fréchet differential of functional (17) has the form
58(i, X) = ®(i + 65, ) — ®(i, A)

= ([K + K*]i, 51’) —(g,60)+ %([K + K*]é61, 51') (18)

where
K= %L1+%Z*LUZ—LU1Z+/\Z (19)
g= (Z*LU—LUI +/\]l)e , . (20)

From the condition of gradient vanishing and positive quadratic form in expression
(18) the following necessary and sufficient conditions for a minimum result follow:

(A1 +24) >0 - (22)

where A > 0 denotes a positive—definite operator, i.e. (Az,z) > 0 for any
acceptable signal x, and -

A=Z2+2" - (23)
A =Li+2'LyZ —LuyiZ - 2* Ly, (24)
Ay = Z*Ly — Lyt ‘ ‘ (25)

From the condition of passivity of the operator’ Z; .and the two-port network
modeling the line it results that the operators A and A; are positive—definite:
A >0, Ay > 0, and from the definition it results that they are self-adjoint. Thus,
for A > 0 condition (22) is always fulfilled.

Equation (15) can be rearranged to the form:
1
(e,7) — §(Ai’i) =P (26)

The process of calculating the Lagrange multiplier A and optimum current is carried
out in the following way: from operator equation (21) a family of signals i()) is
determined; putting it into equation (26) an algebraic nonlinear equation is obtained,
from which a factor \ is determined. It should be checked whether condition (22) is
fulfilled. It is illustrated in Figure 2.
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(A1 + AA)i = (Az + Al)e

i(\)

(e,4) — %(Ai,i) =P

| A

Fig. 2. Loop of the solution of minimization equations.

3. Existence and Uniqueness of Solutions

Solution of the optimization problem involves operator equation (21) and scalar
equation (26). The latter can be rewritten as

FO) = (e,i(Y) — 5 (400, i(3) = P (27)

To prove the existence and uniqueness of the solution of the minimization pfoblem
the function F is differentiated with respect to A
F'(A) = (e,8*) — (Ai, ") = (e — Ai, ) (28)

where i* is a signal of the so—called functional derivative of the current signal with
respect to A, i.e.

e A AFEY) =it )
Pt A) = Jim, 85X

This derivative can be determined by differentiating operator equation (21) with re-
spect to A

(A; + AA)* = e — Ai (29)

The operator equation obtained in this way enables us to determine the required
signal of the derivative i*. It is worth noting that (29) and (21) have the same

operator on their left-hand sides. From expressions (28) and (29) it follows that
F'(A) = (A1 + AA)i*, i) (30)

Because the operators A;, A are positive-definite, then the quadratic form (30) is
also positive—definite for each A > 0. Thus, the function F(X) is strictly increasing
for A > 0. For A — 0 operator equation (21) takes the form Ai{ = e so that
i=A"'e. Then
‘ 1

‘ [F(A)] Ao — a(Ahlea 6) = Prax (31)
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Formula (31) describes the maximum efficiency of the source active power.

On the basis of the considerations above the following theorem can be formulated.

Theorem 1. For positive-defined operators A, Ay there is always the same
1

P < Ppax = E(A‘le,e) for which equation (26) has the only positive solution.

Thus, condition (22) is fulfilled. So the minimization problem (14)-(15) has a unique

solution.

A practical solution of equation (26) requires an iterative process. Newton’s process
is assumed here as a model:

Aepr=T(A%) k=0,1,2,... (32)
where
I(\) =X+ P;Tﬁj\()’\) (33)

Is this process convergent to . such that Ff(A.)—P =07 To check the procedure
convergence it is necessary to determine the function derivative

FII(A)

A = [F(A) = P|——= (34
By differentiating expression (28) again we obtain
F"(A) = —(Ai*, i) + (e — 4i, i) = —(4i*, i) + (Bi*, i) (35)

where the operator B = A; + AA is self-adjoint. The second functional derivative
> can be determined by another differentiation of operator equation (29). Then we
obtain the following operator equation:

(Ay + AA)P = —24 (36)

Because for A > 0 there exists an operator which solves equation (36), then expres-
sion (35) takes the form

F'(\) = —(4i*, i) — 2(Bi*, B~1Ai*) = —3(4i*,1%) <0 (37)
for any A > 0. From formula (34) it results that
'A)>0 for A< A

I'A)>0  for A> A

Moreover, from formula (33) on the basis of the property of the functions F(X) and
F'()) it results that

[F(/\)]xw >0
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Thus, we obtain the following theorem:

Theorem 2. There ezists a A > A such that for Ao € [0, Ai] Newton's process
is monotonically convergent to the solution of equation (26).

4. Example

To avoid numerical methods the results have been illustrated by a very simple example
of the time invariant system with sinusoidal forcing. The diagram of the system being
considered is shown in Figure 3.
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source transmission line receiver

Fig. 3. Detailed diagram of the source and the transmission line.

In the case under consideration all the operators are represented by appropriate sui-
table complex numbers, while the signals by complex values. Then, equation (21) has
a direct solution

Az + A
I=——
A +AA (38)
while equation (26) takes the form
1 (A2 + (A5 +))
Re |-—2——|E?| - = Ef-P=0
[Al +/\A|E| ] 2 (A1 + AA)? ]
from which we obtain a quadratic equation for A
1 1
EADA + A1 DX + AjReAdy — 'Q'AlA2|2 - ‘I‘E“FAQ =0 - (39)
where
P
D=1-2A—:- 4

If P< 2A YE|? = Ppax, then D > 0. A discriminant of quadratic equation (39) is

as follows

. 2
A=D (Al -_— A|A2|)2 + 4AA1|A2| (sin% X A2>
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It is positive, hence equation (39) has a real solution. The positive solution is of the
form

_VA-AD

Ao D (41)
An optimal current is described by the formula
AZ + }\*
Iopt — 42
A+ M A (42)
and an optimum voltage by
ot = - gport = AT MZ — AaZ (43)

A+ A

After applying numerical data of the system from Figure 3 we obtain

Z=15+3j050 Li =480 A=30
E=10V Ly =28 A =30
Lyr =2 Ay =1—71

The current of unmatching receiver of the circuit shown in Figure 3is I = 5 A. The
active power flux is P = 12.5W. The solution of equation (39) is A, = 1.

The optimum current and the optimum voltage are, respectively,
1Pt —33_j17A, UP =42+;508V

By applying formula (10) we can calculate that the losses on the transmission line be-
fore optimization are 87.5W, and after optimization 70.84W. Maximum reduction
of losses is about 19%.

The optimum current can be achieved by means of a special matching circuit. It
is another problem which is not considered in the present paper.
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